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ABSTRACT

Motivation: Tumors exhibit numerous genomic lesions such as copy

number variations, structural variations and sequence variations. It is

difficult to determine whether a specific constellation of lesions

observed across a cohort of multiple tumors provides statistically sig-

nificant evidence that the lesions target a set of genes that may be

located across different chromosomes but yet are all involved in a

single specific biological process or function.

Results: We introduce the genomic random interval (GRIN) statistical

model and analysis method that evaluates the statistical significance

of the abundance of genomic lesions that overlap a specific locus or a

pre-defined set of biologically related loci. The GRIN model retains

certain biologically important properties of genomic lesions that are

ignored by other methods. In a simulation study and two example

analyses of leukemia genomic lesion data, GRIN more effectively iden-

tified important loci as significant than did three methods based on a

permutation-of-markers model. GRIN also identified biologically rele-

vant pathways with a significant abundance of lesions in both

examples.
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stjuderesearch.org/site/depts/biostats/software.

Contact: stanley.pounds@stjude.org

Supplementary information: Supplementary data are available at

Bioinformatics online.

Received on January 7, 2013; revised on May 31, 2013; accepted on

June 24, 2013

1 INTRODUCTION

Microarray and next-generation sequencing technologies have

enabled biomedical researchers to characterize the genome of

individual tissue samples at a high resolution. In cancer gen-

omics, these technologies have been used to identify genomic

lesions in which the DNA of the tumor has been altered relative

to that of normal tissue from the same subject. Genomic lesions

include copy number changes, sequence mutations and structural

rearrangements. Genomic lesions may impact oncogenesis

(Mullighan et al., 2007) and clinical prognosis (Mullighan

et al., 2009). In this way, the development of the data collection

technologies and associated data analysis methods has

contributed profoundly to our understanding of the genomic

basis of cancer development and prognosis.
Several analysis methods have been developed to identify and

assign a statistical significance (e.g. P-value) to ‘hot spot’ loci

that are affected by copy number alterations at a high frequency:

the Genomic Identification of Significant Targets in Cancer

(GISTIC; Beroukhim et al., 2007) algorithm and its extensions

JISTIC (Sanchez-Garcia et al., 2010) and GISTIC 2.0 (Mermel

et al., 2011); Significant Aberration in Cancer (SAIC; Yuan

et al., 2012a); and TAGCNA (Yuan et al., 2012b). GISTIC is

one of the most widely used methods. It computes a statistic that

summarizes the frequency and amplitude of copy number alter-

ations at each marker of a specific microarray platform. It then

uses within-tumor permutation of the assignment of copy

number status to marker locus as a null statistical model to

evaluate statistical significance. In this way, GISTIC obtains a

P-value for each microarray marker locus, and significant peaks

are subsequently identified from this profile of P-values. The

JISTIC method uses a modified algorithm for identifying peaks

in the P-value profile. The GISTIC 2.0 algorithm modifies sev-

eral components of the original GISTIC algorithm, but GISTIC

2.0 still relies on permutation of markers (POMs) or bins of

markers to compute P-values. SAIC and TAGCNA compute

statistics that describe the extent to which specific marker loci

are affected by copy number alterations and use POMs as a null

statistical model to determine statistical significance. Each of

these methods has been successfully used for several applications

and thus represent important contributions in computational

cancer biology.
Nevertheless, each of these methods have some limitations that

should be addressed. First of all, these methods use a biologically

implausible statistical model of the null probability that a lesion

affects a locus. GISTIC, JISTIC, GISTIC 2.0, SAIC and

TAGCNA each use a POMs model for this purpose. POM per-

mutes the assignment of copy number status to marker locus

within each tumor. In this way, POM shatters single contigous

lesions into numerous probabilistically independent entities.

Consequently, many biologically important lesions are not iden-

tified as statistically significant (Mermel et al., 2011). Secondly,

these methods are not readily applicable to genomic lesion data

collected by whole-genome sequencing (WGS). These methods

each require that the data be represented in the form of a

marker-by-subject matrix. With WGS, every ‘mappable’ base

pair in the genome is a ‘marker’ so the matrix will be large.*To whom correspondence should be addressed.
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Additionally, these methods were developed solely for copy

number alterations and do not provide a way to incorporate

other lesions, such as point mutations or structural rearrange-

ments that may be detected with WGS (Wang et al., 2011).

Finally, these methods only evaluate the statistical significance

of the frequency that individual markers are affected by a lesion,

but do not directly determine whether a given set of biologically

related genes scattered across the genome (such as a particular

pathway) have a statistically significant abundance of genomic

lesions.
Therefore, we have developed the genomic random interval

(GRIN) statistical model for statistical analysis of genomic

lesion data. The GRIN model explicitly represents each genomic

lesion as an entity that affects one point locus, a set of point loci

or an interval locus along a chromosome. In this way, the GRIN

model retains the continuity of the genomic lesions and naturally

avoids the difficulties introduced by statistical models that do not

retain lesion continuity. Additionally, the GRIN model can ac-

commodate any genomic lesion that can be represented as a

locus on the reference genome. Copy number alterations are rep-

resented by intervals with distinct start and end loci; point mu-

tations are represented by their respective loci; and structural

rearrangements are represented by the loci of the associated

breakpoints. Finally, the GRIN model provides a computation-

ally feasible approach to evaluate the statistical significance of

the frequency that lesions affect a set of genes involved in a

particular biological process. Furthermore, like other methods,

GRIN also provides a mechanism to evaluate the significance of

the frequency that lesions affect each point locus in the genome

and the locus of each individual gene in the genome.
The remainder of this work is organized as follows. In Section

2, we describe the GRIN model in detail. Section 3 evaluates the

performance of GRIN and other methods in a simulation study

and two example analyses from leukemia studies. Section 4 pro-

vides discussion and concluding remarks.

2 METHODS

2.1 Genomic lesion data

Genomic lesion data give the type and locus of each genomic lesion

observed for each tissue sample. Let l ¼ 1, . . . ,L index the L genomic

lesions and let ðsl, cl, ul, vlÞ denote the subject sl, chromosome cl, start

locus ul and end locus vl of lesion l. Table 1 gives an example of genomic

lesion data from a study of early T-cell precursor (ETP; Zhang et al.,

2012) leukemia and illustrates the mathematical notation of genomic

lesion data.

We wish to determine whether the lesions are significantly concen-

trated at any particular locus in the genome, within any particular gene

in the genome or within the loci of a set of genes involved in a specific

biological process. To address these questions, we must define statistics

that describe the concentration of lesions around a specific locus, within a

specific gene and within a set of genes. We must also define a statistical

model to evaluate significance.

2.2 Overlap statistics

Here, we define statistics that describe the abundance of lesions that

overlap one fixed set of loci G. The fixed set of loci G may be a single

point locus, the interval locus of an individual gene or the interval loci of

a set of biologically related genes that are in the same pathway or have a

common ontology. Note that the fixed set of loci may be scattered on

different chromosomes throughout the genome. In general, G may be

represented as a set of g ¼ 1, . . . ,G interval loci with the form

ðcg, ag, bgÞ where cg is the chromosome of locus g, ag is the start position

of locus g and bg is the end of locus g. We will use the acronym FLI to

refer to one fixed locus of interest within the fixed set of loci G and the

acronym FLIs to refer to multiple fixed loci within the set G.

First, we define a statistic that indicates whether each lesion l overlaps

each FLI g. Let Ið�Þ be the indicator function that equals one if the

enclosed statement is true and equals zero if the enclosed statement is

false. For each lesion l ¼ 1, . . . ,L and each FLI g ¼ 1, . . . ,G, the

product

olg ¼ Iðcl ¼ cgÞIðul � bgÞIðvl � agÞ ð1Þ

indicates whether lesion l overlaps FLI g because Iðcl ¼ cgÞ indicates

whether the lesion and FLI are on the same chromosome, Iðul � bgÞ

indicates that the lesion start locus is left of the FLI end locus and

Iðvl � agÞ indicates that the lesion end locus is right of the FLI start locus.

The abundance of lesions that overlap G are described with statistics

that are functions of the lesion-FLI overlap indicators olg in Equation (1).

Each lesion l overlaps exactly

ol� ¼
XG

g¼1

olg ð2Þ

FLIs. The sum

o�� ¼
XL

l¼1

ol� ð3Þ

is the total number of overlaps. For each lesion l, let

hl ¼ Iðol�40Þ ð4Þ

indicate that the lesion overlaps at least one FLI. Then, the sum

h� ¼
XL

l¼1

hl ð5Þ

is number of lesions with at least one overlap. Let t ¼ 1, . . . ,T index the

subjects of the study. Each subject t has

nt ¼
XL

l¼1

hlIðsl ¼ tÞ: ð6Þ

Table 1. An example of genomic lesion data

Lesion

(l)

Subject

(sl)

Chr

(cl)

Start

(ul)

End

(vl)

Type

1 1 1 235 201 8847 300 Loss

2 1 1 8 905051 12 761 104 LOH

� � � � � � � � � � � � � � � � � �

10 1 1 211 055 963 211 055963 SB

� � � � � � � � � � � � � � � � � �

247 7 5 35910 328 35 910 328 Indel

248 7 6 1 31 148 785 Gain

� � � � � � � � � � � � � � � � � �

401 12 X 133 355 331 133 355331 PM

The example data are a subset of that observed in a study of ETP leukemia

(Zhang et al., 2012).

PM, non-silent point mutation; SB, structural breakpoint; LOH, loss of

heterozygosity.
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lesions that overlap at least one FLI because hl indicates whether lesion l

overlaps at least one FLI and Iðsl ¼ tÞ indicates whether lesion l was

observed in subject t. Finally, the number of subjects with at least one

overlap is

n� ¼
XT

t¼1

Iðnt40Þ: ð7Þ

2.3 The GRIN model

Here, we introduce the concept of a GRIN and use it to define the null

probability distributions for the descriptive statistics defined above. A

GRIN with given length x base pairs on a chromosome c of length Kc

base pairs may occur at each of the u ¼ 1, . . . ,Kc � xþ 1 interval loci

(u, uþ x� 1) with uniform probability 1=ðKc þ x� 1Þ as shown in

Figure 1A. A GRIN may be fully described by its chromosome c, the

length Kc of chromosome c and its random start position U. Given c, Kc

and x, the random start position U has a discrete uniform distribution

over u ¼ 1, . . . ,Kc � xþ 1.

The probability that one GRIN on chromosome c overlaps one FLI

with index g (also on chromosome c) is a simple function of the FLI

start position ag, the FLI end position bg, the length x of the GRIN and

the length Kc of chromosome c. Figure 1A shows that a GRIN of given

size x with start position u between ~ag ¼ maxð1, ag � xÞ and
~bg ¼ minðbg,Kc � xþ 1Þ will overlap FLI g, which begins at position

ag and ends at position bg. Therefore, the probability that the GRIN

overlaps FLI g is simply the proportion

~bg � ~ag þ 1

~Kc

ð8Þ

of the ~Kc ¼ Kc � xþ 1 possible positions of the GRIN that overlap the

FLI. Equation (8) shows that the GRIN statistical model has the intuitive

property that the probability of overlap increases with the size of the

GRIN and the size of the FLI.

It is also straightforward to derive the probability that multiple inde-

pendent GRINs overlap multiple FLIs on the same chromosome. The

triangle diagram of Figure 1B geometrically represents the number of

FLIs that overlap a GRIN as a function of the GRIN size x and

GRIN start locus u. The shaded overlap regions are determined by

computing ~Kc, ~ag and ~bg for each possible GRIN size x according to

Figure 1A as described above. A horizontal line at the given GRIN size x

defines the number of overlapping FLIs as a function of the GRIN start

locus u (Fig. 1B). In turn, the overlap function for a given GRIN of size x

defines the null probability distribution for the number of FLIs that

overlap a GRIN of the given size by the proportion of possible GRIN

start positions that overlap each possible number of FLIs (Fig. 1C).

Finally, the null distribution for the total number of GRIN–FLI overlaps

is determined by serial convolution of the distribution of the number of

FLI that overlap each GRIN as illustrated by the probability tree of

Figure 1D.

A B

C D

Lesion Index
Fig. 1. The GRIN model. (A) A GRIN of given size x may occur with uniform probability at any interval locus of equal size x along the chromosome.

The overlap of a GRIN with a FLI may be represented by an indicator function of the GRIN start locus u. (B) The triangle diagram represents the

overlap of any GRIN with size x and start locus u with two or more FLIs. Each horizontal line across the triangle diagram at GRIN size x defines

the number of FLIs that overlap a GRIN as a function of the start locus u. For sake of illustration, a black, blue and red horizontal line are drawn across

the triangle diagram, and their overlap functions are shown in the corresponding colors above the triangle diagram. (C) The probability distributions

defined by the overlap functions are shown in their respective colors. (D) A probability tree that illustrates the convolution of the three probability

distributions
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2.4 Null distribution of overlap statistics

We now derive the null probability distribution for each overlap statistic

listed in Section 2.2 by representing each lesion as an independent GRIN

of the same size on the same chromosome in the same subject.

The null probability Prðol� ¼ mÞ that each lesion l overlaps m FLIs

is the probability that a GRIN of equal length on the same chromosome

overlaps exactly m FLIs. This probability is calculated as shown in

Figure 1B. The null probability Prðo�� ¼ mÞ that the total number of

overlaps o�� equals m is determined by serial convolution of Prðol�Þ over

all lesions l ¼ 1, . . . ,L as shown in Figure 1D.

The null probability Prðhl ¼ 1Þ that lesion l overlaps at least one FLI is

a Bernoulli distribution with success probability �l ¼ Prðol�40Þ. The null

probability Prðh� ¼ mÞ that there arem lesions with at least one overlap is

determined by serial convolution of the Bernoulli(�l) distributions over

all l ¼ 1, . . . ,L lesions.

The null probability Prðnt ¼ mÞ that subject t has m lesions that over-

lap at least one FLI is determined by serial convolution of the

Bernoulli(�l) distributions over that subject’s lesions l, i.e. all l such

that sl ¼ t. The null probability Prðn� ¼ mÞ that there are m subjects

with at least one overlap is determined by serial convolution of the

Bernoulli distributions with success probability �t ¼ Prðnt40Þ over all

t ¼ 1, . . . ,T subjects.

2.5 Questions addressed by GRIN analysis

For any particular FLI, the GRIN analysis method may be used to

compute a P-value to quantify the significance of any of the overlap

statistics of Section 2.2 according to the GRIN null model of Section

2.3. In particular, the GRINmodel may be used to calculate a P-value for

the total number o�� of lesion–FLI overlaps as defined in Equation (3), the

total number h� of lesions that overlap at least one FLI in Equation (4),

the number nt of lesions in each subject t that overlap at least one FLI as

defined in Equation (6) and the number n� of subjects that have at least

one overlap as defined in Equation (7).

In practice, GRIN may be used to screen multiple sets of fixed loci by

performing a separate GRIN analysis for each distinct set of loci. For

example, a GRIN analysis may be performed with a particular KEGG

pathway (www.kegg.jp) as the set G. This gene-set GRIN analysis will

determine whether the lesions significantly target the particular KEGG

pathway. A separate gene-set GRIN analysis can be performed for each

KEGG pathway as the set G to evaluate the significance of lesion overlap

with each KEGG pathway.

A gene-level GRIN analysis may be performed by performing a test

with the locus of one individual gene as the set G. Each overlap statistic

and its corresponding P-value can be computed for this particular gene.

A separate GRIN analysis can be performed using the locus of each

individual gene as the set G to screen every gene in the genome.

A marker-level GRIN analysis may also be used to screen the entire

genome for ‘hot spot’ loci that have a significant abundance of lesions.

Conceptually, one could perform a separate GRIN analysis with each

microarray marker or point locus serving as the fixed set G. This ap-

proach would compute overlap statistics and P-values for each point

locus or microarray marker. Those loci with significant P-values would

be identified as hot spots. However, screening the entire genome for hot

spots by performing a separate GRIN analysis for each point locus or

microarray marker in the genome is computationally prohibitive and

involves a massive statistical multiplicity.

Therefore, we use a different strategy to use GRIN to screen the entire

genome for hot spots that have a significant abundance of lesions. The

chromosome cl and endpoints ðal, blÞ of each lesion define a set of bound-

aries that partition the genome into a set of r ¼ 1, . . . ,R regions. Each

region r is a point or interval locus that can be represented by ðcr, ar, brÞ

where cr is the chromosome of region r, ar is the start locus of region r

and br is the end locus of region r. A separate GRIN analysis can be

applied with each region r as the set G to compute overlap statistics and

P-value for each region r. This strategy screens the entire genome for hot

spots with one GRIN analysis per region instead of one GRIN analysis

per marker. The number of regions R is on the order of the number of

lesions L. The number of lesions L is typically several orders of magni-

tude smaller than the number of markers. Thus, the strategy to perform

one analysis per region greatly reduces the computational burden and

statistical multiplicity of the analysis.

The test-per-region strategy to screen the entire genome for hot spots is

also more conservative than the test-per-marker strategy. For each region

r, the P-value from GRIN using the region r as the set G will be greater

than or equal to the P-value from using any point locus within the region

as the set G. Let a, b and y be point loci on a chromosome of size K such

that y is between a and b, i.e. a � y � b. Equation (8) clearly indicates

that the probability that any GRIN overlaps the point locus y is less than

or equal to the probability that the same GRIN overlaps the interval

locus ða, bÞ, which includes y. Thus, at every stage of the serial convolu-

tion used to compute the null distribution for an overlap statistic, the null

probability of overlap will be greater for the interval locus ða, bÞ than for

the point locus y. Therefore, for any of the overlap statistics, the P-value

for overlap with the interval locus ða, bÞ will be larger than the P-value for

overlap with the point locus y within the interval locus ða, bÞ.

2.6 Comparison with other methods

The GRIN analysis method has several advantages over the analysis

methods mentioned in the introduction. First, GRIN can address a

broader spectrum of biological questions than do the other methods.

Second, GRIN works with a broader diversity of genomic lesions than

do the other methods. Third, the GRIN statistical model retains some

biologically important properties of genomic lesions that the other meth-

ods ignore. Finally, by retaining those biological properties, the GRIN

analysis method has some distinct statistical and computational

advantages over the other methods. These advantages are summarized

in Table 2 and described in detail below.

GRIN addresses a broader variety of biological questions than do the

other methods. The other methods identify hot spot loci within the

genome that have a significant abundance of lesions. GRIN can also

identify hot spot loci as described in Section 2.5. Moreover, GRIN per-

forms this analysis with much less computation because it does not resort

to permutation. Section 2.5 also describes gene-level and gene-set level

analyses that GRIN can perform. The other methods do not perform any

analyses at the gene or gene-set level.

Additionally, GRIN works with a much broader variety of genomic

lesions than do the other methods. The other methods limit consideration

to copy number alterations or loss of heterozygosity (LOH). In contrast,

every lesion with a well-defined interval or point locus on the reference

genome coordinate system can be included in a GRIN analysis. Copy

number alterations and LOH have an interval locus on the reference

genome; non-silent substitutions and indels have a point locus on the

reference genome; and each breakpoint of a structural rearrangement

has a point locus on the reference genome. Thus, all these types of gen-

omic lesions can be incorporated into a GRIN analysis. Furthermore,

GRIN can consider each type of lesion separately just as some other

methods consider amplifications and deletions separately.

The GRIN statistical model differs substantially from the POM model

used by other analysis methods. Figure 2 illustrates the POM and GRIN

models of chance for the genomic lesion data of one subject. The GRIN

model of chance constrains lesions to retain their size, continuity and to

stay located on the same chromosome (Fig. 2A). In contrast, POM as-

signs lesion status to markers by permutation (Fig. 2B). The GRIN

model of chance is constrained to retain many of the observed properties

of the lesions. Thus, the GRIN model generates data that more closely

resemble these characteristics of the real data than does the POM model.
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The two models have different statistical properties. Under the POM

model, every marker has an equal probability of being affected by a

lesion; this probability is equal to the proportion of markers that are

affected by a lesion in the observed data. In the example of Figure 2,

30% of the markers are affected by a lesion and thus the POM model

assigns every marker a 30% null probability of being affected by a lesion

by chance. In contrast, the GRIN model assigns a different probability of

being affected by chance to each marker. In the example of Figure 2A,

GRIN assigns a 100% probability of being affected by chance to markers

on the chromosome that has a whole-chromosome event and a 0% prob-

ability to every marker on the chromosome with no lesions. These stark

differences in null probabilities trickle through all calculations and may

ultimately define grossly distinct null distributions.

The differences between the two statistical models becomes more pro-

found when considering the number of lesions that affect entire genes or

sets of biologically related genes that may be scattered at different loci

across the genome. For instance, consider computing the null probability

that a lesion overlaps any portion of a gene locus that includes xmarkers.

For the example of Figure 2A, the probability of this event is approxi-

mately 1� 0:7x under the POMmodel. For x¼ 10, this null probability is

0.97. Such large null probabilities make it difficult for a gene-level

analysis with a POM model to identify anything as statistically signifi-

cant. In contrast, the null probability of overlap under the GRIN model

is defined by Equation (8). Under the GRIN model, the null probability

of overlap increases more gradually with the size of the gene and there is

no multiplicity due to consideration of multiple markers within the gene.

The GRIN model also requires less memory and computing time than

do methods that rely on the POM model. Methods that use the POM

model represent the genomic lesion data by a large matrix with one row

per marker and one column per subject. In contrast, GRIN represents the

genomic lesion data using the format shown in Table 1 and described in

Section 2.1. This format requires only four items of information per

lesion. The GRIN representation of the data clearly requires much less

memory than the matrix representation. GRIN also requires less comput-

ing time than does POM. For each lesion and FLI, GRIN updates the

overlap statistics and performs a simple convolution to update the null

distribution of those overlap statistics. Thus, the total number of such

operations is the product of the number of FLIs and the number of

lesions. However, the POM methods update the overlap statistics for

each subject and each marker within each permutation. Thus, the total

number of update operations is the product of the number of markers,

the number of subjects and the number of permutations. The permuta-

tion may be accurately approximated by a convolution in some settings.

However, the number of markers will greatly exceed the number of le-

sions in most applications, and thus, GRIN will typically require much

less computing time than POM methods.

3 RESULTS

3.1 Simulation study

We used simulation to evaluate GRIN, GISTIC 2.0, TAGCNA

and SAIC as methods for marker-level analysis of genomic lesion

data. We generated 100 independent datasets for each sample

size n¼ 10, 50 or 100 as described below. Each method was

applied to each of these 300 datasets.

For each subject, a set of random lesions and a set of targeted

lesions were generated. For each subject, the number of random

lesions was generated from a Poisson distribution with mean 5.

Each random lesion was assigned to a chromosome with prob-

ability proportional to chromosome size. Given the assigned

chromosome, the size of a random lesion was uniform. Given

the assigned chromosome and lesion size, the position of the

random lesion was uniform as shown in Figure 1A.

Additionally, each subject could have a targeted lesion centering

over RB1, TP53, CDKN2A and/or AML1. For each subject,

each of these genes had a 50% probability of having a targeted

lesion. The endpoints of each targeted lesion were defined by a

pair of observations generated from a scaled beta distribution

with mean equal to the midpoint of the targeted gene and a sum

of shape parameters equal to 1000. To address multiple testing,

we used the robust false discovery rate (FDR) estimation pro-

cedure (Pounds and Cheng, 2006) to compute q-values (Storey,

2002) for TAGCNA, SAIC and GRIN. For GISTIC 2.0, we

used the q-values that it reports.
The average power, FDR and area under the curve (AUC)

were computed for each method and sample size. The average

power at the q-value threshold of 0.01 was the proportion of base

pairs inside a target locus declared significant at that level aver-

aged across simulation replications. The FDR was the average

proportion of regions declared significant that did not overlap

one of the four targets mentioned above. The FDR was set to

A B

Fig. 2. Illustration of GRIN and POM model realizations. The left

column of panel A has an illustrative set of genomic lesions of one sub-

ject. The lesions are shaded in gray and chromosomes are separated by

horizontal black lines. The subsequent 10 columns show 10 realizations of

the GRIN model generated from those lesions. Panel B has the same set

of genomic lesions and 10 realizations of the POM model generated from

those lesions

Table 2. Capabilities of methods

Capability GRIN GISTIC 2 TAGCNA SIAC

Marker-level tests 3 3 3 3

Gene-level tests 3

Gene-set tests 3

Analyzes gains 3 3 3 3

Analyzes losses 3 3 3 3

Analyzes LOH 3 3 3 3

Analyses SB 3

Analyzes PM 3

No permutation 3

Retains continuity 3

Low memory algorithm 3

Note: Checks indicate that the method has the indicated capability.

2092

S.Pounds et al.

 at Peking U
niversity on February 17, 2014

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

very 
very 
does 
,
Study
,
,
as
,
-
,
false discovery rate (
)
,
-
-
-
-
http://bioinformatics.oxfordjournals.org/
http://bioinformatics.oxfordjournals.org/


zero in each simulation that a method had no significant find-
ings. The AUC was computed by averaging the AUC of the

proportion of target base pairs captured as a function of non-

target base pairs captured across all replications. Good perform-
ance is indicated by keeping the FDR below 0.01 and greater

power and AUC. We also recorded the average computing time

for each method.
Table 3 gives the simulation results. GRIN is the only method

to maintain the FDR level below 0.01 for all sample sizes. Under
our simulation model, lesions affect contiguous intervals of the

genome, which violate the POM model of chance (Fig. 2). Thus,

there are regions that will have a number of overlapping random
non-targeted lesions that is significant against the POMmodel of

chance. The GISTIC 2.0, TAGCNA and SAIC methods all use

some type of POM model and thus obtain many false-positive
results.

GRIN also has the greatest statistical power in each of these
simulations (Table 3). The POM model uses lesions from the

entire genome to compute the probability that a lesion affects

any marker by chance. Thus, large lesions increase the null prob-
ability of overlap for every marker under the POMmodel. Under

the GRIN model, large lesions impact the null probability of

overlap only for loci on the same chromosome. Thus, other re-
gions of the genome can still have a small null probability of

overlap and be assigned a significant P-value under the GRIN

model.

3.2 ETP leukemia

Early T-cell precursor acute lymphoblastic leukemia (ETP-ALL)

has recently been recognized as a disease entity with a poor
prognosis (Coustan-Smith et al., 2009). Zhang et al. (2012) per-

formed WGS of matched tumor and non-tumor DNA for 12

childhood ETP-ALL cases. DNA deletions, amplifications,
structural rearrangements and sequence mutations were identi-

fied for each tumor by comparison of its sequence data to that of

a paired control. Figure 3A shows the data.
We applied GISTIC 2.0, SAIC and TAGCNA to the DNA

copy number gains and losses of this dataset. We also performed
separate marker-level GRIN analyses on the losses and gains

using the total number of overlaps statistic defined by

Equation (3). We accounted for multiple testing by using the

robust FDR method developed for one-sided tests with discrete

P-values (Pounds and Cheng, 2006) to compute q-values (Storey,

2002) for SAIC, TAGCNA and GRIN. We used the GISTIC 2.0

q-values for that method. The results are shown in Figure 3B and

Supplementary Table S1 (the Table S1 tab of the file supplemen-

tal-tables.xlsx). For all analyses and methods, we deem results

with q � 0:01 to be statistically significant. TAGCNA and SAIC

failed to identify any locus as significant. GISTIC 2.0 identified a

locus on chromosome 12 as having a significant number of losses

(q ¼ 0:004). Zhang et al. (2012) describe the biological relevance

of this loss to ETP-ALL. GRIN also determined that this locus

has a significant number of losses (q ¼ 0:0003). Moreover,

GRIN identified 11 loci with a significant number of overlapping

losses and 16 loci with a significant number of overlapping gains.

In this example, GRIN clearly identified the greatest number of

loci as significant. This is consistent with the simulation study

showing that GRIN has greater statistical power than the other

methods.
We also performed marker, gene and gene-set GRIN analysis

of all genomic lesions (Supplementary Table S2). The marker-

level GRIN analysis identified 47 loci with a significant number

of overlaps [defined by Equation (3)] and 37 loci with a signifi-

cant number of subjects with at least one overlap [defined by

Equation (7)]. The gene-level GRIN analysis computed overlap

statistics and P-values for each of 29 176 genes (Supplementary

Table S3). This analysis found that seven genes (AML1, SUZ12,

ETV6, JAK3, TRG@, FBXW7 and TRDD2) have a significant

number of overlaps and that three genes (AML1, JAK3 and

SUZ12) have a significant number of subjects with at least one

overlap. These genes are targeted by a variety of lesion types

including structural rearrangements and sequence mutations as

well as copy number alterations. Zhang et al. (2012) describe the

biological relevance of these lesions.
Finally, we used GRIN to test the overlap of lesions with the

gene loci for each of 192 KEGG pathways (Supplementary Table

S4). This analysis found one pathway (dorsoventral axis forma-

tion) with a significant number of overlaps. GRIN also found

three pathways (dorsoventral axis formation, melanoma and

acute myeloid leukemia) with a significant number of lesions

that overlap at least one FLI [h� of Equation (5)]. GRIN found

that the acute myeloid leukemia (AML) pathway has a signifi-

cant number of subjects with at least one overlap [defined by

Equation (7)]. This result and the observation that ETP-ALL

has expression patterns similar to AML suggest that myeloid-

directed therapies may be effective treatment for ETP-ALL

(Zhang et al., 2012).

3.3 Hypodiploid acute lymphoblastic leukemia

Holmfeldt et al. (2013) performed a detailed study of hypodi-

ploid acute lymphoblastic leukemia. Hypodiploid acute lympho-

blastic leukemia is an extremely aneuploid tumor that exhibits

somatic loss of at least 10 whole chromosomes. Occassionally,

the tumor genome duplicates after the initial acquisition of

aneuploidy. Holmfeldt et al. (2013) studied 140 cases using a

variety of technologies; we use their WGS data for 20 subjects

(Fig. 3C) as our example below.

Table 3. Simulation results

n Metric GRIN GISTIC 2.0 TAGCNA SAIC

10 FDR 0.0068 0.0200 0.0000 0.1600

Power 0.1604 0.0051 0.0000 0.0003

AUC 0.7515 0.5314 0.5011 0.5091

Time 0.04 3.9 8.4 567.2

50 FDR 0.0029 0.0808 0.0320 0.4100

Power 0.4942 0.0175 0.0050 0.0000

AUC 0.8801 0.5506 0.5919 0.4104

Time 0.75 31.4 71.1 712.4

100 FDR 0.0028 0.2248 0.1609 0.6880

Power 0.5853 0.1154 0.0824 0.0034

AUC 0.8982 0.5658 0.6765 0.3835

Time 3.7 152.6 240.5 747.7

Note: Average computing times are given in minutes.
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We applied marker-level GRIN and the other methods to the

copy number gains and losses of this dataset (Fig. 3D,

Supplementary Table S5). Again, we considered results with

q � 0:01 to be statistically significant. SAIC identified loss of

chromosomes 2, 3, 4, 7, 12, 13 and 14 and gain of chromosome

21 as significant but did not identify any focal region as signifi-

cant. TAGCNA identified the T-cell rearrangement and immu-

noglobin heavy (IGH) loci as regions with a significant number

of losses. These loci are validated deletions that arise during

normal lymphoid development rather than alterations that are

specific to leukemic cells. GISTIC 2.0 found five loci with a sig-

nificant number of gains and nine loci with a significant number

of losses. Thirteen of these 14 loci are related to normal lymphoid

development; the other locus overlaps the RB1 tumor suppressor

gene. GRIN identified 55 loci with a significant number of losses

and 11 loci with a significant number of gains. GRIN captured

every focal locus identified as significant by GISTIC 2.0 or

TAGCNA except for the number of gains in the TRA cluster

(for which GRIN obtained q ¼ 0:10). GRIN identified many

genes of known relevance to leukemia or other cancers such as

CDKN2A, CDKN2B, RB1 and CREBBP.

We also applied GRIN to all lesions in the hypodiploid

dataset. The marker level analysis determined that 62 loci have

a significant total number of overlaps and that 147 loci have a

significant number of subjects with at least one overlap

(Supplementary Table S6). The gene-level analysis found that

1861 genes have a significant number of overlapping lesions

and 2271 genes have a significant number of subjects with an

overlapping lesion (Supplementary Table S7; note that many of

these genes belong to gene clusters). The gene-set analysis deter-

mined that 75 gene-sets have a significant total number of over-

laps and 52 gene-sets have a significant number of lesions that

overlap at least one FLI (Supplementary Table S8). Many of the

significant gene-sets define biological processes related to cancer

(cell cycle, apoptosis, P53 signaling, etc), are involved in various

forms of cancer (chronic myeloid leukemia, melanoma, prostate

cancer, basal cell carcinoma, glioma, etc) or are involved in hem-

atopoietic processes (T-cell receptor signaling, B-cell receptor

signaling, hematopoietic cell lineage). No KEGG pathway had

a significant number of subjects with at least one overlap accord-

ing to the GRIN model because such a large portion of each

subject’s genome is affected in this disease.

A

C D

B

Fig. 3. Genomic lesion data and analysis results. Panel (A) shows the genomic data from the ETP-ALL study. Lesions are represented as shaded

rectangles. The columns correspond to subjects, and rows correspond to genomic loci. The chromosome is indicated by the vertical gray and white bar to

the left. The type of lesion is indicated by the color legend at the bottom. Panel (B) shows the log10ðqÞ values as horizontal bars with scale indicated at the

bottom. The log10ðqÞ values for gains extend to the right and the log10ðqÞ values for losses extend to the left. The methods are indicated by different colors

as shown in the legend at the bottom. The vertical black and white bar in the middle indicates chromosome. Panels (C) and (D) show the analogous

information for the hypodiploid leukemia dataset. The Manhattan-style plots are truncated at �log10ðqÞ ¼ 6
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4 DISCUSSION

Genomic lesion data can provide useful insights regarding the
development and prognosis of cancer. A thorough interpretation

of genomic lesion data includes a statistical analysis that allows
investigators to prioritize some findings by attributing other find-
ings to random chance. The statistical challenge is to formally

define and apply a biologically meaningful model of chance. The
POM model has been used to develop analysis tools that have
been useful in some studies. However, the POM does not have an
explicit representation on the genome. Intuitively, it should be

possible to further improve performance by developing a statis-
tical model with an explicit genomic representation.
Therefore, we propose GRIN as a model and analysis method

that explicitly represents lesions as contiguous entities with dis-
tinct loci on the reference genome. With this explicit genomic
representation, the GRIN model achieves several statistical,

computational and practical advantages over the widely used
POM model. First, the multiplicity of the GRIN model is
much less than that of the POM model. Each lesion is one

random event under the GRIN model; however, there is one
random event for each marker in each tumor under the POM
model. In most applications, each tumor has orders of magnitude
fewer lesions than markers. Thus, by reducing the multiplicity by

orders of magnitude, GRIN simplifies the technical interpret-
ation of the statistical analysis results. Additionally, GRIN de-
fines simple null distributions for statistics that measure the

abundance of lesions that overlap any fixed locus or set of loci
in the genome. In this way, GRIN can simultaneously perform
marker, gene and gene-set level analyses. In contrast, the POM

model defines a simple null distribution only for the number of
lesions that affect a point locus. The POM model conceptually
defines a null distribution for the number of lesions that overlap
a gene or gene-set, but this null distribution must be approxi-

mated computationally by simulation or permutation.
Moreover, the statistical power of an analysis that uses the
POM model to determine the significance of the number of le-

sions that overlap a gene or a gene-set would be extremely small
due to the multiplicity of the POM model described in Section
2.6. Thus, GRIN provides a computationally efficient way to

evaluate the statistical significance of patterns such as lesions
affecting different loci within the same gene or gene-set.
There are a number of extensions and related problems that

should be explored in future research. The model proposed here
restricts the GRINs to have fixed length. The GRIN model can
be generalized to allow GRINs to have random lengths. We are
currently exploring ways to incorporate random length GRINs

into our model. These models may further enrich our under-
standing of how to statistically interpret genomic lesion data.
The interpretation of any statistical analysis depends on the

underlying statistical model. These models will interrogate
statistical significance against a more general concept of
randomness.

It is also interesting to consider how to integrate other sources
of genomic data to identify important loci in cancer. Some

methods have been developed that perform an integrative ana-

lysis of genomic lesion data and expression data. Witten et al.

(2009) and Witten and Tibshirani (2009) propose sparse canon-

ical correlation analysis method to characterize the relationships

between copy number and expression data. Fontanillo et al.

(2012) also propose methods to perform an integrated analysis

of expression and copy number data to identify important gen-

omic alterations in cancer. It may be possible to use GRIN in

conjunction with these methods in innovative ways to enhance

our ability to expand our understanding of cancer biology. For

example, GRIN may be used to identify specific pathways for a

focused exploration of the association of genomic lesions with

the expression of genes in those pathways.
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