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ABSTRACT

Information diffusion and virus propagation are fundaraépto-
cesses talking place in networks. While it is often possibléi-
rectly observe when nodes become infected, observingidthdiV
transmissions (i.e., who infects whom or who influences whom
is typically very difficult. Furthermore, in many applicatis, the
underlying network over which the diffusions and propagagdi
spread is actuallynobservedWe tackle these challenges by devel-
oping a method for tracing paths of diffusion and influenceugh
networks and inferring the networks over which contagiorapp
agate. Given the times when nodes adopt pieces of informatio
or become infected, we identify the optimal network thatt lees
plains the observed infection times. Since the optimizgpi@blem

is NP-hard to solve exactly, we develop an efficient appraxiom
algorithm that scales to large datasets and in practice gravably
near-optimal performance.

We demonstrate the effectiveness of our approach by tréeing
formation cascades in a set of 170 million blogs and newslesti
over a one year period to infer how information flows throuigé t
online media space. We find that the diffusion network of news
tends to have a core-periphery structure with a small sebf ¢
media sites that diffuse information to the rest of the Webese
sites tend to have stable circles of influence with more gaimews
media sites acting as connectors between them.

Categories and Subject DescriptorsH.2.8[Database Manage-
ment]: Database applicationsBata mining

General Terms: Algorithms; Experimentation.

Keywords: Networks of diffusion, Information cascades, Blogs,
News media, Meme-tracking, Social networks.

1. INTRODUCTION

Cascading behavior, diffusion and spreading of ideas,viano
tion, information, influence, viruses and diseases aredomanhtal
processes taking place in networks [12, 28, 30]. In ordetudys
network diffusion there are two fundamental challengestaseto
address. First, to be able to track cascading processes)tpldce
in a network, one needs to identify the contagion (idea,rmé>
tion, virus, disease) that is actually spreading and prafag over
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the edges of the network. Moreover, one has to then identifsya
to successfully trace the contagion. For example, wheingan-
formation diffusion, it is a non-trivial task to automatilygand on

a large scale identify the phrases or “memes” that are spgad
through the Web. Second, we usually think of diffusion asa pr
cess that takes place onnatwork However, the network over
which propagations take place is usualljknownandunobserved
Commonly, we only observe the times when particular nodés ge
“infected” but wedo notobservewhoinfected them. In case of in-
formation propagation, as bloggers discover new inforomatihey
write about it without explicitly citing the source. Thusevenly
observe the time when a blog gets “infected” but not wher®it g
infected from. Similarly, in virus propagation, we obsepe&nple
getting sick without usually knowing who infected them. Ainda
viral marketing setting, we observe people purchasing ysrtsdor
adopting particular behaviors without explicitly knowiado was
the influencer that caused the adoption or the purchase.

These challenges are especially pronounced in informéiftun
sion on the Web, where there have been relatively few largke sc
studies of information propagation in large networks [2,248 25].

In order to study paths of diffusion over networks, one etalkin
requires to have complete information about who influendesn
as a single missing link in a sequence of propagations cahttea
wrong inferences. Even if one collects near complete lacgées
diffusion data, it is a non-trivial task to identify textulsagments
that propagate relatively intact through the Web withounhn su-
pervision. And even then the question of how informatiofudiés
through the network still remains. Thus, the questions atet
is the network over which the information propagates on tied ¥V
What is the global structure of such a network? How do news me-
dia sites and blogs interact? What roles do different sitag in
the diffusion process and how influential are they?

Our approach to inferring networks of diffusion and influence.
We address the above questions by positing that there is snme
derlying unknown network over which information, virusesio-
fluence propagate. For simplicity, we assume that the uyidgrl
network is static and does not change over time. We then abser
the times when nodes get “infected” by a particular contade
particular piece of information, product or virus) but werds ob-
serve where they got infected from. Thus, for each cascade, w
only observe times when nodes got infected, and we are tlhenr in
ested in determining the paths the diffusion took throughuthob-
served network. Our goal is to reconstruct the network ov@chv
cascades propagate.

Edges in such networks of influence and diffusion have variou
interpretations. In virus or disease propagation, edge$eanter-
preted as who-infects-whom. Ininformation propagatiaiyes are
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Figure 1: Diffusion network inference problem. There is an tnknown network (a) over which cascades spread. Using a bagst
heuristic (see Section 4) we recover network (b), while our Bthod (c) almost perfectly recovers the network.

who-copies-from-whom or who-listens-to-whom. In a viraam
keting setting, edges can be understood as who-influenbesw

The main premise of our work is that by observing many diffe-
rent cascades spreading among the nodes, we can infer the @fdg
the underlying propagation network. If nodéends to get infected
soon after nodes for many different cascades, then we can expect
an edge(u, v) to be present in the network. By exploring corre-
lations in node infection times, we aim to recover the unplesk
diffusion network.

Here we develop NTINF, a scalable algorithm for inferring net-
works of diffusion and influence. We first formulate a geneeat
probabilistic model of how, on a fixed hypothetical netwotks-
cades spread as directed trees through the network. Sinoalye
observe times when nodes get infected, there are many f®ssib
propagation trees that explain the same data and we havento co
sider all of them. Thus, naive computation of the model takes
exponential time since there is a combinatorially large benof
propagation trees. We show that, perhaps surprisingly,poten
tions over this super-exponential set of trees can be pegdrin
cubic time. However, under such model, the network infezenc
problem is still intractable. Thus, we introduce a tractadgproxi-
mation, and show that the resulting objective function carbth
efficiently computed and efficiently optimized. By explaoiia di-
minishing returns property of the model, we prove tha&TN\F
infers near-optimal networks. We also speed-urNF algorithm
by exploiting the local structure of the objective functiand by
using lazy evaluations [21].

Our results on synthetic datasets show that we can reliably i
fer the underlying propagation and influence networks, ndigas
of the overall network structure. Validation on real andthgtic
datasets shows thateNINF outperforms a baseline heuristic by
an order of magnitude and correctly discovers more than 90% o
the edges. We apply our algorithm to a real Web informatian pr
pagation dataset of 170 million blog and news articles ovene
year period. Our results show that online news propagat&in n
works tend to have a core-periphery structure with a smalbse
core blog and news media websites that diffuse informatctne
rest of the Web, news media websites tend to diffuse the reestesrf
than blogs and blogs keep discussing about news longer tiame t
media websites.

Inferring how information or viruses propagate over netgor
is crucial for a better understanding of diffusion in netlsor By
modeling the structure of the propagation network, we can ga
insight into positions and roles various nodes play in thigision
process and assess the range of influence of nodes in therketwo

2. PROBLEM FORMULATION

We now formally describe the problem where many different
cascades propagate over an unknown static network and ¢or ea
of them we observe timeghennodes got infected but nethoin-

fected them. The goal then is to infer the unknown network ove
which cascades originally propagated. In the informatidiusion
setting, each cascade corresponds to a different piecdafria-
tion that spreads over the network and all we observe aréntest
when particular sites mentioned particular informatiorhe Task
then is to infer the network where a directed e¢igev) means that

a sitev tends to repeat or to mention stories after agite

2.1 Problem statement

Given a hidden directed network*, we observe multiple cas-
cades spreading over it. As the cascageopagates over the net-
work, it leaves a trace in the form 6fi;, ¢;, ¢:)., which means that
cascade reached node; at timet, with a set of features or attri-
butes¢;. Note that we only observe the tinig when cascade
reached node but not how it reached the node Now, given such
traces of many different cascades, we aim to infer the umobede
directed networkG™, i.e., the network over which the cascades
originally propagated. We refer to the estimated versiothemet-
work asG'. We use the terrhit time ¢, to refer to the time when a
cascade hits (infects) a particular nadeMany cascades will not
hit all the nodes — if a node is not hit by a cascade, then = oc.
Thus, a cascade is fully specified by the vedtor [t1,...,t,]
of hit times, and the feature vectd = [¢1, ..., ¢,] describing
the properties of the contagion and the node (wheigthe num-
ber of nodes inZ). Note that the probability of propagation may
be a complicated function of the properties of the nodes,(agg,
gender) and the properties of the contagion itself (e.gdyt cat-
egory, price). One can use the feature ve@oto describe such
properties of individual nodes and contagions.

2.2 Model formulation
Suppose that for a fixed cascade= (t, ®), we know which

nodes influenced which other nodes. We assume that every node

v in a cascade is influenced by at most one ned& hus, the in-
fluence structure of a cascades given by a directed treg, which
we assume to be contained in the directed gr@phe., the graph
over which the cascade propagated. First, we will speciycts-
cade transmission modél.(u, v) that describes how likely is that
nodewu spreads the cascadeto nodev. We will then describe
the probabilityP(c|T") that the cascadepropagates in a particular
tree patterif’, where tred” simply specifies which nodes influence
which other nodes. Last, we will defif&(c|G), which is the prob-
ability that cascade occurs in a networks.

Cascade transmission modelWe build on the independent cas-
cade model [13] which posits that an infected node infeath @&
its neighbors independently with some chosen probabiktg.in
this model the time is modeled only implicitly through theoeps

of the propagation we fist extend the independent cascadelrmod
continuous time domain. We account for the fact that infaroma
can spread quickly over some edges while over others it niay ta
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Figure 2: (a) Diffusion network G. (b) A cascadec on nodesu, ..., us with infection times ¢,,, and most likely propagation tree

(black edges). As node:; does not have a parent, the-edge(m, u1) is picked. (c) The maximum directed spanning tree of a graph
is obtained by each node picking an incoming edge of maximumight.

much longer to propagate. Also note that cascades in sucldalmo Now that we specified the probabilit§. (u, v) that nodeu in-
are necessarily trees since if a nadgets infected multiple times  fluences node, we define the probability of observing cascade

knowing the node that infectedfirst is sufficient. propagating in a particular tree structdreas

First we define the probability of observing a particularczaie
¢ = (t,®) of hit times and features for a fixed propagation tree P(T) = H Fe(1,7),
T. Consider a single edde, v) € T'. Given the hit timegu, t. ). (L.7)€T
and (v, ty)e (tu < t,) Of nodesu andwv in cascade:, we aim to where the product is over the edges of the ffeeHere, the edges
estimate the probability?. (u, v) that a node: spreads the cascade  of the treeT” simply specify how the cascade spreads, i.e., every
to anodev (i.e. a node: influences/infects/transmits to a nogen node gets influenced by its parent.

the treel’. Formally, P.(u, v) specifies the conditional probability
of observing cascadespreading from node to nodeuv.

Influence can only propagate forward in time. Thug,,if> ¢,
we simply setP.(u,v) = 0. Generally the probability of propaga-
tion P.(u,v) between a pair of nodasandwv is decreasing in the
difference of their infection times, i.e., the farther gpartime the
two nodes get infected the less likely they are to infect orwlzer.
However, note that we can make the cascade transmissionl mode
P.(u,v) arbitrarily complicated as it can also depend on feature
vectorsg,, andg, that describe the properties of the contagion and

Cascade propagation modelWe just defined the probability of a
single cascade propagating in a particular tree pattéfn P(c|T").
Now, our aim is to computé(c|G), the probability that a cascade
coccurs in agrapli. Note that cascade is defined only by the node
infection times and the propagation trfEgwho-infected-whom) is
unknown. So, we combine the probabilities of individualgaga-
tion trees into a probability of a cascad®ccurring in a network
G. We do this by considering all possible propagation tfEeise.,

all possible ways in which cascadeould have spread oveér:

the properties of the nodes. For example, in a disease ptipag P(dG) = Z P(d|T)P(T|G) Z H P.(i,5)
scenariog could include information about the individual's socio- TeT(G) TET(G) (i,5)ET

economic status, commute patterns, disease history and 9t (1)
allows for much more realistic cascade transmission maakethe wherec is a cascade and(G) is the set of all the directed spa-

probability of infection depends on the parameters of tee@e  nning trees ort7. Basically, the graplir defines the skeleton over
and properties of the nodes. For simplicity, in the rest efdaper  which the cascades propagate ahdiefines a particular possible
and in all our experiments, we ignore the features and astheie  propagation. Since we do not know in which particular tretepa

the probability of transmission depends only on the timtedihce  the cascade really propagated, we consider all possibtegedion
between the node hit times = ¢, — t.. treesT” in 7(G). Thus, the sum oveF is a sum over all directed
Considering the model in a generative sense, the caseadehes  spanning trees iff (G). We assume that all propagation trees are a
nodew at timet., and we now need to generate the titpavhen priori equally likely, i.e.,P(T'|G) is the uniform distribution over
u spreads the cascade to nadeAs cascades generally do notin- || directed spanning trees.
fect all the nodes of the network, we need to explicitly mattiel We just computed the probability of a single cascadecurring
probability that the cascade stops. With probability— 3), the in G, and we now define the probability of a set of cascades
cascade stops, and never reachethust, = oo. With probabil- occurring inG simply as
ity 3, the cascade continues, and the hit titnés set tot,, + A,
whereA is the waiting time that passed between the hit times P(C|G) = H P(c|G), (2
and¢,. We consider two different models for the waiting time ceC
an exponential and a power-law model, each with paraneter where we assume conditional independence between caspaeies
R 1 the graphG.
P(A) e = andP(A) o Ao Network inference problem. Next, we define thaliffusion net-

work inference problemwhere we aim to find that solves the

We consider both the power-law and exponential waiting timoel- following optimization problem:

els since they have both been argued for in the literatur23326].

In the end, our algorithm does not depend on the particulaiceh G = argmax P(C|G),
of the waiting time distribution and more complicated fuons |GI<k
can easily be chosen [6]. Also, we interpset+ A = oo, i.e., if where the maximization is over all graplisof at mostk edges.

t, = oo, thent,, = oo with probability 1. We add the constraint on the number of edges fior two reasons.



First, the optimization problem without the constraint \ebhave
a trivial solution since the fully connected graph maxinsizee
above quantity. Second, since real graphs are sparse, weesk
for a sparse solution. We discuss how to choosater.

The above optimization problem seems wildly intractable. T
evaluate Eq. (2), we need to compute Eq. (1) for each cascade
i.e., the sum over all possible spanning tréeg he number of trees
can be super-exponential in the sizetvbut perhaps surprisingly,
this super-exponential sum can be performed in time polyabm
in the numbem of nodes in the grapl, by applying Kirchhoff's
matrix tree theorem [15]:

THEOREM1 (TUTTE (1948)). If we construct a matrixi such
thatam = Zwk_j ifi = j andam = —Wi,j if 4 75 j and ifAk_,,L
is the matrix created by removing any rédwand columnm from A
such thatk + m is an even number, then

det(Ax,m) = Z H Wi, j,

TeA (i,j)€T

(©)

whereT is each directed spanning tree it

In our case, we sab; ; to be simplyP.(i,j) and we compute
the product of the determinants |gf| matrices, one for each cas-

propagates via the network, as some is also pushed onto the ne
work by the mass media [12, 30] and thus a disconnected aascad
can be created. Similarly, in viral marketing, a person mas p
chase a product due to the influence of peers (i.e., netwéektpef
or for some other reason (e.g., seing a commercial on TV) [17]

In order to account for such phenomena when a cascade “jumps”
across the network, we introduce an additional nedthat repre-
sents an external source that can infecy nodew. We connect
the external influence souree (i.e., the mass media node) to ev-
ery other node; with ane-edge. And then every nodecan get
infected by the external souree with a very small probability.

Putting it all together, we include the additional noden every
cascade: and we set the probability of a cascade spreading from
m to any nodej in the cascade to P.(m, j) = . Given that we
are accounting for reasons other than the network influeoica f
node to get infected, we assume thatdkedges betweem and all
nodes in the cascadeexist also for the empty grapit. We now

expand Eq. (5) as
Z wc(i7j)7

(1,9)€ET

F.(G) = max
TET(G)

wherew.(i,j) = log P.(i,7) — loge is a non-negative weight

cade, which is exactly Equation 1. This means that instead of which can be interpreted as the improvement in log-likelthof

using super-exponential time, we are now able to evaluate2Eq
in time O(|C| - n*) (the time required to comput’| determi-
nants). However, this does not completely solve our prokiam
two reasons: First, while cubic time is a drastic improvenoser a
super-exponential computation, it is still too expensivetfie large
graphs that we want to consider. Second, we can use the adove r
sult only to evaluate the quality af particular graphG, while our
goal is to find thebestgraph. To do this, one would need to
search ovenll graphsG to find the best one. Again, as there is
a super-exponential number of graphs, this is practicatlyassi-
ble. One could propose some search heuristics, like hittghg,
however, due to the combinatorial nature of the likelihaaaktion,
such a procedure would likely be prone to local minima.

3. PROPOSED ALGORITHM

The diffusion network inference problem defined in the poasi
section does not allow for an efficient solution. We now ps®an
alternative formulation of the problem that is tractabletonpute
andto optimize.

3.1 An alternative formulation

For each cascade instead of considering every possible prop-
agation (spanning) treg, we consider only the most likely propa-
gation tre€Tl":

P(C|G) = max P(cT) =

CTET(G)

4
We then define the improvement of log-likelihood for cascade
under graphG over an empty grapk’:

F.(G) = log P(c|T) — log P(c|T). (5
(@) Fmax log (c|T) omex log (cT).  (5)

Note that maximizing Eq. (4) is equivalent to maximizing fbe
lowing objective function:

Fo(G) = > F.(G)
ceC

In reality, nodes may get infected for reasons other thanehgork
influence. For example, in online media, not all the inforiorat

edge(i, ) under the most likely spanning tréein G. This means
that the most likely propagation trég is simply themaximum
weight directed spanning trée graphG, where each edgg, j)
has weightw. (i, 7), andF.(G) is simply the sum of the weights of
edges irl". Figures 2(a) and 2(b) illustrate the notion of a cascade
on a directed graph, as well as the concept-efiges. Note that
since edgesi, j) wheret; > ¢; have weight O (i.e., they are not
present) and the node has only outgoing edges, for a fixed cas-
cadec, the collection of edges with positive weight forms a diegtt
acyclicgraph (DAG). Interestingly, for such a DAG, the maximum
weight directed spanning tree can be computed efficiently:

PROPOSITION 1. In a DAG G with vertex sef’” and nonne-
gative edge weights, the maximum weight directed spanning tree
can be found by choosing, for each nadan incoming edgéu, v)
with maximum weight(u, v).

PROOFE The score

S(T)= > w(i,j) = w(Parr(i),i)

(i,4)€T eV

of atreeT is the sum of the incoming edge weight$Parr (i), )
for each node, where Parr(i) is the parent of nodéin 7' (and
the root is handled appropriately). Now,

max w(Parr(i),1).

max S(T) = max Z w(i,j) = 2 pmax
(4,§)€T i€V
Latter equality follows from the fact that sineg is a DAG, the

maximization can be done independently for each node withou
creating any cycles. [J

This proposition is a special case of the more general maximu
spanning tree (MST) problem in directed graphs [7]. The impo
tant fact now is that we can find the best propagation frei@
time O(|G|) linear in the number of edges by simply selecting an
incoming edge of highest weight for each node (Figure 2(c)).

3.2 Efficient optimization

By constructionFc (K) = 0, i.e., the empty graph has score 0.
Also note thatF- is hon-negative and monotonic,



It can be seen that the objective functifa is monotonic, i.e.,
Feo(G) < Fe(G"), whenevelG C G'. Hence adding more edges

to G does not decrease the solution quality, and thus the coenplet

graph maximizesF. However, in practice, we are interested in
inferring sparsegraphs, that only contain a small numlieof rel-
evant edges. Thus we would like to solve

G" = argmax Fo (G).
IGl<k

(6)

Naively searching over alt edge graphs would take time expo-
nential ink, which is intractable. Moreover, finding the optimal
solution to Eq. (6) is NP-hard, so we cannot expect to find fite o
mal solution:

THEOREM 2. The diffusion network inference problem defined
by equation(6) is NP-hard.

PrROOF By reduction from the MAX%k-COVER problem [14].
In MAX- k-COVER, we are given a finite sét’, |IW| = n and a
collection of subset$, ..., S, C W. The function

Frre(A) = | Uica Si

counts the number of elements Bf covered by sets indexed by
A. Our goal is to pick a collection of subsetsA maximizing
Fne. We will produce a collection of. cascade€” over a graph
G such thatmax g|<, Fo(G) = max|aj<k Faro(A). GraphG
will be defined over the set of verticds = {1,...,m} U {r},
i.e., there is one vertex for each s&tand one extra vertex. For
each element € W we define a cascade which has time stamp
associated with all nodesc V' such thats € S;, time stampl for
noder andoo for all remaining nodes. Furthermore, we can choose
the transmission model such that(i,r) = 1 whenevers € S;
andw. (i, j') = 0 for all remaining edges&i’, j'), by choosing the
parameters, o and3 appropriately. Since a directed spanning tree
over a graphG can contain at most one edge incoming to nede
its weight will bel if G contains any edge from a node r where

s € S;, and0 and otherwise. Thus, a grajghof at mostk edges
corresponds to a feasible solutioh; to MAX-k-COVER where
we pick setsS; whenever edgéi,r) € G, and each solutiont
to MAX-k-COVER corresponds to a feasible soluti@n, of (6).
Furthermore, by constructioy;c(Ac) = Fo(G). Thus, if we
had an efficient algorithm for deciding whether there exasgsaph
G, |G| < k such thatFe (G) > ¢, we could use the algorithm to
decide whether there exists a solutidrto MAX-k-COVER with
value at least. [

While finding the optimal solution is hard, we will now showath
Fe satisfiessubmodularity a natural diminishing returns property,
which will allow us to efficiently find grovably near-optimako-
lution to this NP-hard problem.

A set functionF : 2" — R mapping subsets of a finite sBf
to the real numbers isubmodularif wheneverA C B C W and
s € W\B, itholds thatF'(AU{s})—F(A) > F(BU{s})—F(B),
i.e., addings to the set4 increases the score more than addirig
setB. We have the following result:

THEOREM 3. Let V be a set of nodes, and be a collection
of cascades hitting the nodds. ThenF¢(G) is a submodular
function F : 2" — R defined over subsetd C V x V of
directed edges.

PrRoOOF Fix a cascade, graphsz C G’ and an edge = (r, s)
not contained inG’. We will show thatF.(G U {e}) — F.(G) >
F.(G" U {e}) — F.(G"). Since nonnegative linear combinations
of submodular functions are submodular, the function(G) =

Algorithm 1 The NeTINF Algorithm
Require: C,k
G+ K;
forall c € C do
T. < dagtree(c);
while |G| < k do
forall (j,:) € C\G do
6]‘,2‘ =0, M]ﬂ' «— 0;
forall c: (j,i) € cdo
letw.(m, n) be the weight of m,n) in G U {(4,7)};
if we(j,4) > we(Parr,(i),1) then
6j,i = 6j,i + we(J, i) — we(Parr, (i),4);
Mj,i — Mj,i U {C};
(5%,1%) < argmax(; jyec\G 05,45
G+ GU{y",}
forall ¢ € Mj+ s+ do
Parr,(i*) < j*;
return G;

> ecc Fe(G) is submodular as well. Lew; ; be the weight of
edge(s, j) in G U {e}, andw; ; be the weight inG" U {e}. As
argued in Section 3.1, the maximum weight directed spantneey
for DAGs is obtained by assigning to each node the incoming ed
with maximum weight. Let(i, s) be the edge incoming at of
maximum weight inG, and(s’, s) the maximum weight incoming
edge inG’. SinceGG C G it holds thatw;,s < w}, ,. Furthermore,
wr,s = w;. .. Hence,

F(GU{(r,9))) - Fo(G) = max(wis, wrs) — s
> max(w;—/,s, w;,s) — w;’,s
= F.(G'U{(r,s)}) — F(G)),

proving submodularity of.. [

E]

Maximizing submodular functions in general is NP-hard [14]
commonly used heuristic is tligeedy algorithmwhich starts with
an empty graphi’, and iteratively, in step, adds the edge; which
maximizes the marginal gain:

e; = argmax Fo(Gi—1 U{e}) — Fo(Gi-1).
ecG\G;_1

@)

The algorithm stops once it has selecte@dges, and returns
the solutionG = {e1,...,ex}. The stopping criteria, i.e., value
of k, can be based on some threshold of the marginal gain, of the
number of estimated edges or another more sophisticataitsheu
tic. Considering the hardness of the problem, we might exhec
greedy algorithm to perform arbitrarily bad. However, wél a¢e
that this is not the case. A fundamental result of Nemhauser e
al. [27] proves that for monotonic submodular functiong, setG;
returned by the greedy algorithm obtains at least a contaiion
of (1—1/e) =~ 63% of the optimal value achievable usikgdges.

Moreover, we can acquire a tighhline bound on the solution
quality:

THEOREM4  ([21]). For a graphG, and each edge ¢ G,
letd. = Fo(G U {e}) — Fc(G). Letey,...ep be the sequence
with é. in decreasing order. Then,

o(@) < Fu(G
‘Iél‘aé)zF(G)_F(G)“‘

Thm. 4 computes how far a gives (obtained byanyalgorithm) is
from the unknown NP-hard to find optimum.
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Figure 3: Number of cascades per edge and cascade sizes for a
Forest Fire network (1,000 nodes, 1,477 edges) with forward
burning prob. 0.20, backward burning prob. 0.17 and expo-
nential transmission model with parametersa. = 1, 8 = 0.5.

Speeding-up NeTINF. We speed-up the algorithm by orders of
magnitude by considering two improvements:

e Localized updateConsider the edgg*, i*) selected by the
greedy algorithmat iterationn and the tree§ : (5*,i") €
T.. Now, fix an edge(j,i) ¢ G for which we know the
marginal gaing; ;, at iterationn and we need to estimate it
at iterationn 4+ 1. The value ofy; ; depends of cascades
for whichw.(j,7) > we.(Parr,(i),i). Then, ifi # i*, the
value of¢; ; at iterationn is the same as its value at iteration
n + 1, otherwise, ifi = ¢*, we only need to updaté; ;
revisiting cascades such that(j*,:*) € T. andw.(j,i) >
we(Parr, (1), 1) just before selecting;™, :*).

e Lazy evaluatiortan be used to drastically reduce the number
of evaluations of marginal gains(G U {e}) — F(G) [21].
This procedure relies on the submodularityref.

As we will show later, these two improvements decrease the ru
time by several order of magnitude without any loss in thetsmh
quality. We call the algorithm that implements the greedyethm
with the above speedups theN NF algorithm (Algorithm 1). Ad-
ditionally, NETINF lends itself to parallelization to tackle even big-
ger networks in shorter amounts of computation time.

4. EXPERIMENTAL EVALUATION

We first analyze the performance ofeENINF on synthetic and
real networks. We show that our algorithm outperforms aikgar
baseline and correctly discovers more than 90% of the edges.

4.1 Experiments on synthetic data

The goal of the experiments on synthetic data is to undedstan
how the underlying network structure and the propagatiodeho
(exponential vs. power-law) affect the performance of dgoa
rithm. In general, we proceed as follows: we generate a rr&two
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Figure 4: Score achieved by MTINF in comparison with the
online upper bound from Theorem 4. In practice NETINF finds
networks that are at 97% of NP-hard to compute optimal.

structure [5] {0.962, 0.107; 0.107, 0.962]) and a core-periphery net-
work [22] ([0.962, 0.535; 0.535, 0.107]). Notice that Forest Fire
generates a scale free network [4].

We then simulate cascades @il using the generative model de-
fined in Section 2.1 that is parameterizeddgywhich controls how
quickly a cascade spreads, afidthat controls how far a cascade
spreads. We pick cascade starting nodes uniformly at rarad@m
generate enough cascades so that 99% of the edd&s partici-
pate in at least one cascade.

For example, for the Forest Fire network on 1,000 nodes and
1,477 edges, we generated 834 cascades. The majority of edge
took part in 4 to 12 cascades and the cascade size distribigtio
llows a power law (Figure 3(b)). The average and median numbe
of cascades per edge are 9.1 and 8, respectively (Figure 3(a)

Baseline method. To infer a diffusion network’y, we consider
the following baseline method: For eaphssibleedge(u, v), we

computew(u,v) = > . Pe(u,v), i.e., overall how likely were
the cascades € C to propagate from: to v. Then we simply
pick the k edges(u, v) with the highest weightv(u, v) to obtain

G (Fig. 1(b)).

Solution quality. We evaluate the performance of th& NNF al-
gorithm in two different ways. First, we are interested inviguc-
cessful NETINF is at optimizing the objective function that is NP-
hard to optimize exactly. Using the online bound in Theoremvel
can assess at most how far from the unknown optimal thel NF
solution is.

Figure 4(a) plots the value of the objective function as afiom
of the number of edges i@ In red we plot the value achieved by
NETINF and in green the upper bound using Thm. 4. This tells us
that the value of the unknown optimal solution (that is NPdha
compute exactly) is somewhere between the red and greea.curv
Notice that the band between optimal and treT\\F is relatively
small. For example, at 2,000 edgesGf NETINF finds the solu-
tion that is least 97% of optimal for synthetic data. Morep@atso

G™, simulate a set of cascades and for each cascade, record th@otice a strong diminishing return effect, where the valti¢he

node hit timeg,,. Then, given the hit times, we try to recover the
networkG*.

For example, Fig. 1(a) shows a graph of 20 nodes and 23
edges. We generatetd cascades and recoveréti. A baseline
method (b) (described below) performed poorly while ourhodt
(c) almost recovered™ perfectly by making only two errors.

Experimental setup. We consider two models of directed real-
world networks, namely, the Forest Fire model [20] and the-Kr
necker Graphs model [19] to gener&té. For Kronecker graphs,
we consider three sets of parameters that produce netwaitkaw
very different structure: a random graph [8] (Kroneckerapageter
matrix [0.5, 0.5; 0.5, 0.5]), @ network with hierarchical community

objective function flattens out after about 1,000 edgess Means
that, in practice, very sparse solutions (almost tree-iifiision
graphs) already achieve very high values of the objectinetfan
close to the optimal.

Accuracy of NETINF. We also evaluate our approach by studying
how many edges inferred bye\| NFare actually present in the true
networkG*. We measure the precision and recall of our method.
For every value of (1 < k < n?) we generat&, on k edges by
using NETINF or the baseline method. We then compute precision
(what fraction of edges i/, is also present:*) and recall (what
fraction of edges of;* appears ir7;,). For smallk, we expect low
recall and high precision as we select the few edges thatevthar
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Figure 5. (a-c, e-g): Precision and recall for three 1024 noel Kronecker networks with exponential (Exp) and power law (R.)
transmission model. (d,h): Precision and recall for a 1,00@0de Forest Fire network with a power law transmission model NETINF
achieves break-even points of more than 0.9 regardless ofatpropagation model and underlying diffusion network strudure.

most confident in. A% increases, precision will generally start to Generally, the performance on the Forest Fire network ig a bi
drop but the recall will monotonically increase. lower than on the Kronecker graphs. However, it is important

Figure 5 shows the precision-recall curves cfMINF and the note that while these networks have very different glob&alvoek
baseline method on three different Kronecker graphs (nandh- structure (from hierarchical, random, scale free to corippery)
erarchical community structure and core-periphery stmggtwith the performance of NTINFis remarkably stable and does not seem
1024 nodes and two cascade transmission models. The cascadeto depend on the structure of the network we are trying ta iofe
were generated with an exponential transmission model avith the particular type of cascade transmission model.

1, a power law transmission model with = 2 and a value o s
ap th B Performance vs. cascade coveragituitively, the larger the num-

low enough to avoid generating too large cascadesffie.0.5 for ber of cascades that spread over a particular edge the @aisier

hierarchical 5 = 0.4 for random and3 = 0.1 for core-periphery). : g :
to identify it. In our experiments so far, we carefully gested a
0,
We generated between 2,000 and 4,000 cascades so that 99% Oelatively small number of cascades. Next, we examine h@wv th

the edges participated in at least one cascade. We chosadeasc performance of MTINF depends on the amount of available cas-

starting points uniformly at random. cade data. Fi
. . . Fig. 7(b) plots the performance &TINVF (break-even
First, we focus on Figures 5(a), 5(b) and 5(c) where we use the point) as a function of the available cascade data measorédti

Zﬁﬂ%@ig“ﬂ;ﬁgi@gig n&pn?netlylet’\)lv%t;eoﬂlla;:geobgsoilI:thl?:ee number of transmissions over all cascades, i:e 1 means that
networks. However ourpmethod erforrﬁs much.better with the the total number of transmission events (sum of cascads)sized
: ’ P for the experiment was equal to the number of edges‘inSmall

ZLelgliéesvuelpapso\l/Cé (J\Ie?éQZsoveecrisllll tg;‘i:f(ljﬁ%steés' ;?ésr;?er?r& values off3 produce larger cascades, increasing the difficulty of our
P y 9 oty problem. Note that HTINF requires a total number of transmis-

coscades Sice e Cascaes mean Mofee\dence 1 K2 on events between and mes th rumber of dges i 9
p : L ng Y 'successfully recover most of the edges6f.
where every edge off* participates in only a few cascades, we

can almost perfectly recover the underlying diffusion retaG™. Stopping criterion. In practice one does not know how long to run
Similarly, Figures 5(e), 5(f) and 5(g) show the performanoe the algorithm and how many edges to insert into the netwe@rk
the same three networks but using the power law transmissiatel. Given the results from Figure 4, we found the following hstici
The performance of the baseline now dramatically dropss & to give good results. We run thegtINF algorithm for & steps
due to the fact that the variance of power-law (and heavgdaiis- wherek is chosen such that the objective function is “close” to the
tributions in general) is much larger than the variance oéxuo- upper bound, i.efc(G) > x - OPT, where OPT is obtained using
nential distribution. Thus the diffusion network inferengroblem the online bound. In practice we use valueg:af range 0.8-0.9.

is much harder in this case. As the baseline pays high priegalu
the increase in variance with the break-even point droppeigw
0.1 the performance of BrINF remains stable.

We also examine the results on the Forest Fire network (Egfbid)
and 5(h)). Again, the performance of the baseline is veryidwe
NETINF achieves the break-even point at around 0.90.

Scalability. Figure 7(a) shows the average computation time per
edge added of our algorithm implemented with lazy evaluediod
localized update. We use a hierarchical Kronecker netwark a
an exponential transmission model with = 1 and 8 = 0.5.
Localized update speeds up the algorithm for an order of magn
tude (45<) and lazy evaluation further gives a factor of 6 improve-
ment. Thus, overall, we achieve two orders of magnitudedspgee
1The point at which recall is equal to precision. (280x), withoutanyloss in solution quality.
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4.2 Experiments on real data

Dataset description. We use more thai72 million news arti-
cles and blog posts frorh million online sources over a period of
one year from September 1 2008 till August 31 2h0Based on
this raw data, we use two different methodologies to traferin
mation on the Web. First, we use hyperlinks between blogspost
to trace the flow of information [23]. As the use of hyperlirtks
refer to the source of information is relatively rare (esakg in
mainstream media), we also use the MemeTracker [18] methodo
logy to extract more than 343 million short textual phradée(
“Joe, the plumber” or “lipstick on a pig”). Out of these, 8 lwh
distinct phrases appeared more than 10 times, with the ativel
number of mentions of over 150 million. We cluster the phsase
to aggregate different textual variants of the same phri8e We
then consider each phrase cluster as a separate cascidee all
documents are time stamped, a cascadesimply a set of time-
stamps when websites first mentioned a phrase in the phrastercl

c. S0, we observe the times when sites mention a particulaisphr
but not where they copied that phrase from. For the expetsnen

Since news media articles rarely use hyperlinks to refentan-
other, the network is somewhat biased towards web blog® (blu
nodes). There are several interesting patterns. Firsicenbbw
three main clusters emerge: on the left side of the networkame
see blogs and news media sites related to politics, at the tog,

we have blogs devoted to gossip, celebrity news or ententih
and on the right bottom, we can distinguish blogs and newsaned
sites that deal with technological news. As Huffington Pogt a
Political Carnival play the central role on the politicatisiof the
network, mainstream media sites like Washington Post, daiar
and professional blog Salon.com play the role of connedbers
tween the different parts of the network. The celebrity gopart

of the network is dominated by the blog Gawker and technology
news gather around blogs Gizmodo and Engadget, with CNet and
TechChuck establishing the connection to the rest of theor&t

For reasons of space, we refer the reader to the supportibg we
site [1] for additional graphs.

Insights into the diffusion on the web.The inferred diffusion net-
works also allow for analysis of the global structure of imf@tion

here we use the top 1,000 media sites and blogs with the targes Propagation on the Web. For this analysis, we use the Merkéra

number of documents. We then consider the largest 5,00@dasc
(phrase clusters) and for each website we record the time whe
they first mention a phrase in the particular phrase clustkte
that cascades in general do not spread over all the siteshwhi
methodology can successfully handle.

Visualization of diffusion networks. First we examine the struc-
ture of the inferred network. Figure 6(a) shows the largesi- ¢
nected component of the diffusion network after 100 edge® ha
been chosen. The size of the nodes is proportional to the @umb
of articles on the site and the width of the edge is propodiida
the probability of influence, i.e., stronger edges have érigtidth.
Here we used the hyperlinks to trace the spread of informatio

’Data available ot t p: / / nenet r acker . organdht t p: //
snap. st anf ord. edu/ neti nf

phrase clusters as cascades and analyze the structurardetined
information diffusion network.

Figure 6(b) investigates the number of links in the infemet:
work that point between different types of sites. Here wit spé
sites into mainstream media and blogs. Notice that most ef th
links point from news media to blogs, which says that moshef t
time information propagates from the mainstream mediadgl
Then notice how at first many media-to-media links are chasgn
in later iterations the increase of these links starts ter slown.
This means that media-to-media links tend to be the strorages
NETINF picks them early. The opposite seems to occur in case of
blog-to-blog links where relatively few are chosen first latier the
algorithm picks more of them. Lastly, links capturing théuence
of blogs on mainstream media are the rarest and weakest. This
suggests that most information travels from mass mediaoigsbl



In Figure 6(c), we investigate the median time difference be
tween mentions of different types of sites. For every edgthef
inferred diffusion network, we compute the median time mekfor
the information to spread from the source to the destinatmite.
Again, we distinguish the mainstream media sites and blbdigs.
tice that media sites are quick to infect one another or eveaget
infected from blogs. However, blogs tend to be much slower in
propagating information. It takes a relatively long time floeem to
get “infected” with information regardless whether theoimhation
comes from the mainstream media or the blogosphere.

Solution quality. Similarly as with synthetic data, in Figure 4(b)
we also investigate the value of the objective function asdare

it to the online bound. Notice that the bound is almost asttigh
as in the case of synthetic networks, finding the solution ifha
least 84% of optimal and both curves are similar in shape ¢o th
synthetic case value. Again, as in the synthetic case, the vhthe
objective function quickly flattens out which means that oereds

a relatively few number of edges to capture most of the inédiom
flow on the Web.

Accuracy on real data. As there is not objective ground truth net-
work on real data, we perform the following experiment. Weate

a network where there is an edge, v) if a webpage on a site
linked to a page on a site. we take the top 500 media sites and
blogs in terms of number of hyperlinks and the top 4,000 hygder

in terms of number of posts links. First, we consider thislees t
ground truth networkG™. We use the hyperlink cascades to infer
the network and evaluate how many edgesNNF got right.
Figure 8(a) shows the performance oENNF and the baseline.
Notice that the baseline method achieves the break-evert pbi
0.34, while our method performs better with a break-eventpaf
0.44. Second, we try a considerably harder problem, we wse th
cascades based on the MemeTracker phrase clusters taGhfer
Figure 8(b) shows the performance oENNF and the baseline.
The baseline method has a break-even point of 0.17 e i
achieves a break-even point of 0.28. To have a fair compariso
with the synthetic cases, notice that the exponential inésgson
model is a simplistic assumption for our real dataset, aadINF
can get additional mileage with respect to the baseline sihga
more complex transmission model.

5. RELATED WORK

There are several lines of work we build upon. Although the
information diffusion in on-line settings has received siderable
attention [2, 11, 16, 17, 23, 24, 25], only a few studies wédile a
to study the actual shapes of cascades [23, 25]. The prollem o
ferring links of diffusion was first studied by Adar and Adanf],
who formulated it as a supervised classification problem el
Support Vector Machines combined with rich textual feagut@
predict the occurrence of individual links. Although riatxtual
features are used, links are predicted independently arsithieir
approach is similar to our baseline method in the sensetthitis
a threshold (i.e., hyperplane in case of SVMs) and predictii-
dually the most probable links.

Network structure learning has been considered for estigat
the dependency structure of probabilistic graphical mofi| 10]
and for estimating epidemiological networks [29]. In botses,
the problem is formulated in a probabilistic framework. Hwer,
since the problem is intractable, heuristic greedy hilibing or
stochastic search that offer no performance guaranteewsesdly
used in practice. In contrast, our work provides a novel fdation
and atractablesolution together with an approximation guarantee.

Last, althoughsubmodularmaximization has been previously

" LE and LU
LU

No speed ups -

Break-even point

Time per edge added (ms)

o — - -
500 1000 1500 2000 2500 3000
Problem size (number of edges)

(a) Scalability

0 2 4 6 8 10 12 14 16
Total number of transmissions

(b) Amount of cascade data

Figure 7: (a): Average time per edge added by our algorithm
implemented with lazy evaluation (LE) and localized update
(LU). (b): Performance of NETINF as a function of the amount
of cascade data. On average & |NF requires about two prop-
agation events per edge of the original network in order to ré-
ably recover the true network structure.

considered for sensor placement [21] and finding influenicers
ral marketing [13], to the best of our knowledge, the presesrk
is the first that considers submodular function maximizatiothe
context of network structure learning.

6. CONCLUSIONS

We have investigated the problem of tracing paths of diffusi
and influence. We formalized the problem and developed a-scal
ble algorithm, NETINF, to infer networks of influence and diffu-
sion. First, we defined a generative model of cascades ameesho
that choosing the best set bfedges maximizing the likelihood of
the data is NP-hard. By exploiting the submodularity of obf o
jective function, we developed & INF, an efficient algorithm for
inferring a near-optimal set df directed edges. By exploiting lo-
calized updates and lazy evaluation, our algorithm is abkxale
to very large real data sets.

We evaluated our algorithm on synthetic cascades samped fr
our generative model, and showed th&mMiNF is able to accurately
recover the underlying network from a relatively small n@mnbf
samples. In our experiments,eNINF drastically outperformed a
naive maximum weight baseline heuristic.

Most importantly, our algorithm allows us to study propestdf
real networks. We evaluatedeNINF on a large real data set of
memes propagating across news websites and blogs. We foaind t
the inferred network exhibits a core-periphery structuinwmass
media influencing most of the blogosphere. Clusters of sifesed
to similar topics emerge (politics, gossip, technologg,)etand a
few sites with social capital interconnect these clustéosving a
potential diffusion of information among sites in diffeteusters.

There are several interesting directions for future workréHve
only used time difference to infer edges and thus it wouldrbe i
teresting to utilize more informative features (e.g., t@ktcontent
of postings etc.) to more accurately estimate the influenclegbi-
lities. Moreover, our work considers static propagatiotwoeks,
however real influence networks are dynamic and thus it wbald
interesting to relax this assumption. Last, there are mahgro
domains where our methodology could be useful: inferririgrin
action networks in systems biology (protein-protein andega-
teraction networks), neuroscience (inferring physicalr@ctions
between neurons) and epidemiology.

We believe that our results provide a promising step towards
derstanding complex processes on networks based on jmdrsie-
vations.
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