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ABSTRACT

Motivation: The first step for clinical diagnostics, prognostics and

targeted therapeutics of cancer is to comprehensively understand its

molecular mechanisms. Large-scale cancer genomics projects are

providing a large volume of data about genomic, epigenomic and

gene expression aberrations in multiple cancer types. One of the re-

maining challenges is to identify driver mutations, driver genes and

driver pathways promoting cancer proliferation and filter out the

unfunctional and passenger ones.

Results: In this study, we propose two methods to solve the so-called

maximum weight submatrix problem, which is designed to de novo

identify mutated driver pathways from mutation data in cancer. The

first one is an exact method that can be helpful for assessing other

approximate or/and heuristic algorithms. The second one is a stochas-

tic and flexible method that can be employed to incorporate other

types of information to improve the first method. Particularly, we pro-

pose an integrative model to combine mutation and expression data.

We first apply our methods onto simulated data to show their effi-

ciency. We further apply the proposed methods onto several real bio-

logical datasets, such as the mutation profiles of 74 head and neck

squamous cell carcinomas samples, 90 glioblastoma tumor samples

and 313 ovarian carcinoma samples. The gene expression profiles

were also considered for the later two data. The results show that

our integrative model can identify more biologically relevant gene

sets. We have implemented all these methods and made a package

called mutated driver pathway finder, which can be easily used for

other researchers.

Availability: A MATLAB package of MDPFinder is available at http://

zhangroup.aporc.org/ShiHuaZhang

Contact: zsh@amss.ac.cn

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Cancer is a complex disease which has been one of the most

serious threats to human health. People have realized that

cancer is related to genome aberrations that include gene muta-

tions, copy number alterations and so on (Hanahan and

Weinberg, 2000). Through these aberrations, the cancer cells

can acquire the ability of infinite proliferation while normal

cells don’t due to the self-correction mechanism. Another dread-
ful feature of cancer cells is that some of them can spread to

other tissues through blood circulation or lymphatic system
(Fidler et al., 2003). This largely reduces the effectiveness of sur-

gery to treat cancer.
Generally, the genome aberrations in cancer cells can be

divided into two types: one type is neutral to cancer proliferation

and the other can promote the cancer cell to proliferate infinitely
and diffuse (Greenman et al., 2007). We usually call the former

type of mutations as ‘passenger mutation’ and the latter as
‘driver mutation’. Undoubtedly, finding out the driver mutation,

driver gene as well as driver pathway is a key to understand the

molecular mechanisms of cancer progression, which further aid
in designing effective drugs to treat cancer (Overdevest et al.,

2009; Swanton et al., 2009).
With the development of high-throughput sequencing technol-

ogies, a huge number of mutation profiles of samples for many
cancer types are available now (Chapman et al., 2011; Stransky

et al., 2011; TCGA, 2008, 2011). Designing effective bioinfor-

matics tools to mine useful information from these data is a
challenging task. In gene level, much effort has been devoted

to detect the genes with significantly higher mutation rate
across samples than background mutation rate (Beroukhim

et al., 2007; Getz et al., 2007). Several studies have detected

some important gene mutations in cancer progression, but they
can’t capture the heterogeneity of genome aberrations. Many

studies found that there is little overlap between the gene muta-

tions of two samples even if they come from the same patient
(Ding et al., 2008; Jones et al., 2008).
It is well known that different gene mutations may target the

same pathway (Hahn et al., 2002; Vogelstein et al., 2004).

Therefore, it is necessary to shift the point of view from gene
to pathway level, which is helpful to capture the heterogeneous

patterns in cancer. There have been several studies to discover

the mutation patterns in pathway level (Boca, 2010; Efroni,
2011). Most of them are based on known information about

pathways and try to find out which ones are significantly per-
turbed. However, this kind of methods has one obvious limita-

tion: they only consider those known pathways. Taking into

account the incompleteness of knowledge about pathways, it is
indispensable to develop new algorithms to discover mutated

driver pathways or gene sets without relying on prior knowledge.
Given the huge number of genes in the whole genome, it seems

to be an unsolvable problem to enumerate and test all the
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candidates due to the enormous number of possible gene com-

binations. Several recent studies about combinatorial patterns of

mutations in cancer shed light on how to solve this problem

(Vogelstein et al., 2004; Yeang et al., 2008). They found that

driver pathways often cover a large number of samples. More

importantly, usually a single mutation is enough to perturb one

pathway. In other words, the mutation of genes in one pathway

usually exhibit mutual exclusivity. There have been several stu-

dies using these rules to expand the existing pathway-based

methods and identify completely new gene sets (Ciriello et al.,

2012; David et al., 2011; Miller et al., 2011). Ciriello et al. (2012)

proposed the method Mutual Exclusivity Modules (MEMo) to

detect modules that obey the mutual exclusivity rule within a

gene functional network constructed based on prior knowledge.

In contrast, Miller et al. (2011) proposed a method that identifies

functional modules without any information other than patterns

of recurrent and mutually exclusive aberrations. More recently,

Vandin et al. (2012) introduced a novel scoring function by com-

bining two measures (i.e. ‘coverage’ and ‘exclusivity’) to identify

the mutated driver pathway using the mutation data. The maxi-

mization of this scoring function is defined as the maximum

weight submatrix problem, which was solved by a stochastic

search method. However, there is still no exact algorithm for

solving this problem. Moreover, considering the noise of the

mutation data, it’s interesting to incorporate more information

into this framework to improve this model.
In this study, we propose two methods to solve the so-called

maximum weight submatrix problem (Vandin et al., 2012), which

is designed to de novo identify mutated driver pathways from

mutation data in cancer. The first one is based on a binary

linear programming (BLP) model, which is an exact method.

This method can be employed for assessing other approximate

or/and heuristic algorithms. The second one is based on the gen-

etic algorithm (GA), which is a stochastic and flexible method. It

can be employed to optimize other scoring functions or incorp-

orate other types of information to improve the first method. We

have integrated the gene expression data to achieve this. To test

the efficiency of our methods, we first apply them onto simulated

data and compare them with another method. We further apply

our methods onto five biological datasets. The results show that

our integrative model can identify more biologically relevant

gene sets than the one without expression data.

2 MATERIALS AND METHODS

2.1 A brief introduction

Two important characteristics on the expected patterns of somatic muta-

tions have been employed to understand the somatic mutational process of

cancer in recent years. Particularly, Vandin et al. (2012) introduced a meas-

ure to find mutated driver pathways with two criteria (Fig. 1). The first one

is ‘high coverage’, which means many patients have at least one mutation in

this pathway; the second one is ‘high exclusivity’, which means that most

patients have no more than one mutation in this pathway. Given the mu-

tation data represented by a binary mutation matrix A with m rows (sam-

ples) and n columns (genes), the original maximum weight submatrix

problem is defined as finding a submatrix M of size m� k in the mutation

matrix A by maximizing the scoring function:

WðMÞ ¼ j�ðMÞj � !ðMÞ ¼ 2j�ðMÞj �
P
g2M

j�ðgÞj,

where �ðgÞ ¼ fi : Aig ¼ 1g represents the set of patients in which gene g is

mutated and �ðMÞ ¼
S
g2M

�ðgÞ, j�ðMÞj measures the coverage of M and

!ðMÞ ¼
P
g2M

j�ðgÞj � j�ðMÞj measures the coverage overlap of M.

Although the Markov chain Monte Carlo (MCMC) method proposed

by Vandin et al. (2012) is a potential powerful procedure to solve this

problem, it is a stochastic search technique that may be trapped in a local

solution.

2.2 BLP: an exact method

To well understand this problem and assess the stochastic method, we

introduce a BLP model that can exactly solve this problem using a

branch-and-bound algorithm or others. Specifically, we can formulate

the original maximum weight submatrix problem into the following op-

timization problem:

max Fðx, yÞ ¼ 2
Xm
i¼1

yi �
Xn
j¼1

ðxj �
Xm
i¼1

aijÞ

st

Pn
j¼1

aijxj � yi, i ¼ 1, . . . ,m

Pn
j¼1

xj ¼ k,

yi,xj 2 f0, 1g, i ¼ 1, . . . ,m; j ¼ 1, . . . , n:

8>>>>>><
>>>>>>:

where xj is the indicator whether column j of A falls into the

submatrix M, so all the columns js with xj ¼ 1 constitute M; yi is the

indicator whether the entries of row i ofM are not all zeros. Accordingly,Pm
i¼1

yi represents the coverage and
Pn
j¼1

ðxj �
Pm
i¼1

aijÞ �
Pm
i¼1

yi represents the

coverage overlap.

Although the problem is NP-hard (Vandin et al., 2012), we find that

in real application this model can always be solved by a branch-and-

bound algorithm efficiently. We use IBM ILOG CPLEX Optimizer

to test the effectiveness of this model on simulation data. The experi-

ments are run on a 2.83-GHz Core 2 Quad CPU PC. When the gene

number of simulation data is smaller than 10 000 and the sample number

is smaller than 500, CPLEX can always get the exact solution in less

than 1 s.

Fig. 1. Illustration of the mutated driver pathway (gene sets) identification

problem and how expression profiles improve the identification of muta-

tion patterns with more significant biological relevance. Somatic mutations

and expression values in multiple patients are represented in a mutation

matrix and expression matrix, respectively. The genes in the mutually ex-

clusive gene set (marked by gray dashed box) have very weak expression

correlations between each other, whereas the expression profiles of genes in

the second gene set (marked by gray real line box) with approximate ex-

clusivity are strongly correlated with each other
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2.3 GA: a stochastic method

As Vandin et al. (2012) discussed, other criteria can be designed to

achieve the similar goal. The BLP model may not be applicable to

other new scoring functions. To explore the maximum weight submatrix

problem in a more general manner, here we further design a GA

(Goldberg et al., 1989). The GA is a flexible and powerful technique

that can be employed to optimize broad ranges of scoring functions.

Moreover, it can be easily extended for integrating other types of data

like gene expression, which will be discussed in the next subsection. The

GA method has a natural connection with the current problem in terms

of ‘gene’ and ‘mutation’. It simulates the genetic variation in a popula-

tion, and its evolution obeys a random selection mechanism. Moreover,

it doesn’t need to enumerate all the feasible solutions.

2.3.1 The hypothesis space We use a binary string of zeros and

ones to represent an individual (a feasible solution here) of a population.

The length of every string in the hypothesis space is the gene

number n. After labeling every gene by 1, 2, . . . , n, the value 0 or 1

in the i-th position of an individual characterizes the membership

of the i-th gene in the submatrix M. Thus, all of the binary strings

with length n and sum k constitute the hypothesis space:

H ¼ fðx1,x2, . . . ,xnÞjxi 2 f0, 1g, i ¼ 1, 2, . . . , n,
P
i

xi ¼ kg.

2.3.2 The fitness function We need to define the fitness function

over the hypothesis space H to measure the quality of the candidate

solution. In this application, we adopt the rank fitness function. In

other words, the fitness of each individual hi (its corresponding submatrix

isMi) of the population is defined as the rank ri of the scoreWðMiÞ in the

ascending order.

2.3.3 Genetic operators The selection operator, crossover operator

and the mutation operator are always problem dependent. In this study,

given the rank ri of an individual hi based on its score, the selection

probability is defined as follows:

pi ¼
2ri

PðPþ 1Þ
, ð1Þ

where P is the population size. The individual with the highest fitness can

be transferred into the next generation with the highest probability.

To ensure that every offspring is feasible and to reduce the number of

iteration, we adopt a crossover operator to inherit properties of its par-

ents. Specifically, the offspring inherits those variables that are common

to both parents directly and makes a random selection of variables in the

symmetric difference of its parents’ genetic makeup.

In the mutation stage, we randomly change one variable value with 1

to 0, and another variable value with 0 to 1. This mutation operator also

ensures the feasibility of every offspring. To avoid premature convergence

and improve the accuracy of GA algorithm, we employ a local search

strategy to improve the search performance. Specifically, we randomly

change the value of two variables just as the mutation operator. If such a

replacement can improve the current solution, we accept it; when all

variables have been tested like this, then we terminate the search.

2.3.4 GA procedure The details of our implementation of GA are

described as follows:

Step 0: Given proper parameter settings, i.e. submatrix size k, population

size P, mutation rate pm (P¼ n and pm ¼ 0:1 were used in this study).

Randomly generate the initial population.

Step 1: In every iteration, P couples are selected from the current popu-

lation based on the selection probability pi, and each couple generates

an offspring.

Step 2: Each offspring may optionally undergo a mutation with prob-

ability pm.

Step 3: All the parents and offsprings are ranked according to their

scoring value, and the best P individuals will make up the next gener-

ation, which is used as the current population in the subsequent

iteration.

Step 4: Check whether the iteration is trapped in one local solution

(e.g. the maximal scoring value does not improve in two consecutive

iterations). If so, run local search.

Step 5: Continue in this way until the termination criterion is satisfied

(e.g. the current maximal scoring value does not improve in 10 con-

secutive iterations). If so, then terminate the calculation.

2.4 Integrating mutation and gene expression data: an

integrative model

In real applications, there may be multiple optimal solutions. Moreover,

because of the noise in the data or other factors, the most ‘optimal’ ones

(the ones with maximal W(M)) may not be the best one in biological

context. To extract the most biologically significant ones, we try to inte-

grate other types of data to improve this situation. Specifically, we gen-

eralize the aforementioned model by integrating the gene expression data

to improve its performance.

Before describing the simple integrative model here, we note that data

integration of many complementary layers is a powerful tool to reduce

noise and extract useful information from complexity (Ideker et al.,

2011). A recent wave of new bioinformatics methods has demonstrated

its power (Akavia et al., 2010; Zhang et al., in press). For example,

Akavia et al. (2010) developed a computational framework COpy

Number and EXpression In Cancer (CONEXIC), which integrates

chromosomal copy number and gene expression data for detecting aber-

rations that promote cancer progression. Benefiting from the incorpor-

ation of gene expression data, CONEXIC can distinguish the genes

within large amplified or deleted regions of a chromosome, while the

method based on the aberration data alone cannot accomplish this.

Our new model is based on such an observation that the genes in the

same pathway usually collaborate with each other to execute one func-

tion. Therefore, the expression profiles of gene pairs in the same pathway

usually have higher correlations than that in different pathways (Qiu

et al., 2010). Therefore, we can use this characteristic to discriminate

the gene sets with the same score. Besides, to filter out the noise in the

data and detect more meaningful gene sets, we try to identify gene sets

whose scores W(M) are close to the optimal solution but whose member

genes have higher correlations with each other (Fig. 1).

By combining the gene expression data with the earlier problem, we

define the following new measure:

FME ¼WðMÞ þ � � RðEMÞ ð2Þ

where RðEMÞ ¼
P
j1 6¼j2

jpccðxj1 , xj2 Þj
kðk�1Þ

2

,EM is the gene expression submatrix that

corresponds to the same gene set with the mutation submatrixM, pccð�Þ is

the Pearson correlation coefficient and xj1 and xj2 are the expression pro-

files of genes j1 and j2 in EM, respectively. The additional term RðEMÞ

incorporates information on functional homogeneity to enhance the bio-

logical relevance of the identified patterns. Taking into account that

RðEMÞ is between zero and one and W(M) is an integer, setting � ¼ 1,

we can use FME to discriminate the gene sets with the sameW(M); setting

� � 1, we can detect the gene set with strong correlation and approximate

exclusivity. In this study, we report the results with � ¼ 1 and � ¼ 10.

Although the maximization of FME can be formulated into a binary quad-

ratic programming problem, it is limited by the computational complexity.

Here, we adopt the GA framework to solve it similarly.
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2.5 Biological data

We collected five datasets to assess our methods (Table 1). For the first

three data, we only use the mutation data to test BLP and GA. While for

the later two data, we use mutation data and expression data together.

The first two datasets [lung carcinoma and glioblastoma multiforme data

1 (GBM1)] are obtained from Vandin et al. (2012) directly. We also

downloaded another dataset about head and neck squamous cell carcin-

oma (HNSCC) (Stransky et al., 2011).

We obtained glioblastoma multiforme data 2 (GBM2) and serous

ovarian cancer data from TCGA website (http://tcga-data.nci.nih.gov/

tcga/). The data comprise of somatic mutations, copy number aberration

and gene expression. Here, we only use the data of Level 3. After pro-

cessing the data, we get two types of matrices: mutation matrix A and

expression matrix E. A is a binary matrix of size m� n, where m indicates

the number of samples and n indicates the number of genes. Each entry aij
refers to the status of gene j in sample i: aij ¼ 1 if one of the following two

conditions holds: (i) the mutation of gene j in sample i is labeled valid

somatic (David et al., 2011) and (ii) gene j is in the statistically significant

aberration regions of sample i ,which is determined by Genomic

Identification of Significant Targets in Cancer (GISTIC) (Beroukhim

et al., 2007). E is a real matrix, and each entry eij is the relative expression

of gene j in sample i, which is obtained using the method described in

Roel et al. (2010).

3 RESULTS

We first applied our BLP and GA methods onto simulated data

to test their performance and compare them with the MCMC

method to show their efficiency and characteristics.

3.1 Simulation study

We simulated mutation data starting with gene sets

M1,M2, . . . ,MI (I � 1). Every set has k genes (k¼ 10 has been

used in this study). For each patient, we mutate a gene (chosen

uniformly at random) in Miði ¼ 1, 2, . . . , IÞ with probability

pi (pi ¼ 1� i ��,� ¼ 0:05 was used in this study), and if a

gene in Mi is mutated, then with probability p0 we mutate

other genes in Mi (p0 ¼ 0:04 was used in this study). Note that

pi and p0 control the coverage and exclusivity ofMi, respectively.

The genes not in Mi are mutated at most in three samples. The

parameter I controls the complexity of the data structure. When

we increase I, the simulation data and the problem get more

complicated.
We have compared the time complexity of BLP, GA and

MCMC on resolving the original maximum weight submatrix

problem through simulation data (Fig. 2). We show how the

time changes with respect to the number of genes under different

model complexity. The sample number of simulation data is

fixed as 500, which is larger than all our applications. The

result of MCMC is obtained based on default parameters.

Surprisingly, we can see that our BLP method can get the opti-

mal solution in much shorter time than that of the MCMC. For

example, for n¼ 10 000 and I¼ 5, the BLP can run in less than

1 s, while MCMC needs more than 300 s. We can also observe

that the GA is even faster than MCMC with n less than about

5000, which is larger than our all real applications in the follow-

ing part. In summary, our GA method has competitive efficiency

with MCMC, while our exact BLP method can work in a sig-

nificantly shorter time than others, which enables it to be more

applicable to real data.
From the formulation of BLP model, we can intuitively

deduce that when the sample number increases, the constraints

number also increases, so the BLP model becomes more and

more complicated and the time required to resolve may rise.

We use simulation data to test this conjecture. In Figure 3, we

study how the computation time of GA and BLP scales with

sample number of simulation data. As the Figure 3 shows, the

time of BLP linearly rises with the sample number. However, GA

almost remains the same as the sample number increases.
Since the BLP model can be solved exactly, so it can always get

the optimal solution. As to the GA and MCMC, we found that

both show excellent performance in the data with ‘low’ complex-

ity (e.g. I¼ 1, 2) (Table 2). However, when we increase the com-

plexity of the data, the GA shows better performance than that

of MCMC (Table 2). Note that increasing the number of iter-

ations from 106 to 107 does not improve the accuracy of MCMC

(Supplementary Table S1). This observation clearly shows that

our methods are more applicable in real applications.

We also test the effectiveness of GA on detecting the gene set

by maximizing the integrative measure FME. The simulation data

are produced according to the following procedures: (i) with pre-

defined m, n and I, produce mutation matrix A using the previ-

ous methods and (ii) simulate one initial expression matrix E0, in

which each MI have the exact same expression profile for each
Table 1. Summary of the datasets used in this study and basic informa-

tion about these datasets

Ct Spl Ge Am Af Mf GE References

LC 163 356 6.0 2.75 64 No Vandin et al. (2012)

GBM1 84 178 9.6 4.50 43 No Vandin et al. (2012)

HNSCC 74 4920 21.8 1.42 46 No Stransky et al. (2011)

GBM2 90 1126 94.5 1.74 48 Yes TCGA (2008)

OC 313 5385 49.0 2.85 251 Yes TCGA (2011)

Ct, Cancer type; Spl, number of samples; Ge, number of genes; Am, average

number of mutations per sample; Af, average of mutation frequency for all

genes; Mf, maximum of mutation frequency of all genes; GE, with or without

gene expression data; LC, lung carcinoma; GBM1, glioblastoma multiforme data

1; HNSCC, head and neck squamous cell carcinoma; GBM2, glioblastoma multi-

forme data 2; OC, ovarian carcinoma.

Fig. 2. Comparison of computational time of BLP, GA and MCMC in

terms of gene number n from 1000 to 10000 with different number of

patterns: (A) I¼ 1, (B) I¼ 5, and (C) I¼ 10. The y axis in each plot shows

the computational time in seconds. All the markers correspond to the

results of an average over 20 realizations
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gene of it. But we add different noise level according to the

Gaussian noise Nð0, ðI� iÞ � �Þ (� ¼ 0:1 was used in this study)

for the expression profiles of each Mi to ensure

RðM1Þ5RðM2Þ5 � � �5RðMIÞ.
On the basis of these simulation data, we study the accuracy

and complexity of GA on maximizing the integrative measure.

Similar to the GA for the original model, the integrating muta-

tion and gene expression (IME) model optimized by the GA

algorithm can get the optimal solution for most cases. Such ‘op-

timal’ solution may not have the highest mutation scoreW(M) as

we designed for the simulation data. Figure 4 shows how the

computation time of GA evolves with gene number n for the

integrative model and the original model, respectively. The

curves clearly show that the GA algorithm for the integrative

model costs only about several-fold times of that for the original

model. We can also see that the complexity of data doesn’t show

dramatic impact to the computational time.
In summary, our BLP method is more efficient compared with

the MCMC method for solving the original maximum weight

submatrix problem. Our GA method has competitive perform-

ance compared with the MCMC method, and it can also be

easily applied for a generalized integrative model to incorporate
the gene expression profiles.

3.2 Biological applications

We have applied our methods BLP and GA onto five datasets

(Table 1) and compared their performance with MCMC. Note
that, when we solve the maximum weight submatrix problem,

we represent the genes that are mutated in the same patients as
one ‘metagene’ for further analysis. We adopt the permutation

test as used by Vandin et al. (2012) to assess the significance of

the identified gene patterns. We report all the identified patterns
with k¼ 2–10 (see Supplementary Materials). We also check

the second optimal patterns by removing the ‘optimal’ gene set
obtained in the whole dataset. The information of data resources

including the number of samples, the number of genes, the aver-
age number of mutations per sample and the maximum number

of mutation frequency for each dataset have been summarized

in Table 1.
We first apply our BLP and GA methods to the data used by

Vandin et al. (2012) to assess its performance compared with the

MCMC method. The BLP can obtain the exact results in less

than 1 s, while the GA and MCMC can get them in more than 60
and 5 s, respectively. This analysis first shows that the BLP can

run in a more efficient manner than MCMC and GA, while our
GA method also has acceptable performance. We found all these

three methods got the exact same results. For example, all the
three methods can lead to the same gene set (EGFR, KRAS,

STK11) in lung adenocarcinoma dataset with k¼ 3.
In the following, we further apply our BLP and IME methods

onto three datasets that were not used by Vandin et al. (2012)
and discuss more to show the effectiveness of them. Note that the

BLP can efficiently get the exact results like before in less than 1 s

on all these three datasets.

3.2.1 Head and neck squamous cell carcinoma It is well
known that HNSCC is a common, morbid and frequently

lethal malignancy (Stransky et al., 2011). To uncover its muta-

tional spectrum, Stransky et al. (2011) analyzed whole-exome
sequencing data from 74 tumor-normal pairs and revealed

many genes that have not been implicated in this malignancy

Fig. 3. The time scaling of (A) GA and (B) BLP with sample number m

under different gene numbers n¼ 1000, 5000, 10000, respectively. The

curves in each subplot correspond to running time under parameter

I¼ 1, 5, 10. All the markers correspond to the results of an average

over 20 realizations

Fig. 4. The time complexity of GA for the integrative and the original

models, respectively. The plot shows the scaling of the computer time

(in seconds) with respect to the gene number n. The curves correspond

to the running time under different I¼ 1, 5, 10 and the same sample

number m¼ 500

Table 2. Accuracy of GA and MCMC with different number of genes n

and different number I of embedded patterns

n¼ 1000 n¼ 5000 n¼ 10 000

GA (%) MCMC

(%)

GA

(%)

MCMC

(%)

GA

(%)

MCMC

(%)

I¼ 1 100 100 100 100 100 100

I¼ 2 100 100 100 100 99 100

I¼ 10 99 43 98 50 95 44
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in previous studies (Stransky et al., 2011). The results imply that
the dysregulation of squamous differentiation may play a key

driving role in HNSCC carcinogenesis. This mutation dataset
covers 74 samples and 4920 genes; on an average, there are

130 coding mutations per sample. This mutation matrix is
sparse, and only two genes (TP53 and TTN) are mutated in

more than 20 samples. They are mutated in 46 and 23 samples,
respectively.
Considering the prevalence of TP53 and TTN mutation and

identifying other pathways not associated with TP53 and TTN,
we remove the genes TP53 and TTN from the mutation matrix

and ran these three methods on the remaining genes. When k¼ 6,
we get unique optimal gene set (ANO4, CDKN2A, NFE2L2,

NOTCH1, SYNE1 and TP63) which is altered in 60.8%
(45/74) of the samples with p-value 5 0.01. When k56, the

optimal solutions are all subsets of these six genes. When k46,
we will identify multiple optimal solutions (see Supplementary

Materials).
The analysis result of (Stransky et al., 2011) indicates that the

mutations of all CDKN2A, NOTCH1, TP63 and SYNE1 func-
tion in the terminal differentiation in squamous epithelia directly

or indirectly (Fig. 5). We note that the set of these four genes is
one suboptimal solution with k¼ 4.

3.2.2 Glioblastoma The glioblastoma dataset obtained from

TCGA (2008) contains DNA copy number alteration and gene
expression profiles in 206 glioblastomas samples and nucleotide

sequence aberrations in 91 of the 206 samples. After processing
these three types of data (see Materials and Methods), we built a

mutation matrix and an expression matrix that covers 90 samples
and 1126 genes.
We first detect the mutation pattern, only depending on the

mutation matrix. When k¼ 2, we get two optimal gene sets: the
first (CDKN2A, TP53) is the part of p53 signaling pathway;

the other is CDKN2B and one metagene comprising CDK4
and TSPAN31. After analysis of expression data, we found

that the correlation between CDK4 and CDKN2B is stronger
than that between TSPAN31 and CDKN2B. So, we have the
reason to believe that CDK4 is the one needing more attention.

In fact, although the pair (CDK4, CDKN2B) is the part of RB
signaling pathway, there is no direct evidence supporting the

relation between TSPAN31 and CDKN2B. This example
shows the potential advantage of combining expression data

with the original model: It can discriminate the genes within
identical mutation profiles and detect the one with the most rele-

vant functional relationship. We note that, when k¼ 3, the opti-
mal solution is the gene pair (CDK4, CDKN2B) together with

RB1. These two pathways have also been reported by Vandin
et al. (2012) using another dataset (GBM1).
We remove the above five genes and apply the methods to

detect the additional gene set. On the remaining genes, when
k¼ 5, we identify the gene set (PTEN, EGFR, PIK3R1,

PIK3CA, GRIA2) that is mutated in 59 samples (p50:01).
Other than GRIA2, the rest of the four genes are all part of

RTK/RAS/PI(3)K signaling pathway, which is significantly
altered in glioblastoma (Fig. 6). Moreover, previous studies

have shown that GRIA2 plays important roles in glioma cells
(Beretta et al., 2009; Maas et al., 2001).

3.2.3 Ovarian carcinoma The ovarian carcinoma dataset is
obtained from a recent study (TCGA, 2011) that has analyzed

messenger RNA expression, microRNA expression, promoter
methylation and DNA copy number alteration in 489 high-grade

serous ovarian adenocarcinomas and the DNA sequences of
exons from coding genes in 316 of these tumors. After processing
the data, we get a mutation matrix and an expression matrix that

cover 313 samples and 6108 genes.
The mutation distribution among genes is very non-uniform.

TP53 is mutated in the majority (251/313) of samples, and all the
other genes are mutated in less than 25% of samples. In addition,

analysis of gene TTN indicates that the mutations of TTN are
likely artifacts (TCGA, 2011). Therefore, we remove TP53 and

Fig. 6. (A) The submatrix of ‘optimal’ gene set in glioblastoma data.

(B) Four genes in the identified gene patten are involved in the RTK/

RAS/PI(3)K signaling pathway, which was reported to be related with

GBM in TCGA (2008). The pathway interactions marked by real lines

are reported in Kyoto Encyclopedia of Genes and Genomes (KEGG)

database, and the dash lines link two genes with significant correlation

based on their gene expression profiles (p–value50:001). These line types

represent the same meaning in Figure 7

Fig. 5. (A) The submatrix of the ‘optimal’ gene set in the HNSCC data.

The mutation characteristic between a patient and a gene are shown: (red)

exclusive mutation; (soft red) cooccurring mutation; (white) no mutation.

It is similar for the other two figures. (B) The known pathway that the

identified genes are involved in is terminal differentiation, which was

reported to be related with HNSCC (Stransky et al., 2011). The pathway

interactions have been reported in Stransky et al. (2011)
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TTN and ran the methods onto the remaining genes. When

k¼ 2, we identify gene pair (CCNE1, MYC), which is approxi-
mately exclusively mutated in 135 samples (p50:01) (Fig. 7A).

CCNE1 and MYC are two important genes engaged in cell cycle
progression (Fig. 7C). When k¼ 3, the optimal gene set includes

this pair and NINJ2.
We remove the above genes and apply the methods onto the

remaining genes. When k � 3, none of the optimal solutions are
significant (p50:01). When k¼ 4, the optimal solution is KRAS,

PPP2R2A, PRPF6 and RYR2 by the BLP model (p50:01),
while using our integrative model (� ¼ 10), we get gene set
(KRAS, MAPK8IP2, NF1, STMN3), which is one of the sub-

optimal solutions of the original model and is detected as
the optimal solution by our integrative model because of the

stronger correlations among genes (Fig. 7B). KRAS, NF1 and

MAPK8IP2 are all part of MAPK signaling pathway (Fig. 7C),
which regulates cell proliferation and differentiation. The abnor-

mal expression of STMN3 is associated with malignant progres-
sion of multiple cancer types (Fang et al., 2009; Singer et al.,

2009). However, there is not much evidence to support that the

genes detected by the original method based only on mutation
data show distinct functional relationship. This example shows

another advantage of our integrative model. It can detect the
gene set that has a suboptimal score but more relevant function

relationship. Notably, there may be multiple suboptimal solu-

tions with the same score. Thus, it is necessary to integrate
gene expression data to distinct and identify the underlying key

patterns.

4 DISCUSSION AND CONCLUSION

Discovering mutated driver patterns in cancer is an important

problem in computational biology. In this article, we have stu-

died the de novo discovery of mutated pathways problem in
cancer, which has recently been explored by Vandin et al.

(2012). We first proposed a BLP model to exactly solve the

so-called maximum weight submatrix problem. The exact

method is necessary to evaluate the performance of other

approximate or stochastic algorithms. We further suggested a

stochastic algorithm GA, which has natural connection with

the literal descriptions such as ‘gene’ and ‘mutation’. Both BLP

and GA show promising performance compared with the ori-

ginal MCMC method. Our study demonstrates that the MCMC

encounters serious problems in complex situations with multiple

high weight sets of genes for extracting the ‘optimal’ one.

We should note that this study focuses on the mutation at the

gene level instead of point mutation (single nucleotide) level. But

many known driver genes (e.g. P53) have hundreds of point

mutations, among which some are drivers and some are passen-

gers. With the development of biological technologies, more and

more point mutation data can be made available. Our method

could be expanded to a more detailed mutation data for finding

more sophisticated driver genes and pathways.

We also consider incorporating the gene expression data into

the aforementioned model to improve its performance. The new

integrative model can be helpful in two aspects. First, the inte-

grative model can be employed to distinguish the genes that have

identical mutation profiles. For example, in the glioblastoma

data (GBM2), CDK4 and TSPAN31 are in the same copy

number aberration region and have the same mutation profiles.

Our integrative model can well identify the CDK4 that has been

reported to be related with GBM while TSPAN31 does not.

Second, some significant biologically relevant gene set with

strong correlations among their genes may be not the ‘optimal’

one with the scoring function W. Our integrative model can

identify such gene set well with the ‘optimal’ integrative score.

For example, in the ovarian carcinoma data, our integrative

model identified one different gene set with the original model.

Our analysis demonstrates that these genes have significant bio-

logical function connections between each other than that of the

original model.

Fig. 7. (A) The submatrix of ‘optimal’ gene sets (CCNE1,MYC) in ovarian carcinoma data with k¼ 2 (the left plot). The right two submatrices are the

‘optimal’ gene sets identified by GA and IME, respectively, by removing the submatrix of (CCNE1,MYC). Their respective scoring values are W¼ 102

and W¼ 101. But the genes in the later one have significant stronger correlations, as illustrated in (B) (p–value¼ 0.0087, Wilcoxon rank-sum test).

(C) The gene sets (CCNE1, MYC and KRAS, NF1, MAPK8IP2, STMN3) are involved in cell cycle and MAPK signaling pathways, respectively
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