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ABSTRACT

Motivation: Cancer genomes are characterized by the accumulation

of point mutations and structural alterations such as copy-number

alterations and genomic rearrangements. Among structural changes,

systematic analyses of copy-number alterations have provided deeper

insight into the architecture of cancer genomes and had led to new

potential treatment opportunities. During the course of cancer genome

evolution, selection mechanisms are leading to a non-random pattern

of mutational events contributing to fitness benefits of the cancer cells.

We therefore developed a new method to dissect random from non-

random patterns in copy-number data and thereby to assess signifi-

cantly enriched somatic copy-number aberrations across a set of

tumor specimens or cell lines. In contrast to existing approaches,

the method is invariant to any strictly monotonous transformation of

the input data which results to an insensitivity of differences in tumor

purity, array saturation effects and copy-number baseline levels.

Results: We applied our approach to recently published datasets of

small-cell lung cancer and squamous cell lung cancer and validated its

performance by comparing the results to an orthogonal approach. In

addition, we found a new deletion peak containing the HLA-A gene in

squamous cell lung cancer.

Availability: The CGARS program package is available for download

at http://www.translational-genomics.uni-koeln.de/scientific-resources/

Documentation and examples are available together with the package.

Contact: mpeifer@uni-koeln.de

Supplementary Information: Supplementary information is available

at Bioinformatics online.
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1 INTRODUCTION

Recently, several algorithms to identify significant copy-number
alterations from array-based high-throughput data (e.g.

Affymetrix SNP arrays or array CGH) have been proposed
(Beroukhim et al., 2007; Mermel et al., 2011; Sanchez-Garcia

et al., 2010; Taylor et al., 2008). All of these methods have in

common that the occurrence of different levels of tumor purity
and ploidy are barely taken into account. Especially in the

case of patient-derived tumor samples, the admixture of non-
neoplastic cells is an uncontrollable experimental variable,

often leading to large differences in tumor purity throughout
the dataset. An additional feature of cancer genomes is that

some tumors exhibit diverting levels of genome ploidy (triploid,

tetraploid, etc.). Both, low tumor purity and higher genome

ploidy lead to a decrease of inferred copy-number amplitudes

(Carter et al., 2012).
By using rank sums, we propose a novel copy-number-analysis

method that automatically accounts for these different levels of

purity and ploidy. We applied this approach to published
datasets of small-cell lung cancer (SCLC) (Peifer et al., 2012)
and squamous cell carcinoma (SQ) (Weiss et al., 2010) and fi-
nally validated detected regions of copy-number alteration by

comparing the results with those derived from a GISTIC analysis
(Mermel et al., 2011).

2 METHOD AND IMPLEMENTATION

The general idea behind our method is to transform raw copy
numbers into ranks. Probe sets in locations of common germ
line copy-number variations are removed. Rank sums for each

genomic location are then computed, smoothed and statistically
evaluated. These key steps are schematically shown in Figure 1A.
A detailed general description of the CGARS algorithm includ-

ing all mathematical details is given in the Supplementary
Material.

3 RESULTS AND CONCLUSION

To validate our method and to test its performance, we analyzed

published datasets of 63 SCLC (Peifer et al., 2012) and 146 SQ
(Weiss et al., 2010) tumor samples and compared the resulting
data with an analysis using GISTIC (Mermel et al., 2011). We

observed that CGARS consumed substantially less computation
time and memory than GISTIC on the same computational in-
frastructure [CGARS: 101s, 2.6GB (SCLC) 264s, 5.6GB (SQ);

GISTIC: 289s, 9.1GB (SCLC) 397s, 9GB (SQ)].
Almost all identified high-confidence peaks of copy-number

alteration are highly consistent between the two approaches

(Fig. 1B and Supplementary Fig. S1 and Tables S1 and S2).
Together with previously published copy-number analyses on
SCLC and SQ (Hammerman et al., 2012; Rudin et al., 2012)

this result supports the validity of our approach.
In case of the SQ dataset, we identified seven highly significant

amplification peaks (containing genes: CCND1, CCNE1, MYC,

FGFR1, EGFR, SOX2 and KRAS) and three deletion peaks
(containing genes: LRP1B, CDKN2A and PTPRD) consistently
detected by GISTIC and CGARS (Fig. 1B). Most discordant

regions identified by either method are broad lesions
(Supplementary Table S2). Focal copy-number alterations only
identified by GISTIC include KIAA1841, MTMR3 and
PARD6G; the link of these genes to SQ is currently unclear.

Among the regions identified only by CGARS are peaks*To whom correspondence should be addressed.

� The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 1

 Bioinformatics Advance Access published January 26, 2014
 at Peking U

niversity on February 17, 2014
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

http://www.translational-genomics.uni-koeln.de/scientific-resources/
mailto:mpeifer@uni-koeln.de
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu011/-/DC1
array 
,
;
;
;
copy 
number 
small 
,
)
,
)
germline
copy 
,
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu011/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu011/-/DC1
(
)). 
copy 
, 
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu011/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu011/-/DC1
, 
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu011/-/DC1
copy 
7 
,
3 
,
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu011/-/DC1
copy 
,
http://bioinformatics.oxfordjournals.org/
http://bioinformatics.oxfordjournals.org/


containing MYCL1 and PTEN; both regions appeared altered
upon visual inspection of the data analyzed as well as in an

independent dataset (Supplementary Fig. S2A and B).
Using CGARS we were further able to identify a previously

unappreciated deletion peak region at 6p21.33 containing the
HLA-A class I major histocompatibility gene (Supplementary

Fig. S2C). In addition, HLA-A is frequently subjected to loss
of function mutations in SQ (Hammerman et al., 2012). Thus,
identified deletions matched the mutation spectrum in the same

tumor type and is therefore supporting the notion thatHLA-A is
a biologically relevant gene in SQ.
Finally, to demonstrate that CGARS is not over-calling copy-

number aberrations, we analyzed our recently published dataset

of 70 pulmonary carcinoids (Seidel et al., 2013)—a tumor that is

particularly silent in copy-number space. Besides a single broad

deletion peak located at 11p11, none other significant copy-

number aberration were detected, suggesting that CGARS is

indeed not over-calling copy-number data.

In summary, we formulated a new copy-number-analysis

method and tested its performance by comparing the results

with an orthogonal approach. Our approach yields robust

results, is computationally inexpensive, and is highly flexible.

Furthermore, we identified a new deletion-peak region contain-

ing HLA-A; a gene that is also frequently mutated in SQ. Our

methodology may thus offer a valuable addition to existing

approaches since its flexibility enables the possibility of exploring

datasets under various aspects.
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Fig. 1. (A) Overview of the key steps of the CGARS algorithm. First,

raw copy numbers are transferred into rank sums. Upper and lower copy-

number quantiles are then defined and ranks falling into the upper quan-

tile (red bars) are separately analyzed from those that are situated in the

lower quantile (blue bars). Each genomic location is represented by two

bars indicating the multiple quantile selection. Ranks outside either quan-

tile (white bars) are not considered for the subsequent analysis. Next,

rank sums are computed for each genomic location and maximized (amp-

lifications) or minimized (deletion) over the multiple quantiles (blue and

red stars). These extremal rank sums are then subjected to a smoothing

procedure. Statistics of smoothed rank sum profiles are finally computed

to determine significant copy-number alterations, here shown by bars

exceeding the dashed horizontal line (level of significance). (B) Results

obtained from CGARS and GISTIC based on the SQ dataset. As main

parameters we chose for CGARS: uq¼ 0.25, 0.05 (upper quantile),

lq¼ 0.35, 0.25 (lower quantile), and for GISTIC: ta¼ tb¼ 0.4 (copy-

number threshold). Vertical dashed lines indicate the significance level

of 1% and putative target genes in the proximity of the copy-number

peaks are shown in parentheses
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