
21

Inferring Networks of Diffusion and Influence

MANUEL GOMEZ-RODRIGUEZ, Stanford University and MPI for Intelligent Systems
JURE LESKOVEC, Stanford University
ANDREAS KRAUSE, ETH Zürich and California Institute of Technology

Information diffusion and virus propagation are fundamental processes taking place in networks. While it
is often possible to directly observe when nodes become infected with a virus or publish the information,
observing individual transmissions (who infects whom, or who influences whom) is typically very difficult.
Furthermore, in many applications, the underlying network over which the diffusions and propagations
spread is actually unobserved. We tackle these challenges by developing a method for tracing paths of dif-
fusion and influence through networks and inferring the networks over which contagions propagate. Given
the times when nodes adopt pieces of information or become infected, we identify the optimal network that
best explains the observed infection times. Since the optimization problem is NP-hard to solve exactly, we
develop an efficient approximation algorithm that scales to large datasets and finds provably near-optimal
networks.

We demonstrate the effectiveness of our approach by tracing information diffusion in a set of 170 million
blogs and news articles over a one year period to infer how information flows through the online media
space. We find that the diffusion network of news for the top 1,000 media sites and blogs tends to have a
core-periphery structure with a small set of core media sites that diffuse information to the rest of the Web.
These sites tend to have stable circles of influence with more general news media sites acting as connectors
between them.

Categories and Subject Descriptors: H.2.8 [Database Management]: Database applications—Data mining

General Terms: Algorithms, Experimentation

Additional Key Words and Phrases: Networks of diffusion, information cascades, blogs, news media,
meme-tracking, social networks

ACM Reference Format:
Gomez-Rodriguez, M., Leskovec, J., and Krause, A. 2012. Inferring networks of diffusion and influence.
ACM Trans. Knowl. Discov. Data 5, 4, Article 21 (February 2012), 37 pages.
DOI = 10.1145/2086737.2086741 http://doi.acm.org/10.1145/2086737.2086741

1. INTRODUCTION

The dissemination of information, cascading behavior, diffusion and spreading of ideas,
innovation, information, influence, viruses and diseases are ubiquitous in social and
information networks. Such processes play a fundamental role in settings that in-
clude the spread of technological innovations [Rogers 1995; Strang and Soule 1998],

This research was supported in part by the Albert Yu and Mary Benchmann Foundation, IBM, Lightspeed,
Microsoft, Yahoo, grants ONR N00014-09-1-1044, NSF CNS0932392, NSF CNS1010921, NSF IIS1016909,
NSF IIS0953413, AFRL FA8650-10-C-7058, and Okawa Foundation Research Grant. M. Gomez-Rodriguez
has been supported in part by a Fundacion Caja Madrid Graduate Fellowship, by a Fundacion Barrie de la
Maza Graduate Fellowship, and by the Max Planck Society.
Author’s address: M. Gomez-Rodriguez; email: manuelgr@stanford.edu.
Permission to make digital or hard copies part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permission may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701, USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 1556-4681/2012/02-ART21 $10.00

DOI 10.1145/2086737.2086741 http://doi.acm.org/10.1145/2086737.2086741

ACM Transactions on Knowledge Discovery from Data, Vol. 5, No. 4, Article 21, Publication date: February 2012.

21:2 M. Gomez-Rodriguez et al.

word of mouth effects in marketing [Domingos and Richardson 2001; Kempe et al.
2003; Leskovec et al. 2006a], the spread of news and opinions [Adar et al. 2004; Gruhl
et al. 2004; Leskovec et al. 2007c, 2009; Liben-Nowell and Kleinberg 2008], collective
problem-solving [Kearns et al. 2006], the spread of infectious diseases [Anderson and
May 2002; Bailey 1975; Hethcote 2000], and sampling methods for hidden populations
[Goodman 1961; Heckathorn 1997].

In order to study network diffusion, there are two fundamental challenges one has
to address. First, to be able to track cascading processes taking place in a network,
one needs to identify the contagion (the idea, information, virus, disease) that is ac-
tually spreading and propagating over the edges of the network. Moreover, one then
has to identify a way to successfully trace the contagion as it is diffusing through the
network. For example, when tracing information diffusion, it is a nontrivial task to
automatically and on a large scale, identify the phrases or memes that are spreading
through the Web [Leskovec et al. 2009].

Second, we usually think of diffusion as a process that takes place on a network,
where the contagion propagates over the edges of the underlying network from node
to node like an epidemic. However, the network over which propagations take place
is usually unknown and unobserved. Commonly, we only observe the times when par-
ticular nodes get infected but we do not observe who infected them. In the case of
information propagation, as bloggers discover new information, they write about it
without explicitly citing the source. Thus, we only observe the time when a blog gets
infected with information, but not where it got infected from. Similarly, in virus prop-
agation, we observe people getting sick without usually knowing who infected them.
And, in a viral marketing setting, we observe people purchasing products or adopting
particular behaviors without explicitly knowing who the influencer was that caused
the adoption or the purchase.

These challenges are especially pronounced in information diffusion on the Web.
There have been relatively few large-scale studies of information propagation in large
networks [Adar and Adamic 2005; Leskovec et al. 2006b, 2007c; Liben-Nowell and
Kleinberg 2008]. In order to study paths of diffusion over networks, one essentially
requires complete information about who influences whom, as a single missing link in
a sequence of propagations can lead to wrong inferences [Sadikov et al. 2011]. Even
if one collects near-complete large-scale diffusion data, it is a nontrivial task to iden-
tify textual fragments that propagate relatively intact through the Web without hu-
man supervision. And even then the question of how information diffuses through the
network still remains. Thus, the questions are, what is the network over which the
information propagates on the Web? What is the global structure of such a network?
How do news media sites and blogs interact? What roles do different sites play in the
diffusion process and how influential are they?

Our approach to inferring networks of diffusion and influence. We address these questions
by positing that there is some underlying unknown network over which information,
viruses, or influence propagate. We assume that the underlying network is static and
does not change over time. We then observe the times when nodes get infected by,
or decide to adopt, a particular contagion (a particular piece of information, product,
or a virus) but we do not observe where they got infected from. Thus, for each con-
tagion, we only observe times when nodes got infected, and we are then interested
in determining the paths the diffusion took through the unobserved network. Our
goal is to reconstruct the network over which contagions propagate. Figure 1 gives an
example.

Edges in such networks of influence and diffusion have various interpretations.
In virus or disease propagation, edges can be interpreted as who-infects-whom. In

ACM Transactions on Knowledge Discovery from Data, Vol. 5, No. 4, Article 21, Publication date: February 2012.

Inferring Networks of Diffusion and Influence 21:3

Fig. 1. Diffusion network inference problem. There is an unknown network (a) over which contagions prop-
agate. We are given a collection of node infection times and aim to recover the network in Figure (a). Using
a baseline heuristic (see Section 4) we recover network (b) and using the proposed NETINF algorithm we
recover network (c). Red edges denote mistakes. The baseline makes many mistakes but NETINF almost
perfectly recovers the network.

information propagation, edges are who-adopts-information-from-whom or who-
listens-to-whom. In a viral marketing setting, edges can be understood as who-
influences-whom.

The main premise of our work is that by observing many different contagions
spreading among the nodes, we can infer the edges of the underlying propagation

ACM Transactions on Knowledge Discovery from Data, Vol. 5, No. 4, Article 21, Publication date: February 2012.

21:4 M. Gomez-Rodriguez et al.

Fig. 2. The underlying true network over which contagions spread is illustrated on the top. Each subse-
quent layer depicts a cascade created by the diffusion of a particular contagion. For each cascade, nodes
in gray are the “infected” nodes and the edges denote the direction in which the contagion propagated.
Now, given only the node infection times in each cascade we aim to infer the connectivity of the underlying
network G∗.

network. If node v tends to get infected soon after node u for many different conta-
gions, then we can expect an edge (u, v) to be present in the network. By exploring
correlations in node infection times, we aim to recover the unobserved diffusion net-
work.

The concept of a set of contagions over a network is illustrated in Figure 2. As a con-
tagion spreads over the underlying network it creates a trace, called a cascade. Nodes
of the cascade are the nodes of the network that got infected by the contagion and
edges of the cascade represent edges of the network over which the contagion actually
spread. At the top of Figure 2, the underlying true network over which contagions
spread is illustrated. Each subsequent layer depicts a cascade created by a particular
contagion. A priori, we do not know the connectivity of the underlying true network
and our aim is to infer this connectivity using the infection times of nodes in many
cascades.

We develop NETINF, a scalable algorithm for inferring networks of diffusion and
influence. We first formulate a generative probabilistic model of how, on a fixed hypo-
thetical network, contagions spread as directed trees (a node infects many other nodes)
through the network. Since we only observe times when nodes get infected, there are
many possible ways the contagion could have propagated through the network that are
consistent with the observed data. In order to infer the network we have to consider all
possible ways the contagion could spread through the network. Thus, naive computa-
tion of the model takes exponential time since there is a combinatorially large number
of propagation trees. We show that, perhaps surprisingly, computations over this su-
perexponential set of trees can be performed in polynomial (quadratic) time. However,
with such a model, the network inference problem is still intractable. Thus, we in-
troduce a tractable approximation, and show that the objective function can be both
efficiently computed and efficiently optimized. By exploiting a diminishing returns

ACM Transactions on Knowledge Discovery from Data, Vol. 5, No. 4, Article 21, Publication date: February 2012.

Inferring Networks of Diffusion and Influence 21:5

property of the problem, we prove that NETINF infers near-optimal networks. We also
speed-up NETINF by exploiting the local structure of the objective function and by
using lazy evaluations [Leskovec et al. 2007b].

In a broader context, our work here is related to the network structure learning
problem of probabilistic directed graphical models [Friedman et al. 1999; Getoor et al.
2003], where heuristic greedy hill-climbing or stochastic search, niether of which of-
fer performance guarantees, are usually used in practice. In contrast, our work here
provides a novel formulation and a tractable polynomial time algorithm for inferring
directed networks together with an approximation guarantee that ensures the inferred
networks will be of near-optimal quality.

Our results on synthetic datasets show that we can reliably infer an underlying
propagation and influence network, regardless of the overall network structure. Val-
idation on real and synthetic datasets shows that NETINF outperforms a baseline
heuristic by an order of magnitude and correctly discovers more than 90% of the edges.
We apply our algorithm to a real Web information propagation dataset of 170 million
blog and news articles over a one year period. Our results show that online news prop-
agation networks tend to have a core-periphery structure with a small set of core blog
and news media Web sites that diffuse information to the rest of the Web. News media
Web sites tend to diffuse the news faster than blogs, and blogs keep discussing news
for a longer time than media Web sites.

Inferring how information or viruses propagate over networks is crucial for a better
understanding of diffusion in networks. By modeling the structure of the propaga-
tion network, we can gain insight into positions and roles various nodes play in the
diffusion process and assess the range of influence of nodes in the network.

The rest of the article is organized as follows. Section 2 is devoted to the statement of
the problem, the formulation of the model, and the optimization problem. In Section 3,
an efficient reformulation of the optimization problem is proposed and its solution
is presented. Experimental evaluation using synthetic and MemeTracker data are
shown in Section 4. We conclude with related work in Section 5 and discussion of our
results in Section 6.

2. DIFFUSION NETWORK INFERENCE PROBLEM

We next formally describe the problem where contagions propagate over an unknown
static directed network and create cascades. For each cascade we observe times when
nodes got infected but not who infected them. The goal then is to infer the unknown
network over which contagions originally propagated. In an information diffusion set-
ting, each contagion corresponds to a different piece of information that spreads over
the network and all we observe are the times when particular nodes adopted or men-
tioned particular information. The task then is to infer the network where a directed
edge (u, v) carries the semantics that node v tends to get influenced by node u (men-
tions or adopts the information after node u does so as well).

2.1 Problem Statement

Given a hidden directed network G∗, we observe multiple contagions spreading over
it. As the contagion c propagates over the network, it leaves a trace, a cascade, in the
form of a set of triples (u, v, tv)c, which means that contagion c reached node v at time
tv by spreading from node u (by propagating over the edge (u, v)). We denote the fact
that the cascade initially starts from some active node v at time tv as (∅, v, tv)c.

Now, we only get to observe the time tv when contagion c reached node v but not
how it reached node v, we only know that v got infected by one of its neighbors in the
network but do not know who v’s neighbors are and which of them infected v. Thus,

ACM Transactions on Knowledge Discovery from Data, Vol. 5, No. 4, Article 21, Publication date: February 2012.

21:6 M. Gomez-Rodriguez et al.

instead of observing the triples (u, v, tv)c that fully specify the trace of the contagion c
through the network, we only get to observe pairs (v, tv)c, which describe the time tv
when node v got infected by the contagion c. Now, given such data about node infec-
tion times for many different contagions, we aim to recover the unobserved directed
network G∗—the network over which the contagions originally spread.

We use the term hit time tu to refer to the time when a cascade created by a contagion
hits (infects, causes the adoption by) a particular node u. In practice, many contagions
do not hit all the nodes of the network. Simply, if a contagion hits all the nodes this
means it will infect every node of the network. In real-life most cascades created by
contagions are relatively small. Thus, if a node u is not hit by a cascade, we set tu = ∞.
Then, the observed data about a cascade c is specified by the vector tc = [t1, . . . , tn] of
hit times, where n is the number of nodes in G∗, and ti is the time when node i got
infected by the contagion c (ti = ∞ if i did not get infected by c).

Our goal now is to infer the network G∗. In order to solve this problem we de-
fine the probabilistic model of how contagions spread over the edges of the network.
We first specify the contagion transmission model Pc(u, v) that describes how likely
is that node u spreads the contagion, c, to node v. Based on the model we then de-
scribe the probability P(c|T) that contagion c propagated in a particular cascade tree
pattern T = (VT, ET), where tree T simply specifies which nodes infected which other
nodes (e.g., see Figure 2). Last, we define P(c|G), which is the probability that cas-
cade c occurs in a network G. Then, under this model, we show how to estimate a
(near-)maximum likelihood network Ĝ: the network Ĝ that (approximately) maxi-
mizes the probability of cascades c occurring in it.

2.2 Cascade Transmission Model

We start by formulating the probabilistic model of how contagions diffuse over the
network. We build on the Independent Cascade Model [Kempe et al. 2003], which
posits that an infected node infects each of its neighbors in network G independently
at random with some small chosen probability. This model implicitly assumes that
every node v in cascade c is infected by at most one node u. That is, it only matters
when the first neighbor of v infects it and all infections that come afterwards have
no impact. Note that v can have multiples of its neighbors infected, but only one
neighbor actually activates v. Thus, the structure of a cascade created by the diffusion
of contagion c is fully described by a directed tree T, contained in the directed graph G,
that is, since the contagion can only spread over the edges of G and each node can only
be infected by at most one other node, the pattern in which the contagion propagated
is a tree and a subgraph of G. Refer to Figure 2 for an illustration of a network and a
set of cascades created by contagions diffusing over it.

Probability of an individual transmission. The Independent Cascade Model only implicitly
models time through the epochs of the propagation. We thus formulate a variant of the
model, which preserves the tree structure of cascades and also incorporates the notion
of time.

We think of our model of how a contagion transmits from u to v in two steps. When
a new node u gets infected, it gets a chance to transmit the contagion to each of its
currently uninfected neighbors w, independently with some small probability β. If the
contagion is transmitted, we then sample the incubation time: how long after w got
infected, w will get a chance to infect its (at that time uninfected) neighbors. Note that
cascades in this model are necessarily trees since node u only gets to infect neighbors
w that have not yet been infected.

ACM Transactions on Knowledge Discovery from Data, Vol. 5, No. 4, Article 21, Publication date: February 2012.

Inferring Networks of Diffusion and Influence 21:7

Table I. Table of Symbols

Symbol Description
G(V, E) Directed graph with nodes V and edges E over which contagions spread
β Probability that contagion propagates over an edge of G
α Incubation time model parameter (refer to Eq. 1)
Eε Set of ε-edges, E ∩ Eε = ∅ and E ∪ Eε = V × V
c Contagion that spreads over G
tu Time when node u got hit (infected) by a particular cascade
tc Set of node hit times in cascade c. tc[i] = ∞ if node i did not participate in c
�u,v Time difference between the node hit times tv − tu in a particular cascade
C = {(c, tc)} Set of contagions c and corresponding hit times, i.e., the observed data
Tc(G) Set of all possible propagation trees of cascade c on graph G
T(VT , ET) Cascade propagation tree, T ∈ Tc(G)
VT Node set of T, VT = {i | i ∈ Vand tc[i] < ∞}
ET Edge set of T, ET ⊆ E ∪ Eε

First, we define the probability Pc(u, v) that a node u spreads the cascade to a node
v (a node u influences/infects/transmits contagion c to a node v). Formally, Pc(u, v)
specifies the conditional probability of observing cascade c spreading from u to v.

Consider a pair of nodes u and v, connected by a directed edge (u, v), and the corre-
sponding hit times (tu)c and (tv)c. Since the contagion can only propagate forward in
time, if node u got infected after node v (tu > tv), then Pc(u, v) = 0, that is, nodes cannot
influence nodes from the past. On the other hand (if tu < tv) we make no assumptions
about the properties and shape of Pc(u, v). To build some intuition, we can think that
the probability of propagation Pc(u, v) between a pair of nodes u and v decreases with
the difference of their infection times—the farther apart in time the two nodes get
infected, the less likely they are to infect one another.

However, we note that our approach allows for the contagion transmission model
Pc(u, v) to be arbitrarily complicated as it can also depend on the properties of con-
tagion c as well as the properties of the nodes and edges. For example, in a disease
propagation scenario, node attributes could include information about an individual’s
socio-economic status, commute patterns, disease history, and so on, and the contagion
properties would include the strength and the type of the virus. This allows for great
flexibility in the cascade transmission models, as the probability of infection depends
on the parameters of the disease and properties of the nodes.

Purely for simplicity, in the rest of the article we assume the simplest and most
intuitive model, where the probability of transmission depends only on the time dif-
ference between the node hit times, �u,v = tv − tu. We consider two different models
for the incubation time distribution �u,v, an exponential and a power-law model, each
with parameter α

Pc(u, v) = Pc(�u,v) ∝ e− �u,v
α and Pc(u, v) = Pc(�u,v) ∝ 1

�α
u,v

. (1)

Arguments have been made for both the power-law and exponential waiting time
models in the literature [Barabási 2005; Leskovec et al. 2007c; Malmgren et al. 2008].
In the end, our algorithm does not depend on the particular choice of incubation time
distribution, and more complicated nonmonotonic and multimodal functions can eas-
ily be chosen [Crane and Sornette 2008; Gomez-Rodriguez et al. 2011; Wallinga and
Teunis 2004]. We also interpret ∞ + �u,v = ∞: if tu = ∞, then tv = ∞ with probability
1. Note that parameter α can potentially be different for each edge in the network.

ACM Transactions on Knowledge Discovery from Data, Vol. 5, No. 4, Article 21, Publication date: February 2012.

21:8 M. Gomez-Rodriguez et al.

Considering this model in a generative sense, we can think that cascade c reaches
node u at time tu, and we now need to generate the time tv when u spreads the cascade
to node v. As cascades generally do not infect all the nodes of the network, we need
to explicitly model the probability that the cascade stops. With probability (1 − β),
the cascade stops, and never reaches v, thus tv = ∞. With probability β, the cascade
transmits over the edge (u, v), and the hit time tv is set to tu + �u,v, where �u,v is the
incubation time that passed between hit times tu and tv.

Likelihood of a cascade spreading in a given tree pattern T. Next we calculate the likelihood
P(c|T) that contagion c in a graph G propagated in a particular tree pattern T(VT, ET)
under some assumptions. This means we want to assess the probability that a cascade
c with hit times tc propagated in a particular tree pattern T.

Due to our modeling assumption that cascades are trees, the likelihood is simply

P(c|T) =
∏

(u,v)∈ET

β Pc(u, v)
∏

u∈VT ,(u,x)∈E\ET

(1 − β), (2)

where ET is the edge set and VT is the vertex set of tree T. Note that VT is the set
of nodes that got infected by c, that is, (VT ⊂ V) and contains elements i of tc, where
tc(i) < ∞. The preceding expression has an intuitive explanation. Since the cascade
spread in tree pattern T, the contagion successfully propagated along those edges.
And, along the edges where the contagion did not spread, the cascade had to stop.
Here, we assume independence between edges to simplify the problem. Despite this
simplification, we later show empirically that NETINF works well in practice.

Moreover, P(c|T) can be rewritten as

P(c|T) = βq(1 − β)r
∏

(u,v)∈ET

Pc(u, v), (3)

where q = |ET | = |VT | − 1 is the number of edges in T and it counts the edges over
which the contagion successfully propagated. Similarly, r counts the number of edges
that did not activate and failed to transmit the contagion: r =

∑
u∈VT

dout(u) − q, and
dout(u) is the out-degree of node u in graph G.

We conclude with an observation that will come in very handy later. Examining
Eq. 3 we notice that the first part of the equation before the product sign does not
depend on the edge set ET but only on the vertex set VT of the tree T. This means
that the first part is constant for all trees T with the same vertex set VT but possibly
different edge sets ET . For example, this means that for a fixed G and c, maximizing
P(c|T) with respect to T (finding the most probable tree) does not depend on the second
product of Eq. 2. This means that when optimizing, one only needs to focus on the first
product, where the edges of the tree T simply specify how the cascade spreads: every
node in the cascade gets influenced by exactly one node, that is, its parent.

Cascade likelihood. We just defined the likelihood P(c|T) that a single contagion c
propagates in a particular tree pattern T. Now, our aim is to compute P(c|G), the
probability that a cascade c occurs in a graph G. Note that we observe only the node
infection times while the exact propagation tree T (who-infected-whom) is unknown.
In general, over a given graph G there may be multiple different propagation trees
T that are consistent with the observed data. For example, Figure 3 shows three
different cascade propagation paths (trees T) that are all consistent with the observed
data tc = (ta = 1, tc = 2, tb = 3, te = 4).

So, we need to combine the probabilities of individual propagation trees into a prob-
ability of a cascade c. We achieve this by considering all possible propagation trees

ACM Transactions on Knowledge Discovery from Data, Vol. 5, No. 4, Article 21, Publication date: February 2012.

Inferring Networks of Diffusion and Influence 21:9

Fig. 3. Different propagation trees T of cascade c that are all consistent with observed node hit times
c = (ta = 1, tc = 2, tb = 3, te = 4). In each case, wider edges compose the tree, while thinner edges are the rest
of the edges of the network G.

T that are supported by network G—all possible ways in which cascade c could have
spread over G.

P(c|G) =
∑

T∈Tc(G)

P(c|T)P(T|G), (4)

where c is a cascade and Tc(G) is the set of all the directed connected spanning trees on
a subgraph of G induced by the nodes that got hit by cascade c. Note that even though
the sum ranges over all possible spanning trees T ∈ Tc(G), in case T is inconsistent
with the observed data, then P(c|T) = 0.

Assuming that all trees are a priori equally likely (P(T|G) = 1/|Tc(G)|) and using
the observation from Equation (3) we obtain

P(c|G) ∝
∑

T∈Tc(G)

∏
(u,v)∈ET

Pc(u, v). (5)

Basically, the graph G defines the skeleton over which the cascades can propagate
and T defines a particular possible propagation tree. There may be many possible
trees that explain a single cascade (see Figure 3), and since we do not know in which
particular tree pattern the cascade really propagated, we need to consider all possible
propagation trees T in Tc(G). Thus, the sum over T is a sum over all directed spanning
trees of the graph induced by the vertices that got hit by the cascade c.

We just computed the probability of a single cascade c occurring in G, and we now
define the probability of a set of cascades C occurring in G simply as

P(C|G) =
∏
c∈C

P(c|G), (6)

where we again assume conditional independence between cascades given the
graph G.

2.3 Estimating the Network that Maximizes the Cascade Likelihood

Once we have formulated the cascade transmission model, we now state the diffu-
sion network inference problem, where the goal is to find Ĝ that solves the following
optimization problem.

Problem 1. Given a set of node infection times tc for a set of cascades c ∈ C, a
propagation probability parameter β and an incubation time distribution Pc(u, v), find
the network Ĝ such that:

Ĝ = argmax
|G|≤k

P(C|G), (7)

where the maximization is over all directed graphs G of at most k edges, and P(C|G)
is defined by Equations (6), (4), and (2).

ACM Transactions on Knowledge Discovery from Data, Vol. 5, No. 4, Article 21, Publication date: February 2012.

21:10 M. Gomez-Rodriguez et al.

We include the constraint on the number of edges in Ĝ simply because we seek for
a sparse solution, since real graphs are sparse. We discuss how to choose k in further
sections of the article.

This optimization problem seems wildly intractable. To evaluate Eq. (6), we need to
compute Eq. (4) for each cascade c, i.e., the sum over all possible spanning trees T. The
number of trees can be superexponential in the size of G but perhaps surprisingly, this
superexponential sum can be performed in time polynomial in the number n of nodes
in the graph G, by applying Kirchhoff ’s matrix tree theorem [Knuth 1968].

THEOREM 2.2 ([TUTTE 1948]). If we construct a matrix A such that ai, j =
∑

k wk, j
if i = j and ai, j = −wi, j if i �= j and if Ax,y is the matrix created by removing any row x
and column y from A, then

(−1)x+y det(Ax,y) =
∑
T∈A

∏
(i, j)∈T

wi, j, (8)

where T is each directed spanning tree in A.

In our case, we set wi, j to be simply Pc(i, j) and we compute the product of the deter-
minants of |C| matrices, one for each cascade, which is exactly Eq. (4). Note that since
edges (i, j) where ti ≥ tj have weight 0 (they are not present), given a fixed cascade c,
the collection of edges with positive weight forms a directed acyclic graph (DAG). A
DAG with a time-ordered labeling of its nodes has an upper triangular connectivity
matrix. Thus, the matrix Ax,y of Theorem 2.2 is, by construction, upper triangular.
Fortunately, the determinant of an upper triangular matrix is simply the product of
the elements of its diagonal. This means that instead of using superexponential time,
we are now able to evaluate Eq. (6) in time (|C| · |V|2) (the time required to build Ax,y
and compute the determinant for each of the |C| cascades).

However, this does not completely solve our problem for two reasons. First, while
quadratic time is a drastic improvement over a superexponential computation, it is
still too expensive for the large graphs that we want to consider. Second, we can use
the preceding result only to evaluate the quality of a particular graph G, while our
goal is to find the best graph Ĝ. To do this, we would need to search over all graphs
G to find the best one. Again, as there is a super-exponential number of graphs, this
is not practical. To circumvent this, one could propose some ad hoc search heuristics,
like hill-climbing. However, due to the combinatorial nature of the likelihood function,
such a procedure would likely be prone to local maxima. We leave the question of
efficient maximization of Eq. (4) where P(c|G) considers all possible propagation trees,
as an interesting open problem.

3. ALTERNATIVE FORMULATION AND THE NETINF ALGORITHM

The diffusion network inference problem defined in the previous section does not seem
to allow for an efficient solution. We now propose an alternative formulation of the
problem that is tractable both to compute and also to optimize.

3.1 An Alternative Formulation

We use the same tree cascade formation model as in the previous section. However, we
compute an approximation of the likelihood of a single cascade by considering only the
most likely tree instead of all possible propagation trees. We show that this approx-
imate likelihood is tractable to compute. Moreover, we also devise an algorithm that
provably finds networks with near optimal approximate likelihood. In the remainder
of this section, we informally write likelihood and log-likelihood even though they are
approximations. However, all approximations are clearly indicated.

ACM Transactions on Knowledge Discovery from Data, Vol. 5, No. 4, Article 21, Publication date: February 2012.

Inferring Networks of Diffusion and Influence 21:11

First we introduce the concept of ε-edges to account for the fact that nodes may get
infected for reasons other than the network influence. For example, in online media,
not all the information propagates via the network—some is pushed onto the network
by the mass media [Katz and Lazarsfeld 1955; Watts and Dodds 2007] and thus a
disconnected cascade can be created. Similarly, in viral marketing, a person may pur-
chase a product due to the influence of peers (network effect) or for some other reason
(e.g., seing a commercial on TV) [Leskovec et al. 2006a].

Modeling external influence via ε-edges. To account for such phenomena when a cascade
jumps across the network we can think of creating an additional node x that represents
an external influence and can infect any other node u with small probability. We then
connect the external influence node x to every other node u with an ε-edge. Then every
node u can get infected by the external source x with a very small probability ε. For
example, in the case of information diffusion in the blogosphere, such a node x could
model the effect of blogs getting infected by the mainstream media.

However, if we were to adopt this approach and insert an additional external influ-
ence node x into our data, we would also need to infer the edges pointing out of x, which
would make our problem even harder. Thus, in order to capture the effect of external
influence, we introduce a concept of ε-edge. If there is no network edge between a node
i and a node j in the network, we add an ε-edge and then node i can infect node j with
a small probability ε. Even though adding ε-edges makes our graph G a clique (the
union of network edges and ε-edges creates a clique), the ε-edges play the role of an
external influence node.

Thus, we now think of graph G as a fully connected graph of two disjoint sets of
edges, the network edge set E and the ε-edge set Eε, i.e., E∩ Eε = ∅ and E∪ Eε = V ×V.

Now, any cascade propagation tree T is a combination of network and ε-edges. As
we model the external influence via the ε-edges, the probability of a cascade c occurring
in tree T (the analog of Eq. (2)) can now be computed as

P(c|T) =
∏

u∈VT

∏
v∈V

P′
c(u, v), (9)

where we compute the transmission probability P′
c(u, v) as follows

P′
c(u, v) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

β Pc(tv − tu) if tu < tv and (u, v) ∈ ET ∩ E (u, v) is network edge
εPc(tv − tu) if tu < tv and (u, v) ∈ ET ∩ Eε (u, v) is ε-edge
1 − β if tv = ∞ and (u, v) ∈ E\ET v is not infected, network edge
1 − ε if tv = ∞ and (u, v) ∈ Eε\ET v is not infected, ε-edge
0 else (i.e., tu ≥ tv).

.

Note that we distinguish four types of edges: network and ε-edges that participated
in the diffusion of the contagion and network and ε-edges that did not participate in
the diffusion.

Figure 4 further illustrates this concept. First, Figure 4(a) shows an example of a
graph G on five nodes and four network edges E (solid lines), and any other possible
edge is the ε-edge (dashed lines). Then, Figure 4(b) shows an example of a propagation
tree T = {(a, b), (b , c), (b , d)} in graph G. We only show the edges that play a role in
Eq. (9) and label them with four different types: (a) network edges that transmitted
the contagion, (b) ε-edges that transmitted the contagion, (c) network edges that failed
to transmit the contagion, and (d) ε-edges that failed to transmit the contagion.

ACM Transactions on Knowledge Discovery from Data, Vol. 5, No. 4, Article 21, Publication date: February 2012.

21:12 M. Gomez-Rodriguez et al.

Fig. 4. (a) Graph G: Network edges E are shown as solid, and ε-edges are shown as dashed lines. (b)
Propagation tree T = {(a, b), (b , c), (b , d)}. Four types of edges are labeled: (i) network edges that transmitted
the contagion (solid bold), (ii) ε-edges that transmitted the contagion (dashed bold), (iii) network edges that
failed to transmit the contagion (solid), and (iv) ε-edges that failed to transmit the contagion (dashed).

We can now rewrite the cascade likelihood P(c|T) as combination of products of
edge-types and the product over the edge incubation times

P(c|T) = βq εq′
(1 − β)s (1 − ε)s′ ∏

(u,v)∈ET

Pc(v, u) (10)

≈ βq εq′
(1 − ε)s+s′ ∏

(u,v)∈ET

Pc(v, u), (11)

where q is the number of network edges in T (type (a) edges in Figure 4(b)), q′ is the
number of ε-edges in T, s is the number of network edges that did not transmit, and s′
is the number of ε-edges that did not transmit. Note that the approximation is valid
since real networks are sparse and cascades are generally small, and hence s′ � s.
Thus, even though β � ε we expect (1 − β)s to be about same order of magnitude as
(1 − ε)s′

.
The formulation in Equation (11) has several benefits. Due to the introduction of

ε-edges the likelihood P(c|T) is always positive. For example, even if we consider graph
G with no edges, P(c|T) is still well defined as we can explain the tree T via the dif-
fusion over the ε-edges. A second benefit that will become very useful later is that the
likelihood now becomes monotonic in the network edges of G. This means that adding
an edge to G (converting ε-edge into a network edge) only increases the likelihood.

Considering only the most likely propagation tree. So far we introduced the concept of ε-
edges to model the external influence or diffusion that is exogenous to the network, and
introduce an approximation to treat all edges that did not participate in the diffusion
as ε-edges.

Now we consider the last approximation, where instead of considering all possible
cascade propagation trees T, we only consider the most likely cascade propagation
trees T

P(C|G) =
∏
c∈C

∑
T∈Tc(G)

P(c|T) ≈
∏
c∈C

max
T∈Tc(G)

P(c|T). (12)

ACM Transactions on Knowledge Discovery from Data, Vol. 5, No. 4, Article 21, Publication date: February 2012.

Inferring Networks of Diffusion and Influence 21:13

Thus we now aim to solve the network inference problem by finding a graph G that
maximizes Equation (12), where P(c|T) is defined in Equation (11).

This formulation simplifies the original network inference problem by considering
the most likely (best) propagation tree T per cascade c instead of considering all pos-
sible propagation trees T for each cascade c. Although in some cases we expect the
likelihood of c with respect to the true tree T′ to be much higher than that with respect
to any competing tree T′′, in which case the probability mass will be concentrated at T′,
there might be some cases in which the probability mass does not concentrate on one
particular T. However, we ran extensive experiments on small networks with different
structures in which both the original network inference problem and the alternative
formulation could be solved using exhaustive search. Our experimental results looked
really similar—the results were indistinguishable. Therefore, we consider our approx-
imation to work well in practice.

For convenience, we work with the log-likelihood log P(c|T) rather than likelihood
P(c|T). Moreover, instead of directly maximizing the log-likelihood we equivalently
maximize the following objective function, which defines the improvement of log-
likelihood for cascade c occurring in graph G over c occurring in an empty graph K̄
(graph with only ε-edges and no network edges)

Fc(G) = max
T∈Tc(G)

log P(c|T) − max
T∈Tc(K̄)

log P(c|T). (13)

Maximizing Eq. (12) is equivalent to maximizing the following log-likelihood
function:

FC(G) =
∑
c∈C

Fc(G). (14)

We now expand Eq. (13) and obtain an instance of a simplified diffusion network
inference problem

Ĝ = arg max
G

FC(G) =
∑
c∈C

max
T∈Tc(G)

∑
(i, j)∈ET

wc(i, j), (15)

where wc(i, j) = log P′
c(i, j) − log(εPc(u, v)) is a nonnegative weight that can be inter-

preted as the improvement in log-likelihood of edge (i, j) under the most likely prop-
agation tree T in G. Note that by the approximation in Equation (11), one can ig-
nore the contribution of edges that did not participate in a particular cascade c. The
contribution of these edges is constant, i.e., independent of the particular shape that
propagation tree T takes. This is due to the fact that each spanning tree T of G with
node set VT has |VT | − 1 (network and ε-) edges that participated in the cascade, and
all remaining edges stopped the cascade from spreading. The number of nonspreading
edges depends only on the node set VT but not the edge set ET . Thus, the tree T that
maximizes P(c|T) also maximizes

∑
(i, j)∈ET

wc(i, j).
Since T is a tree that maximizes the sum of the edge weights this means that the

most likely propagation tree T is simply the maximum weight directed spanning tree
of nodes VT , where each edge (i, j) has weight wc(i, j), and Fc(G) is simply the sum of
the weights of edges in T.

We also observe that since edges (i, j) where ti ≥ tj have weight 0 (such edges are not
present) then the outgoing edges of any node u only point forward in time, i.e., a node
cannot infect already infected nodes. Thus for a fixed cascade c, the collection of edges
with positive weight forms a directed acyclic graph (DAG).

Now we use the fact that the collection of edges with positive weights forms a di-
rected acyclic graph by observing that the maximum weight directed spanning tree of
a DAG can be computed efficiently.

ACM Transactions on Knowledge Discovery from Data, Vol. 5, No. 4, Article 21, Publication date: February 2012.

21:14 M. Gomez-Rodriguez et al.

Algorithm 1 Maximum weight directed spanning tree of a DAG
Require: Weighted directed acyclic graph D(V, E, w)

T ← {}
for all i ∈ V do

ParT(i) = arg max j w(j, i)
T ← T ∪ {(ParT(i), j)}

return T

PROPOSITION 3.1. In a DAG D(V, E, w) with vertex set V and nonnegative edge
weights w, the maximum weight directed spanning tree can be found by choosing, for
each node v, an incoming edge (u, v) with maximum weight w(u, v).

PROOF. The score

S(T) =
∑

(i, j)∈T

w(i, j) =
∑
i∈V

w(ParT(i), i)

of a tree T is the sum of the incoming edge weights w(ParT(i), i) for each node i, where
ParT(i) is the parent of node i in T (and the root is handled appropriately). Now,

max
T

S(T) = max
T

∑
(i, j)∈T

w(i, j) =
∑
i∈V

max
ParT (i)

w(ParT(i), i).

The latter equality follows from the fact that since G is a DAG, the maximization
can be done independently for each node without creating any cycles.

This proposition is a special case of the more general maximum spanning tree (MST)
problem in directed graphs [Edmonds 1967]. The important fact now is that we can
find the best propagation tree T in time O(|VT |Din): linear in the number of edges and
the maximum in-degree Din = maxu∈VT din(u), by simply selecting an incoming edge of
highest weight for each node u ∈ VT . Algorithm 1 provides the pseudocode to efficiently
compute the maximum weight directed spanning tree of a DAG.

Putting it all together we have shown how to efficiently evaluate the log-likelihood
FC(G) of a graph G. To find the most likely tree T for a single cascade takes O(|VT |Din),
and this has to be done for a total of |C| cascades. Interestingly, this is independent
of the size of graph G and only depends on the amount of observed data (size and the
number of cascades).

3.2 The NETINF Algorithm for Efficient Maximization of FC(G)

Now we aim to find graph G that maximizes the log-likelihood FC(G). First we notice
that by construction FC(K̄) = 0, i.e., the empty graph has score 0. Moreover, we observe
that the objective function FC is nonnegative and monotonic. This means that FC(G) ≤
FC(G′) for graphs G(V, E) and G′(V, E′), where E ⊆ E′. Hence adding more edges to
G does not decrease the solution quality, and thus the complete graph maximizes FC.
Monotonicity can be shown by observing that, as edges are added to G, ε-edges are
converted to network edges, and therefore the weight of any tree (and therefore the
value of the maximum spanning tree) can only increase. However, since real-world
social and information networks are usually sparse, we are interested in inferring a

ACM Transactions on Knowledge Discovery from Data, Vol. 5, No. 4, Article 21, Publication date: February 2012.

Inferring Networks of Diffusion and Influence 21:15

sparse graph G, that only contains some small number k of edges. Thus we aim to
solve the following problem.

Problem 2. Given the infection times of a set of cascades C, probability of propaga-
tion β, and the incubation time distribution Pc(i, j), find Ĝ that maximizes

G∗ = argmax
|G|≤k

FC(G), (16)

where the maximization is over all graphs G of at most k edges, and FC(G) is defined
by Eqs. (14) and (15).

Naively searching over all k edge graphs would take time exponential in k, which
is intractable. Moreover, finding the optimal solution to Eq. (16) is NP-hard, so we
cannot expect to find the optimal solution.

THEOREM 3.2. The network inference problem defined by Equation (16) is NP-hard.

PROOF. By reduction from the MAX-k-COVER problem [Khuller et al. 1999]. In
MAX-k-COVER, we are given a finite set W, |W| = n and a collection of subsets
S1, . . . , Sm ⊆ W. The function

FMC(A) = | ∪i∈A Si|
counts the number of elements of W covered by sets indexed by A. Our goal is to pick a
collection of k subsets A maximizing FMC. We will produce a collection of n cascades C
over a graph G such that max|G|≤k FC(G) = max|A|≤k FMC(A). Graph G will be defined
over the set of vertices V = {1, . . . , m} ∪ {r}, i.e., there is one vertex for each set Si and
one extra vertex r. For each element s ∈ W, we define a cascade that has time stamp 0
associated with all nodes i ∈ V such that s ∈ Si, time stamp 1 for node r, and ∞ for all
remaining nodes.

Furthermore, we can choose the transmission model such that wc(i, r) = 1 whenever
s ∈ Si and wc(i′, j′) = 0 for all remaining edges (i′, j′), by choosing the parameters ε, α,
and β appropriately. Since a directed spanning tree over a graph G can contain at most
one edge incoming to node r, its weight will be 1 if G contains any edge from a node i
to r where s ∈ Si, and 0 otherwise. Thus, a graph G of at most k edges corresponds to
a feasible solution AG to MAX-k-COVER where we pick sets Si whenever edge (i, r) ∈
G, and each solution A to MAX-k-COVER corresponds to a feasible solution G A of
(16). Furthermore, by construction, FMC(AG) = FC(G). Thus, if we had an efficient
algorithm for deciding whether there exists a graph G, |G| ≤ k such that FC(G) > c, we
could use the algorithm to decide whether there exists a solution A to MAX-k-COVER
with value at least c.

While finding the optimal solution is hard, we now show that FC satisfies submod-
ularity, a natural diminishing returns property. The submodularity property allows
us to efficiently find a provably near-optimal solution to this otherwise NP-hard opti-
mization problem.

A set function F : 2W → R that maps subsets of a finite set W to the real numbers
is submodular if for A ⊆ B ⊆ W and s ∈ W \ B, it holds that

F(A ∪ {s}) − F(A) ≥ F(B ∪ {s}) − F(B).

This simply says adding s to the set A increases the score more than adding s to set
B (A ⊆ B).

Now we are ready to show the following result, which enables us to find a near
optimal network G.

ACM Transactions on Knowledge Discovery from Data, Vol. 5, No. 4, Article 21, Publication date: February 2012.

21:16 M. Gomez-Rodriguez et al.

THEOREM 3.3. Let V be a set of nodes, and C be a collection of cascades hitting the
nodes V. Then FC(G) is a submodular function FC : 2W → R defined over subsets
W ⊆ V × V of directed edges.

PROOF. Consider a cascade c, graphs G ⊆ G′, and an edge e = (r, s) not contained
in G′. We will show that Fc(G ∪ {e}) − Fc(G) ≥ Fc(G′ ∪ {e}) − Fc(G′). Since non-
negative linear combinations of submodular functions are submodular, the function
FC(G) =

∑
c∈C Fc(G) is submodular as well. Let wi, j be the weight of edge (i, j) in

G ∪ {e}, and w′
i, j be the weight in G′ ∪ {e}. As argued before, the maximum weight

directed spanning tree for DAGs is obtained by assigning to each node the incoming
edge with maximum weight. Let (i, s) be the edge incoming at s of maximum weight
in G, and (i′, s) the maximum weight incoming edge in G′. Since G ⊆ G′ it holds that
wi,s ≤ w′

i′,s. Furthermore, wr,s = w′
r,s. Hence,

Fc(G ∪ {(r, s)}) − Fc(G) = max(wi,s, wr,s) − wi,s

≥ max(w′
i′,s, w

′
r,s) − w′

i′,s

= Fc(G′ ∪ {(r, s)}) − Fc(G′),

proving submodularity of Fc.

Maximizing submodular functions in general is NP-hard [Khuller et al. 1999]. A
commonly used heuristic is the greedy algorithm, which starts with an empty graph
K̄, and iteratively, in step i, adds the edge ei which maximizes the marginal gain

ei = argmax
e∈G\Gi−1

FC(Gi−1 ∪ {e}) − FC(Gi−1). (17)

The algorithm stops once it has selected k edges, and returns the solution Ĝ =
{e1, . . . , ek}. The stopping criteria (value of k) can be based on some threshold of
the marginal gain, of the number of estimated edges, or another more sophisticated
heuristic.

In our context we can think about the greedy algorithm as starting on an empty
graph K̄ with no network edges. In each iteration i, the algorithm adds to G the
edge ei that currently most improves the value of the log-likelihood. Another way
to view the greedy algorithm is that it starts on a fully connected graph K̄ where
all the edges are ε-edges. Then adding an edge to graph G corresponds to that edge,
changing the type from ε-edge to a network edge. Thus our algorithm iteratively swaps
ε-edges to network edges until k network edges have been swapped (inserted into the
network G).

Guarantees on the solution quality. Considering the NP-hardness of the problem, we
might expect the greedy algorithm to perform arbitrarily bad. However, we will see
that this is not the case. A fundamental result of Nemhauser et al. [1978] proves
that for monotonic submodular functions, the set Ĝ returned by the greedy algorithm
obtains at least a constant fraction of (1 − 1/e) ≈ 63% of the optimal value achievable
using k edges.

Moreover, we can acquire a tight online data-dependent bound on the solution
quality.

ACM Transactions on Knowledge Discovery from Data, Vol. 5, No. 4, Article 21, Publication date: February 2012.

Inferring Networks of Diffusion and Influence 21:17

THEOREM 3.4 [LESKOVEC ET AL. 2007B]. For a graph Ĝ, and each edge e /∈ Ĝ, let
δe = FC(Ĝ ∪ {e}) − FC(Ĝ). Let e1, . . . eB be the sequence with δe in decreasing order, where
B is the total number of edges with marginal gain greater than 0. Then,

max
|G|≤k

Fc(G) ≤ Fc(Ĝ) +
k∑

i=1

δei.

Theorem 3.4 computes how far a given Ĝ (obtained by any algorithm) is from the
unknown NP-hard to find optimum.

Speeding-up the NETINF algorithm. To make the algorithm scale to networks with thou-
sands of nodes we speed up the algorithm by several orders of magnitude by consider-
ing two following two improvements.

— Localized update. Let Ci be the subset of cascades that go through the node i (cas-
cades in which node i is infected). Then consider that in some step n the greedy
algorithm selects the network edge (j, i) with marginal gain δ j,i, and now we have
to update the optimal tree of each cascade. We make the simple observation that
adding the network edge (j, i) may only change the optimal trees of the cascades
in the set Ci and thus we only need to revisit (and potentially update) the trees of
cascades in Ci. Since cascades are local (each cascade hits only a relatively small
subset of the network), this localized updating procedure speeds up the algorithm
considerably.

— Lazy evaluation. It can be used to drastically reduce the number of evaluations of
marginal gains FC(G ∪ {e}) − FC(G) [Leskovec et al. 2007b]. This procedure relies
on the submodularity of FC. The key idea behind lazy evaluations is the follow-
ing. Suppose G1, . . . , Gk is the sequence of graphs produced during iterations of the
greedy algorithm. Now let us consider the marginal gain

�e(Gi) = FC(Gi ∪ {e}) − FC(Gi)

of adding some edge e to any of these graphs. Due to the submodularity of FC, it
holds that �e(Gi) ≥ �e(G j) whenever i ≤ j. Thus, the marginal gains of e can only
monotonically decrease over the course of the greedy algorithm. This means that el-
ements that achieve very little marginal gain at iteration i cannot suddenly produce
large marginal gain at subsequent iterations. This insight can be exploited by main-
taining a priority queue data structure over the edges and their respective marginal
gains. At each iteration, the greedy algorithm retrieves the highest weight (priority)
edge. Since its value may have decreased from previous iterations, it recomputes its
marginal benefit. If the marginal gain remains the same after recomputation, it has
to be the edge with highest marginal gain, and the greedy algorithm will pick it. If
it decreases, one reinserts the edge with its new weight into the priority queue and
continues. Formal details and pseudocode can be found in Leskovec et al. [2007b].

As we will show later, these two improvements decrease the run time by several
orders of magnitude with no loss in the solution quality. We call the algorithm that
implements the greedy algorithm on this alternative formulation with the above
speedups, the NETINF algorithm (Algorithm 2). In addition, NETINF nicely lends itself
to parallelization, as likelihoods of individual cascades and likelihood of improvements
of individual new edges can simply be computed independently. This allows us to to
tackle even bigger networks in shorter amounts of time.

ACM Transactions on Knowledge Discovery from Data, Vol. 5, No. 4, Article 21, Publication date: February 2012.

21:18 M. Gomez-Rodriguez et al.

Algorithm 2 The NETINF Algorithm
Require: Cascades and hit times C = {(c, tc)}, number of edges k

G ← K̄
for all c ∈ C do

Tc ← dag tree(c) {Find most likely tree (Algorithm 1)}
while |G| < k do

for all (j, i) /∈ G do
δ j,i = 0 {Marginal improvement of adding edge (j, i) to G}
Mj,i ← ∅
for all c : tj < ti in c do

Let wc(m, n) be the weight of (m, n) in G ∪ {(j, i)}
if wc(j, i) ≥ wc(ParTc (i), i) then

δ j,i = δ j,i + wc(j, i) − wc(ParTc (i), i)
Mj,i ← Mj,i ∪ {c}

(j∗, i∗) ← arg max(j,i)∈C\G δ j,i

G ← G ∪ {(j∗, i∗)}
for all c ∈ Mj∗,i∗ do

ParTc (i
∗) ← j∗

return G;

A space and runtime complexity analysis of NETINF depends heavily on the struc-
ture of the network, and therefore it is necessary to make strong assumptions on the
structure. Due to this, it is out of the scope of this article to include a formal complexity
analysis. Instead, we include an empirical runtime analysis in the following section.

4. EXPERIMENTAL EVALUATION

In this section we proceed with the experimental evaluation of our proposed NETINF
algorithm for inferring the network of diffusion. We analyze the performance of NET-
INF on synthetic and real networks. We show that our algorithm performs surprisingly
well, outperforms a heuristic baseline, and correctly discovers more than 90% of the
edges of a typical diffusion network.

4.1 Experiments on Synthetic Data

The goal of the experiments on synthetic data is to understand how the underlying
network structure and the propagation model (exponential and power-law) affect the
performance of our algorithm. The second goal is to evaluate the effect of the simplifi-
cation we had to make in order to arrive at an efficient network inference algorithm.
We assume the contagion propagates in a tree pattern T (exactly ET edges caused the
propagation), consider only the most likely tree T (Eq. (12)), and treat nonpropagating
network edges as ε-edges (Eq. (11)).

In general, in all our experiments we proceed as follows. We are given a true diffu-
sion network G∗, and then we simulate the propagation of a set of contagions c over
the network G∗. Diffusion of each contagion creates a cascade and for each cascade,
we record the node hit times tu. Then, given these node hit times, we aim to recover
the network G∗ using the NETINF algorithm. For example, Figure 1(a) shows a graph
G∗ of 20 nodes and 23 directed edges. Using the exponential incubation time model
and β = 0.2 we generated 24 cascades. Now, given the node infection times, we aim to
recover G∗. A baseline method (b) (described in the following) performed poorly while
NETINF (c) recovered G∗ almost perfectly, making only two errors (red edges).

ACM Transactions on Knowledge Discovery from Data, Vol. 5, No. 4, Article 21, Publication date: February 2012.

Inferring Networks of Diffusion and Influence 21:19

Fig. 5. Number of cascades per edge and cascade sizes for a Forest Fire network (1024 nodes, 1477 edges)
with forward burning probability 0.20, backward burning probability 0.17, and exponential incubation time
model with parameter α = 1 and propagation probability β = 0.5. The cascade size distribution follows a
power-law. We found the power-law coefficient using maximum likelihood estimation (MLE).

Experimental setup. Our experimental methodology is composed of the following steps:
(1) ground truth graph G∗; (2) cascade generation: Probability of propagation β, and
the incubation time model with parameter α; (3) number of cascades.

— Ground truth graph G∗. We consider two models of directed real-world networks
to generate G∗, namely, the Forest Fire model [Leskovec et al. 2005] and the
Kronecker Graphs model [Leskovec and Faloutsos 2007]. For Kronecker graphs,
we consider three sets of parameters that produce networks with a very different
global network structure: a random graph [Erdős and Rényi 1960] (Kronecker pa-
rameter matrix [0.5, 0.5; 0.5, 0.5]), a core-periphery network [Leskovec et al. 2008]
([0.962, 0.535; 0.535, 0.107]), and a network with hierarchical community structure
[Clauset et al. 2008] ([0.962, 0.107; 0.107, 0.962]). The Forest Fire generates net-
works with power-law degree distributions that follow the densification power law
[Barabási and Albert 1999; Leskovec et al. 2007a].

— Cascade propagation. We then simulate cascades on G∗ using the generative model
defined in Section 2.1. For the simulation we need to choose the incubation time
model (power-law or exponential, and parameter α). We also need to fix the param-
eter β, that controls probability of a cascade propagating over an edge. Intuitively,
α controls how fast the cascade spreads (how long the incubation times are), while β
controls the size of the cascades. Large β means cascades will likely be large, while
small β makes most of the edges fail to transmit the contagion, which results in
small infections.

— Number of cascades. Intuitively, the more data our algorithm gets, the more ac-
curately it should infer G∗. To quantify the amount of data (number of different
cascades), we define El to be the set of edges that participate in at least l cascades.
This means El is a set of edges that transmitted at least l contagions. It is important
to note that if an edge of G∗ did not participate in any cascade (it never transmitted
a contagion) then there is no trace of it in our data and thus we have no chance to
infer it. In our experiments we choose the minimal amount of data (l = 1) so that
we at least in principle could infer the true network G∗. Thus, we generate as many
cascades as needed to have a set El that contains a fraction f of all the edges of the
true network G∗. In all our experiments we pick cascade starting nodes uniformly
at random and generate enough cascades so that 99% of the edges in G∗ participate
in at least one cascade, i.e., 99% of the edges are included in E1.

ACM Transactions on Knowledge Discovery from Data, Vol. 5, No. 4, Article 21, Publication date: February 2012.

21:20 M. Gomez-Rodriguez et al.

Table II. Performance of Synthetic Data

Type of network f |C| r BEP AUC

Forest Fire

0.5 388 2,898 0.393 0.29
0.9 2,017 14,027 0.75 0.67
0.95 2,717 19,418 0.82 0.74
0.99 4,038 28,663 0.92 0.86

Hierarchical Kronecker

0.5 289 1,341 0.37 0.30
0.9 1,209 5,502 0.81 0.80
0.95 1,972 9,391 0.90 0.90
0.99 5,078 25,643 0.98 0.98

Core-periphery Kronecker

0.5 140 1,392 0.31 0.23
0.9 884 9,498 0.84 0.80
0.95 1,506 14,125 0.93 0.91
0.99 3,110 30,453 0.98 0.96

Flat Kronecker

0.5 200 1,324 0.34 0.26
0.9 1,303 7,707 0.84 0.83
0.95 1,704 9,749 0.89 0.88
0.99 3,652 21,153 0.97 0.97

Break-even Point (BEP) and Receiver Operating Characteristic (AUC)
when we generated the minimum number of |C| cascades so that f -
fraction of edges participated in at least one cascade |El| ≥ f |E|. These
|C| cascades generated the total of r edge transmissions, i.e., average cas-
cade size is r/|C|. All networks have 1024 nodes and 1446 edges. We use
the exponential incubation time model with parameter α = 1, and in each
case we set the probability β such that r/|C| is neither too small nor too
large (i.e., β ∈ (0.1, 0.6)).

Table II shows experimental values of the number of cascades that let E1 cover dif-
ferent percentages of the edges. To have a closer look at the cascade size distribution,
for a Forest Fire network on 1024 nodes and 1477 edges, we generated 4038 cascades.
The majority of edges took part in 4 to 12 cascades and the cascade size distribution
follows a power law (Figure 5(b)). The average and median number of cascades per
edge are 9.1 and 8, respectively (Figure 5(a)).

Baseline method. To infer a diffusion network Ĝ, we consider the a simple baseline
heuristic where we compute the score of each edge and then pick k edges with highest
score.

More precisely, for each possible edge (u, v) of G, we compute w(u, v) =
∑

c∈C Pc(u, v),
i.e., overall, how likely the cascades c ∈ C were to propagate over the edge (u, v).
Then we simply pick the k edges (u, v) with the highest score w(u, v) to obtain Ĝ. For
example, Figure 1(b) shows the results of the baseline method on a small graph.

Solution quality. We evaluate the performance of the NETINF algorithm in two dif-
ferent ways. First, we are interested in how successful NETINF is at optimizing the
objective function FC(G) that is NP-hard to optimize exactly. Using the online bound
in Theorem 3.4, we can assess at most how far from the unknown optimal the NETINF
solution is in terms of the log-likelihood score. Second, we also evaluate the NETINF
based on accuracy, i.e., what fraction of edges of G∗ NETINF managed to infer correctly.

Figure 6(a) plots the value of the log-likelihood improvement FC(G) as a function of
the number of edges in G. In red, we plot the value achieved by NETINF and in green,
the upper bound using Theorem 3.4. The plot shows that the value of the unknown

ACM Transactions on Knowledge Discovery from Data, Vol. 5, No. 4, Article 21, Publication date: February 2012.

Inferring Networks of Diffusion and Influence 21:21

Fig. 6. Score achieved by NETINF in comparison with the online upper bound from Theorem 3.4. In practice
NETINF finds networks that are at 97% of NP-hard to compute optimal.

optimal solution (that is NP-hard to compute exactly) is somewhere between the red
and the green curves. Notice that the band between two curves, the optimal and the
NETINF curve, is narrow. For example, at 2000 edges in Ĝ, NETINF finds the solution
that is least 97% of the optimal graph. Moreover, also notice a strong diminishing
return effect. The value of the objective function flattens out after about 1000 edges.

ACM Transactions on Knowledge Discovery from Data, Vol. 5, No. 4, Article 21, Publication date: February 2012.

21:22 M. Gomez-Rodriguez et al.

This means that, in practice, very sparse solutions (almost tree-like diffusion graphs)
already achieve very high values of the objective function close to the optimal.

Accuracy of NETINF. We also evaluate our approach by studying how many edges in-
ferred by NETINF are actually present in the true network G∗. We measure the pre-
cision and recall of our method. For every value of k (1 ≤ k ≤ n(n − 1)), we generate
Ĝk on k edges by using NETINF or the baseline method. We then compute precision
(which fraction of edges in Ĝk is also present G∗) and recall (which fraction of edges of
G∗ appears in Ĝk). For small k, we expect low recall and high precision as we select
the few edges in which we are most confident. As k increases, precision will generally
start to drop but the recall will increase.

Figure 7 shows the precision-recall curves of NETINF and the baseline method
on three different Kronecker graphs (random, hierarchical community structure, and
core-periphery structure) with 1024 nodes and two incubation time models. The cas-
cades were generated with an exponential incubation time model with α = 1, or a
power law incubation time model with α = 2 and a value of β low enough to avoid
generating too large cascades (in all cases, we pick a value of β ∈ (0.1, 0.6)). For each
network we generated between 2000 and 4000 cascades so that 99% of the edges of
G∗ participated in at least one cascade. We chose cascade starting points uniformly at
random.

First, we focus on Figures 7(a), 7(b), and 7(c) where we use the exponential incu-
bation time model on different Kronecker graphs. Notice that the baseline method
achieves the break-even point1 between 0.4 and 0.5 on all three networks. On the
other hand, NETINF performs much better with the break-even point of 0.99 on all
three datasets.

We view this as a particularly strong result, as we were especially careful not to
generate too many cascades since more cascades means more evidence that makes the
problem easier. Thus, using a very small number of cascades, where every edge of G∗
participates in only a few cascades, we can almost perfectly recover the underlying
diffusion network G∗. The second important point to notice is that the performance of
NETINF seems to be strong regardless of the structure of the network G∗. This means
that NETINF works reliably regardless of the particular structure of the network of
which contagions propagated (refer to Table II).

Similarly, Figures 7(d), 7(e), and 7(f) show the performance on the same three net-
works but using the power law incubation time model. The performance of the baseline
now dramatically drops. This is likely due to the fact that the variance of power-law
(and heavy tailed distributions in general) is much larger than the variance of an ex-
ponential distribution. Thus the diffusion network inference problem is much harder
in this case. As the baseline pays a high price due to the increase in variance with the
break-even point dropping below 0.1, the performance of NETINF remains stable with
the break-even point in the high 90s.

We also examine the results on the Forest Fire network (Figures 7(g) and 7(h)).
Again, the performance of the baseline is very low while NETINF achieves the break-
even point at around 0.90.

Generally, the performance on the Forest Fire network is a bit lower than on the
Kronecker graphs. However, it is important to note that while these networks have
very different global network structures (from hierarchical, random, scale free, to core
periphery) the performance of NETINF is remarkably stable and does not seem to

1The point at which recall is equal to precision.

ACM Transactions on Knowledge Discovery from Data, Vol. 5, No. 4, Article 21, Publication date: February 2012.

Inferring Networks of Diffusion and Influence 21:23

Fig. 7. Precision and recall for three 1024 node Kronecker and Forest Fire network networks with expo-
nential (Exp) and power law (PL) incubation time model. The plots are generated by sweeping over values
of k, which controls the sparsity of the solution.

ACM Transactions on Knowledge Discovery from Data, Vol. 5, No. 4, Article 21, Publication date: February 2012.

21:24 M. Gomez-Rodriguez et al.

Fig. 8. Performance of NETINF as a function of the amount of cascade data. The units in the x-axis are
normalized. x = 1 means that the total number of transmission events used for the experiment was equal
to the number of edges in G∗. On average, NETINF requires about two propagation events per edge of the
original network in order to reliably recover the true network structure.

depend on the structure of the network we are trying to infer or the particular type of
cascade incubation time model.

Finally, in all the experiments, we observe a sharp drop in precision for high values
of recall (near 1). This happens because the greedy algorithm starts to choose edges
with low marginal gains that may be false edges, increasing the probability of making
mistakes.

Performance vs. cascade coverage. Intuitively, the larger the number of cascades that
spread over a particular edge, the easier it is to identify it. On one hand if the edge
never transmitted then we cannot identify it, and the more times it participated in the
transmission of a contagion the easier it should be to identify the edge.

In our experiments so far, we generated a relatively small number of cascades. Next,
we examine how the performance of NETINF depends on the amount of available cas-
cade data. This is important because in many real-world situations, the data of only a
few different cascades is available.

Figure 8 plots the break-even point of NETINF as a function of the available cas-
cade data measured in the number of contagion transmission events over all cascades.
The total number of contagion transmission events is simply the sum of cascade sizes.
Thus, x = 1 means that the total number of transmission events used for the experi-
ment was equal to the number of edges in G∗. Notice that as the amount of cascade
data increases, the performance of NETINF also increases. Overall, we notice that
NETINF requires a total number of transmission events to be about 2 times the num-
ber of edges in G∗ to successfully recover most of the edges of G∗.

Moreover, the plot shows the performance for different values of edge transmission
probability β. As noted before, high values of β produce larger cascades. Interestingly,
when cascades are small (small β), NETINF needs less data to infer the network than
when cascades are larger. This occurs because the larger a cascade, the more difficult
is to infer the parent of each node, since we have more potential parents for each the

ACM Transactions on Knowledge Discovery from Data, Vol. 5, No. 4, Article 21, Publication date: February 2012.

Inferring Networks of Diffusion and Influence 21:25

Fig. 9. Average time per edge added by our algorithm implemented with lazy evaluation (LE) and localized
update (LU).

node to choose from. For example, when β = 0.1 NETINF needs about 2|E| transmission
events, while when β = 0.5 it needs twice as much data (about 4|E| transmissions) to
obtain the break-even point of 0.9.

Stopping criterion. In practice one does not know how long to run the algorithm and
how many edges to insert into the network Ĝ. Given the results from Figure 6, we
found the following heuristic to give good results. We run the NETINF algorithm for k
steps, where k is chosen such that the objective function is close to the upper bound,
i.e., FC(Ĝ) > x ·OPT, where OPT is obtained using the online bound. In practice we use
values of x in the range 0.8–0.9. That means that in each iteration k, OPT is computed
by evaluating the right-hand side expression of the equation in Theorem 3.4, where
k is simply the iteration number. Therefore, OPT is computed online, and thus the
stopping condition is also updated online.

Scalability. Figure 9 shows the average computation time per edge added for the NET-
INF algorithm implemented with lazy evaluation and localized update. We use a hier-
archical Kronecker network and an exponential incubation time model with α = 1 and
β = 0.5. Localized update speeds up the algorithm for an order of magnitude (45×) and
lazy evaluation further gives a factor of 6 improvement. Thus, overall, we achieve two
orders of magnitude speed-up (280×), without any loss in solution quality.

In practice the NETINF algorithm can easily be used to infer networks of 10,000
nodes in a matter of hours.

Performance vs. incubation time noise. In our experiments so far, we have assumed that
the incubation time values between infections are not noisy and that we have access to
the true distribution from which the incubation times are drawn. However, real data
may violate any of these two assumptions.

We study the performance of NETINF (break-even point) as a function of the noise
of the waiting time between infections. Thus, we add Gaussian noise to the waiting
times between infections in the cascade generation process.

ACM Transactions on Knowledge Discovery from Data, Vol. 5, No. 4, Article 21, Publication date: February 2012.

21:26 M. Gomez-Rodriguez et al.

Fig. 10. Break-even point of NETINF as a function of the amount of additive Gaussian noise in the incuba-
tion time.

Figure 10 plots the performance of NETINF (break-even point) as a function of the
amount of Gaussian noise added to the incubation times between infections for both
an exponential incubation time model with α = 1, and a power law incubation time
model with α = 2. The break-even point degrades with noise but once a high value
of noise is reached, an additional increment in the amount of noise does not further
degrade the performance of NETINF. Interestingly, the break-even point value for high
values of noise is very similar to the break-even point achieved later in a real dataset
(Figures 13(a) and 13(b)).

Performance vs. infections by the external source. In all our experiments so far, we have
assumed that we have access to complete cascade data, i.e., we are able to observe all
the nodes taking part in each cascade. Thereby, except for the first node of a cascade,
we do not have any jumps or missing nodes in the cascade as it spreads across the
network. Even though techniques for coping with missing data in information cascades
have recently been investigated [Sadikov et al. 2011], we evaluate NETINF for both
scenarios.

First, we consider the case where a random fraction of each cascade is missing. This
means that we first generate a set of cascades, but then only record node infection
times of an f -fraction of nodes. We first generate enough cascades so that without
counting the missing nodes in the cascades, we still have that 99% of the edges in G∗
participate in at least one cascade. Then we randomly delete (set infection times to
infinity) an f -fraction of nodes in each cascade.

Figure 11(a) plots the performance of NETINF (break-even point) as a function of
the percentage of missing nodes in each cascade. Naturally, the performance drops
with the amount of missing data. However, we also note that the effect of missing
nodes can be mitigated by an appropriate choice of the parameter ε. Basically, higher
ε makes propagation via ε-edges more likely and thus by giving a cascade a greater
chance to propagate over the ε-edges, NETINF can implicitly account for the missing
data.

ACM Transactions on Knowledge Discovery from Data, Vol. 5, No. 4, Article 21, Publication date: February 2012.

Inferring Networks of Diffusion and Influence 21:27

Fig. 11. Break-even point of NETINF as (a) function of the fraction of missing nodes per cascade, and as (b)
function of the fraction of nodes that are infected by an external source per cascade.

Second, we also consider the case where the contagion does not spread through the
network via diffusion but rather due to the influence of an external source. Thus, the
contagion does not really spread over the edges of the network but rather appears
almost at random at various nodes of the network.

Figure 11(b) plots the performance of NETINF (break-even point) as a function of
the percentage of nodes that are infected by an external source for different values

ACM Transactions on Knowledge Discovery from Data, Vol. 5, No. 4, Article 21, Publication date: February 2012.

21:28 M. Gomez-Rodriguez et al.

of ε. In our framework, we model the influence due to the external source with the
ε-edges. Note that appropriately setting ε can appropriately account for the exogenous
infections that are not the result of the network diffusion, but due to the external
influence. The higher the value of ε, the stronger the influence of the external source,
i.e., we assume a greater number of missing nodes or number of nodes that are infected
by an external source. Thus, the break-even is more robust for higher values of ε.

4.2 Experiments on Real Data

Dataset description. We use more than 172 million news articles and blog posts from 1
million online sources over a period of one year from September 1 2008 till August 31
2009.2 Based on this raw data, we use two different methodologies to trace information
on the Web and then create two different datasets.

— Blog hyperlink cascades dataset. We use hyperlinks between blog posts to trace
the flow of information [Leskovec et al. 2007c]. When a blog publishes a piece of
information and uses hyper-links to refer to other posts published by other blogs,
we consider this as events of information transmission. A cascade c starts when a
blog publishes a post P and the information propagates recursively to other blogs by
linking to the original post or one of the other posts from which we can trace a chain
of hyperlinks all the way to the original post P. By following the chains of hyperlinks
in the reverse direction we identify hyperlink cascades [Leskovec et al. 2007c]. A
cascade is thus composed of the time-stamps of the hyperlink/post-creation times.

— MemeTracker dataset. We use the MemeTracker [Leskovec et al. 2009] methodology
to extract more than 343 million short textual phrases (like, “Joe, the plumber” or
“lipstick on a pig”). Out of these, 8 million distinct phrases appeared more than
10 times, with a cumulative number of mentions of over 150 million. We cluster
the phrases to aggregate different textual variants of the same phrase [Leskovec
et al. 2009]. We then consider each phrase cluster as a separate cascade c. Since all
documents are time-stamped, a cascade c is simply a set of time-stamps for when
blogs first mentioned phrase c. So, we observe the times when blogs mention partic-
ular phrases but not where they copied or obtained the phrases from. We consider
the largest 5000 cascades (phrase clusters) and for each Web site we record the
time when they first mention a phrase in the particular phrase cluster. Note that
cascades in general do not spread over all the sites, which our methodology can
successfully handle.

Figure 12 further illustrates the concept of hyperlink and MemeTracker cascades.

Accuracy on real data. As there is no ground truth network for both datasets, we use
the following method to create the ground truth network G∗. We create a network
where there is a directed edge (u, v) between a pair of nodes u and v if a post on site u
linked to a post on site v. To construct the network, we take the top 500 sites in terms
of number of hyperlinks they create/receive. We represent each site as a node in G∗
and connect a pair of nodes if a post in the first site linked to a post in the second site.
This process produces a ground truth network G∗ with 500 nodes and 4000 edges.

First, we use the blog hyperlink cascades dataset to infer the network Ĝ and evalu-
ate how many edges NETINF got right. Figure 13(a) shows the performance of NETINF
and the baseline. Notice that the baseline method achieves a break-even point of
0.34, while our method performs better, with a break-even point of 0.44, almost a 30%
improvement.

2Data available at http://memetracker.org and http://snap.stanford.edu/netinf.

ACM Transactions on Knowledge Discovery from Data, Vol. 5, No. 4, Article 21, Publication date: February 2012.

Inferring Networks of Diffusion and Influence 21:29

Fig. 12. Hyperlink-based cascades versus meme-based cascades. In hyperlink cascades, if post j linked to
post k, we consider this as a contagion transmission event with the post-creation time as the corresponding
infection time. In MemeTracker cascades, we follow the spread of a short textual phrase and use post-
creation times as infection times.

Fig. 13. Precision and recall for a 500 node hyperlink network using (a) the blog hyperlink cascades dataset
(hyperlinks cascades), and (b) the MemeTracker dataset (MemeTracker cascades). We used β = 0.5, ε = 10−9

and the exponential model with α = 1.0. The time units were hours.

NETINF is basically performing a link-prediction task based only on temporal link-
ing information. The assumption in this experiment is that sites prefer to create links
to sites that recently mentioned information while completely ignoring the authority
of the site. Given that such an assumption is not satisfied in real life, we consider the
break-even point of 0.44 a good result.

Now, we consider an even harder problem, where we use the Memetracker dataset
to infer G∗. In this experiment, we only observe times when sites mention particular
textual phrases and the task is to infer the hyperlink structure of the underlying Web
graph. Figure 13(b) shows the performance of NETINF and the baseline. The baseline
method has a break-even point of 0.17 and NETINF achieves a break-even point of
0.28, more than a 50% improvement.

For a fair comparison with the synthetic cases, notice that the exponential incuba-
tion time model is a simplistic assumption for our real dataset, and NETINF can po-
tentially gain additional accuracy by choosing a more realistic incubation time model.

ACM Transactions on Knowledge Discovery from Data, Vol. 5, No. 4, Article 21, Publication date: February 2012.

21:30 M. Gomez-Rodriguez et al.

Fig. 14. Small part of a news media (red) and blog (blue) diffusion network. We use the blog hyperlink
cascades dataset, i.e., hyperlinks between blog and news media posts to trace the flow of information.

Solution quality. Similarly as with synthetic data, in Figure 6(b) we investigate the
value of the objective function and compare it to the online bound. Notice that the
bound is almost as tight as in the case of synthetic networks, finding the solution
that is least 84% of optimal; both curves are also similar in shape to the synthetic
case value. Again, as in the synthetic case, the value of the objective function quickly
flattens out, which means that one needs a relatively few number of edges to capture
most of the information flow on the Web.

In the remainder of the section, we use the top 1000 media sites and blogs with the
largest number of documents.

Visualization of diffusion networks. We examine the structure of the inferred diffusion
networks using both datasets: the blog hyperlink cascades dataset and the Meme-
Tracker dataset.

Figure 14 shows the largest connected component of the diffusion network after
100 edges have been chosen using the first dataset, i.e., using hyperlinks to track the
flow of information. The size of the nodes is proportional to the number of articles
on the site and the width of the edge is proportional to the probability of influence:
stronger edges have higher width. The strength of an edge across all cascades is simply
defined as the marginal gain achieved by adding the edge in the greedy algorithm
(which is proportional to the probability of influence). Since news media articles rarely
use hyperlinks to refer to one another, the network is somewhat biased towards blogs
(blue nodes). There are several interesting patterns to observe.

First, notice that three main clusters emerge: on the left side of the network we
can see blogs and news media sites related to politics, at the right top, we have blogs
devoted to gossip, celebrity news, or entertainment and on the right bottom, we can
distinguish blogs and news media sites that deal with technology news. As Huffington
Post and Political Carnival play the central role on the political side of the network,
mainstream media sites like Washington Post, Guardian, and the professional blog
Salon.com play the role of connectors between the different parts of the network. The
celebrity gossip part of the network is dominated by the blog Gawker and technology

ACM Transactions on Knowledge Discovery from Data, Vol. 5, No. 4, Article 21, Publication date: February 2012.

Inferring Networks of Diffusion and Influence 21:31

Fig. 15. Small part of a news media (red) and blog (blue) diffusion network. We use the MemeTracker
dataset, i.e., textual phrases from MemeTracker to trace the flow of information.

news gathers around blogs Gizmodo and Engadget, with CNet and TechChuck estab-
lishing the connection to the rest of the network.

Figure 15 shows the largest connected component of the diffusion network after 300
edges have been chosen using the second methodology: using short textual phrases to
track the flow of information. In this case, the network is biased towards news media
sites due to their higher volume of information.

Insights into the diffusion on the web. The inferred diffusion networks also allow for anal-
ysis of the global structure of information propagation on the Web. For this analysis,
we use the MemeTracker dataset and analyze the structure of the inferred information
diffusion network.

First, Figure 16(a) shows the distribution of the influence index. The influence index
is defined as the number of reachable nodes from w by traversing edges of the inferred
diffusion network (while respecting edge directions). Nevertheless, we are also inter-
ested in the distance from w to its reachable nodes—nodes at shorter distances are
more likely to be infected by w. Thus, we slightly modify the definition of influence
index to be

∑
u 1/dwu, where we sum over all the reachable nodes from w, and dwu is

the distance between w and u. Notice that we have two types of nodes. There is a small
set of nodes that can reach many other nodes, which means they either directly or in-
directly propagate information to them. On the other hand we have a large number
of sites that only get influenced but do not influence many other sites. This hints at a
core periphery structure of the diffusion network with a small set of sites directly or
indirectly spreading the information in the rest of the network.

Figure 16(b) investigates the number of links in the inferred network that point
between different types of sites. Here we split the sites into mainstream media and

ACM Transactions on Knowledge Discovery from Data, Vol. 5, No. 4, Article 21, Publication date: February 2012.

21:32 M. Gomez-Rodriguez et al.

Fig. 16. (a) Distribution of node influence index. Most nodes have very low influence (they act as sinks). (b)
Number and strength of edges between different media types. Edges of news media influencing blogs are
the strongest. (c) Median time lag on edges of different type.

blogs. Notice that most of the links point from news media to blogs, which says that
most of the time information propagates from the mainstream media to blogs. Then
notice how at first many media-to-media links are chosen but in later iterations the
increase of these links starts to slow down. This means that media-to-media links
tend to be the strongest and NETINF picks them early. The opposite seems to occur in
the case of blog-to-blog links, where relatively few are chosen first but later more are
picked by the algorithm. Last, links capturing the influence of blogs on mainstream
media are the rarest and weakest. This suggests that most information travels from
mass media to blogs.

Last, Figure 16(c) shows the median time difference between mentions of different
types of sites. For every edge of the inferred diffusion network, we compute the median
time needed for the information to spread from the source to the destination node.
Again, we distinguish the mainstream media sites and blogs. Notice that media sites
are quick to infect one another or even to get infected from blogs. However, blogs tend

ACM Transactions on Knowledge Discovery from Data, Vol. 5, No. 4, Article 21, Publication date: February 2012.

Inferring Networks of Diffusion and Influence 21:33

to be much slower in propagating information. It takes a relatively long time for them
to get infected with information regardless of whether the information comes from the
mainstream media or the blogosphere.

Finally, we have observed that the insights into diffusion on the Web using the
inferred network are very similar to insights obtained by simply taking the hyperlink
network. However, our aim here is to show that (1) although the quantitative results
are modest in terms of precision and recall, the qualitative insights make sense, and
that (2) it is surprising that simply using timestamps of links, we are able to draw the
same qualitative insights as using the hyperlink network.

5. FURTHER RELATED WORK

There are several lines of work we build upon. Although information diffusion in online
settings has received considerable attention [Adar and Adamic 2005; Gruhl et al. 2004;
Kumar et al. 2004; Leskovec et al. 2006a, 2006b, 2007c; Liben-Nowell and Kleinberg
2008], there have been only a few studies of the actual shapes of cascades [Ghosh
and Lerman 2011; Leskovec et al. 2007c; Liben-Nowell and Kleinberg 2008; Romero
et al. 2011; Ver Steeg et al. 2011]. The problem of inferring links of diffusion was first
studied by Adar and Adamic [2005], who formulated it as a supervised classification
problem and used Support Vector Machines combined with rich textual features to
predict the occurrence of individual links. Although rich textual features are used,
links are predicted independently and thus their approach is similar to our baseline
method in the sense that it picks a threshold (hyperplane in case of SVMs) and predicts
individually, the most probable links.

The work most closely related to our approach, CONNIE [Myers and Leskovec 2010]
and NETRATE [Gomez-Rodriguez et al. 2011], also uses a generative probabilistic
model for the problem of inferring a latent social network from diffusion (cascades)
data. However, CONNIE and NETRATE use convex programming to solve the network
inference problem. CONNIE includes an l1-like penalty term that controls sparsity
while NETRATE provides a unique sparse solution by allowing different transmission
rates across edges. For each edge (i, j), CONNIE infers a prior probability βi, j and
NETRATE infers a transmission rate αi, j. Both algorithms are computationally more
expensive than NETINF. In our work, we assume that all edges of the network have
the same prior probability (β) and transmission rate (α). From this point of view, we
think comparison between the algorithms is unfair since NETRATE and CONNIE have
more degrees of freedom.

Network structure learning has been considered for estimating the dependency
structure of probabilistic graphical models [Friedman and Koller 2003; Friedman et al.
1999]. However, there are fundamental differences between our approach and graphi-
cal models structure learning. (a) We learn directed networks, but Bayes networks are
DAGs; (b) undirected graphical model structure learn makes no assumption about the
network but it learns undirected, and we learn directed, networks.

First, our work makes no assumption about the network structure (we allow cy-
cles, reciprocal edges) and are thus able to learn general directed networks. In di-
rected graphical models, reciprocal edges and cycles are not allowed, and the inferred
network is a directed acyclic graph (DAG). In undirected graphical models, there
are typically no assumptions about the network structure, but the inferred network
is undirected. Second, Bayesian network structure inference methods are gener-
ally heuristic approaches without any approximation guarantees. Network structure
learning has also been used for estimating epidemiological networks [Wallinga and
Teunis 2004] and for estimating probabilistic relational models [Getoor et al. 2003].
In both cases, the problem is formulated in a probabilistic framework. However, since
the problem is intractable, heuristic greedy hill-climbing or stochastic search, which

ACM Transactions on Knowledge Discovery from Data, Vol. 5, No. 4, Article 21, Publication date: February 2012.

21:34 M. Gomez-Rodriguez et al.

offer no performance guarantees were usually used in practice. In contrast, our work
provides a novel formulation and a tractable solution together with an approximation
guarantee.

Our work relates to static sparse graph estimation using graphical Lasso meth-
ods [Friedman et al. 2008; Meinshausen and Buehlmann 2006; Schmidt et al. 2007;
Wainwright et al. 2006], unsupervised structure network inference using kernel meth-
ods [Lippert et al. 2009], mutual information relevance network inference [Butte and
Kohane 2000], inference of influence probabilities [Goyal et al. 2010], and extensions to
time evolving graphical models [Ahmed and Xing 2009; Ghahramani 1998; Song et al.
2009]. Our work is also related to a link prediction problem [Backstrom and Leskovec
2011; Jansen et al. 2003; Liben-Nowell and Kleinberg 2003; Taskar et al. 2003; Vert
and Yamanishi 2005], but different in the sense that this line of work assumes that
part of the network is already visible to us.

Last, although submodular function maximization has been previously considered
for sensor placement [Leskovec et al. 2007b] and finding influencers in viral market-
ing [Kempe et al. 2003], to the best of our knowledge, the present work is the first
that considers submodular function maximization in the context of network structure
learning.

6. CONCLUSIONS

We have investigated the problem of tracing paths of diffusion and influence. We for-
malized the problem and developed a scalable algorithm, NETINF, to infer networks of
influence and diffusion. First, we defined a generative model of cascades and showed
that choosing the best set of k edges maximizing the likelihood of the data is NP-hard.
By exploiting the submodularity of our objective function, we developed NETINF, an
efficient algorithm for inferring a near-optimal set of k directed edges. By exploiting
localized updates and lazy evaluation, our algorithm is able to scale to very large real
data sets.

We evaluated our algorithm on synthetic cascades sampled from our generative
model, and showed that NETINF is able to accurately recover the underlying network
from a relatively small number of samples. In our experiments, NETINF drastically
outperformed a naive maximum weight baseline heuristic.

Most importantly, our algorithm allows us to study properties of real networks. We
evaluated NETINF on a large real data set of memes propagating across news Web sites
and blogs. We found that the inferred network exhibits a core-periphery structure with
mass media influencing most of the blogosphere. Clusters of sites related to similar
topics emerge (politics, gossip, technology, etc.), and a few sites with social capital
interconnect these clusters, allowing a potential diffusion of information among sites
in different clusters.

There are several interesting directions for future work. Here we only used time
difference to infer edges and thus it would be interesting to utilize more informative
features (e.g., textual content of postings, etc.) to more accurately estimate the influ-
ence probabilities. Moreover, our work considers static propagation networks, however
real influence networks are dynamic, so it would be interesting to relax this assump-
tion. Last, there are many other domains where our methodology could be useful:
inferring interaction networks in systems biology (protein-protein and gene interac-
tion networks), neuroscience (inferring physical connections between neurons), and
epidemiology.

We believe that our results provide a promising step towards understanding com-
plex processes on networks based on partial observations.

ACM Transactions on Knowledge Discovery from Data, Vol. 5, No. 4, Article 21, Publication date: February 2012.

Inferring Networks of Diffusion and Influence 21:35

ACKNOWLEDGMENT

We thank Spinn3r for resources that facilitated the research.

REFERENCES
ADAR, E. AND ADAMIC, L. A. 2005. Tracking information epidemics in blogspace. In Proceedings of the

IEEE/WIC/ACM International Conference on Web Intelligence (WI). 207–214.
ADAR, E., ZHANG, L., ADAMIC, L. A., AND LUKOSE, R. M. 2004. Implicit structure and the dynamics of

blogspace. In Proceedings of the 13th International World Wide Web Conference (WWW). Workshop on
the Weblogging Ecosystem.

AHMED, A. AND XING, E. 2009. Recovering time-varying networks of dependencies in social and biological
studies. Proc. Nat. Acad. Sci. 106.

ANDERSON, R. M. AND MAY, R. M. 2002. Infectious Diseases Of Humans: Dynamics and Control. Oxford
Press.

BACKSTROM, L. AND LESKOVEC, J. 2011. Supervised random walks: Predicting and recommending links in
social networks. In Proceedings of the ACM International Conference on Web Search and Data Mining
(WSDM).

BAILEY, N. T. J. 1975. The Mathematical Theory of Infectious Diseases and its Applications 2nd Ed. Hafner
Press.

BARABÁSI, A.-L. 2005. The origin of bursts and heavy tails in human dynamics. Nature 435, 207.
BARABÁSI, A.-L. AND ALBERT, R. 1999. Emergence of scaling in random networks. Science 286, 509–512.
BUTTE, A. AND KOHANE, I. 2000. Mutual information relevance networks: Functional genomic cluster-

ing using pairwise entropy measurements. In Proceedings of the Pacific Symposium on Biocomputing
Vol. 5., 418–429.

CLAUSET, A., MOORE, C., AND NEWMAN, M. E. J. 2008. Hierarchical structure and the prediction of
missing links in networks. Nature 453, 7191, 98–101.

CRANE, R. AND SORNETTE, D. 2008. Robust dynamic classes revealed by measuring the response function
of a social system. Proc. Nat. Acad. Sci. 105, 41, 15649–15653.

DOMINGOS, P. AND RICHARDSON, M. 2001. Mining the network value of customers. In Proceedings of the
7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD).

EDMONDS, J. 1967. Optimum branchings. J. Res. Nat Bureau Stand. 71B, 233–240.
ERDŐS, P. AND RÉNYI, A. 1960. On the evolution of random graphs. Publ. Math. Inst. Hungarian Acad. Sci.

5, 17–67.
FRIEDMAN, N. AND KOLLER, D. 2003. Being Bayesian about network structure. A Bayesian approach to

structure discovery in Bayesian networks. Mach. Learn. 50, 1, 95–125.
FRIEDMAN, N., NACHMAN, I., AND PE’ER, D. 1999. Learning Bayesian network structure from massive

datasets: The “Sparse Candidate” algorithm. In Proceedings of the 15th Conference on Uncertainty in
Artificial Intelligence (UAI).

FRIEDMAN, J., HASTIE, T., AND TIBSHIRANI, R. 2008. Sparse inverse covariance estimation with the graph-
ical lasso. Biostat 9, 3, 432–441.

GETOOR, L., FRIEDMAN, N., KOLLER, D., AND TASKAR, B. 2003. Learning probabilistic models of link
structure. J. Mach. Learn. Res. 3, 707.

GHAHRAMANI, Z. 1998. Learning dynamic Bayesian networks. In Adaptive Processing of Sequences and
Data Structures, C. Lee Giles, Marco Gori Eds., Springer.

GHOSH, R. AND LERMAN, K. 2011. A framework for quantitative analysis of cascades on networks. In
Proceedings of the 4th ACM International Conference on Web Search and Data Mining (WSDM).
665–674.

GOMEZ-RODRIGUEZ, M., BALDUZZI, D., AND SCHÖLKOPF, B. 2011. Uncovering the temporal dynamics of
diffusion networks. In Proceedings of the 28th International Conference on Machine Learning (ICML).
561–568.

GOODMAN, L. A. 1961. Snowball sampling. Annals Math. Statist. 32, 1, 148–170.
GOYAL, A., BONCHI, F., AND LAKSHMANAN, L. 2010. Learning influence probabilities in social networks.

In Proceedings of the 3rd ACM International Conference on Web Search and Data Mining (WSDM).
241–250.

GRUHL, D., GUHA, R., LIBEN-NOWELL, D., AND TOMKINS, A. 2004. Information diffusion through
blogspace. In Proceedings of the 13th International Conference on World Wide Web (WWW). 491–501.

ACM Transactions on Knowledge Discovery from Data, Vol. 5, No. 4, Article 21, Publication date: February 2012.

21:36 M. Gomez-Rodriguez et al.

HECKATHORN, D. 1997. Respondent-driven sampling: A new approach to the study of hidden populations.
Soc. Prob. 44, 2, 174–199.

HETHCOTE, H. W. 2000. The mathematics of infectious diseases. SIAM Rev. 42, 4, 599-653.
JANSEN, R., YU, H., GREENBAUM, D., KLUGER, Y., KROGAN, N., CHUNG, S., EMILI, A., SNYDER, M.,

GREEBLATT, J., AND GERSTEIN, M. 2003. A Bayesian networks approach for predicting protein-protein
interactions from genomic data. Science 302, 5644, 449–453.

KATZ, E. AND LAZARSFELD, P. 1955. Personal Influence: The Part Played By People in The Flow of Mass
Communications. Free Press.

KEARNS, M., SURI, S., AND MONTFORT, N. 2006. An experimental study of the coloring problem on human
subject networks. Science 313, 5788, 824.

KEMPE, D., KLEINBERG, J. M., AND TARDOS, E. 2003. Maximizing the spread of influence through a social
network. In Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD). 137–146.

KHULLER, S., MOSS, A., AND NAOR, J. 1999. The budgeted maximum coverage problem. Inform. Process.
Lett. 70, 1, 39–45.

KNUTH, D. 1968. The Art of Computer Programming. Addison-Wesley.
KUMAR, R., NOVAK, J., RAGHAVAN, P., AND TOMKINS, A. 2004. Structure and evolution of blogspace.

Comm. ACM 47, 12, 35–39.
LESKOVEC, J. AND FALOUTSOS, C. 2007. Scalable modeling of real graphs using Kronecker multiplication.

In Proceedings of the 24th International Conference on Machine Learning (ICML). 504.
LESKOVEC, J., KLEINBERG, J., AND FALOUTSOS, C. 2005. Graphs over time: Densification laws, shrinking

diameters and possible explanations. In Proceedings of the 11th ACM SIGKDD International Conference
on Knowledge Discovery In Data Mining (KDD).

LESKOVEC, J., ADAMIC, L. A., AND HUBERMAN, B. A. 2006a. The dynamics of viral marketing. In Proceed-
ings of the 7th ACM Conference on Electronic Commerce (EC). 228–237.

LESKOVEC, J., SINGH, A., AND KLEINBERG, J. M. 2006b. Patterns of influence in a recommendation net-
work. In Proceedings of the 10th Pacific-Asia Conference on Knowledge Discovery and Data Mining
(PAKDD). 380–389.

LESKOVEC, J., KLEINBERG, J. M., AND FALOUTSOS, C. 2007a. Graph evolution: Densification and shrink-
ing diameters. ACM Trans. Knowl. Discov. Data 1, 1, 2.

LESKOVEC, J., KRAUSE, A., GUESTRIN, C., FALOUTSOS, C., VANBRIESEN, J., AND GLANCE, N. 2007b.
Cost-effective outbreak detection in networks. In Proceedings of the 13th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD). 420–429.

LESKOVEC, J., MCGLOHON, M., FALOUTSOS, C., GLANCE, N., AND HURST, M. 2007c. Cascading behavior
in large blog graphs. In Proceedings of the SIAM Conference on Data Mining (SDM).

LESKOVEC, J., LANG, K. J., DASGUPTA, A., AND MAHONEY, M. W. 2008. Statistical properties of com-
munity structure in large social and information networks. In Proceedings of the 17th International
Conference on World Wide Web (WWW).

LESKOVEC, J., BACKSTROM, L., AND KLEINBERG, J. 2009. Meme-tracking and the dynamics of the news
cycle. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD). ACM, New York, NY, 497–506.

LIBEN-NOWELL, D. AND KLEINBERG, J. 2003. The link prediction problem for social networks. In Proceed-
ings of the International Conference on Information and Knowledge Management (CIKM). 556–559.

LIBEN-NOWELL, D. AND KLEINBERG, J. 2008. Tracing the flow of information on a global scale using
Internet chain-letter data. Proc. Nat. Acad. Sci. 105, 12, 4633–4638.

LIPPERT, C., STEGLE, O., GHAHRAMANI, Z., AND BORGWARDT, K. 2009. A kernel method for unsupervised
structured network inference. In Proceedings of the International Conference on Artificial Intelligence
and Statistics (AISTATS).

MALMGREN, R. D., STOUFFER, D. B., MOTTER, A. E., AND AMARAL, L. A. A. N. 2008. A Poissonian
explanation for heavy tails in e-mail communication. Proc. Nat. Acad. Sci. 105, 47, 18153–18158.

MEINSHAUSEN, N. AND BUEHLMANN, P. 2006. High-dimensional graphs and variable selection with the
lasso. Annals Statist. 34, 1436–1462.

MYERS, S. AND LESKOVEC, J. 2010. On the convexity of latent social network inference. In Proceedings of
the Conference on Advances in Neural Information Processing Systems (NIPS).

NEMHAUSER, G., WOLSEY, L., AND FISHER, M. 1978. An analysis of approximations for maximizing sub-
modular set functions. Math. Prog. 14, 1, 265–294.

ROGERS, E. M. 1995. Diffusion of Innovations Fourth Ed. Free Press, New York.

ACM Transactions on Knowledge Discovery from Data, Vol. 5, No. 4, Article 21, Publication date: February 2012.

Inferring Networks of Diffusion and Influence 21:37

ROMERO, D., MEEDER, B., AND KLEINBERG, J. 2011. Differences in the mechanics of information diffusion
across topics: Idioms, political hashtags, and complex contagion on Twitter. In Proceedings of the 20th
International Conference on World Wide Web (WWW). ACM, 695–704.

SADIKOV, S., MEDINA, M., LESKOVEC, J., AND GARCIA-MOLINA, H. 2011. Correcting for missing data
in information cascades. In Proceedings of the ACM International Conference on Web Search and Data
Mining (WSDM).

SCHMIDT, M., NICULESCU-MIZIL, A., AND MURPHY, K. 2007. Learning graphical model structure using
L1-regularization paths. In Proceedings of the 21st Conference on Artificial Intelligence (AAAI). Vol. 22.

SONG, L., KOLAR, M., AND XING, E. 2009. Time-varying dynamic Bayesian networks. In Proceedings of the
Conference on Advances in Neural Information Processing Systems (NIPS).

STRANG, D. AND SOULE, S. A. 1998. Diffusion in organizations and social movements: From hybrid corn to
poison pills. Annual Rev. Sociology 24, 265–290.

TASKAR, B., WONG, M. F., ABBEEL, P., AND KOLLER, D. 2003. Link prediction in relational data. In Pro-
ceedings of the Conference on Advances in Neural Information Processing Systems (NIPS).

TUTTE, W. 1948. The disection of equilateral triangles into equilateral triangles. Proc. Cambridge Philos.
Soc. 44, 63–482.

VER STEEG, G., GHOSH, R., AND LERMAN, K. 2011. What stops social epidemics? In Proceedings of the 5th
International Conference on Weblogs and Social Media (ICWSM0).

VERT, J. AND YAMANISHI, Y. 2005. Supervised graph inference. In Proceedings of the Conference on Ad-
vances in Neural Information Processing Systems (NIPS).

WAINWRIGHT, M. J., RAVIKUMAR, P., AND LAFFERTY, J. D. 2006. High-dimensional graphical model selec-
tion using l1-regularized logistic regression. Proc. Nat. Acad. Sci.

WALLINGA, J. AND TEUNIS, P. 2004. Different epidemic curves for severe acute respiratory syndrome reveal
similar impacts of control measures. Amer. J. Epidemiology 160, 6, 509–516.

WATTS, D. J. AND DODDS, P. S. 2007. Influentials, networks, and public opinion formation. J. Consumer
Res. 34, 4, 441–458.

Received December 2010; revised October 2011; accepted November 2011

ACM Transactions on Knowledge Discovery from Data, Vol. 5, No. 4, Article 21, Publication date: February 2012.

