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Optimal Scaling for Various
Metropolis–Hastings Algorithms
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Abstract. We review and extend results related to optimal scaling of
Metropolis–Hastings algorithms. We present various theoretical results
for the high-dimensional limit. We also present simulation studies which
confirm the theoretical results in finite-dimensional contexts.
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1. INTRODUCTION

Metropolis–Hastings algorithms are an important
class of Markov chain Monte Carlo (MCMC) algo-
rithms [see, e.g., Smith and Roberts (1993), Tierney
(1994) and Gilks, Richardson and Spiegelhalter
(1996)]. Given essentially any probability distri-
bution (the “target distribution”), these algorithms
provide a way to generate a Markov chain X0�X1� � � �
having the target distribution as a stationary
distribution.
Specifically, suppose that the target distribution

has density π (usually with respect to Lebesgue
measure). Then, given Xn, a “proposed value” Yn+1
is generated from some prespecified density q�Xn�y�
and is then accepted with probability α�Xn�Yn+1�,
given by

α�x�y�

=

min

{
π�y�
π�x�

q�y�x�
q�x�y� �1

}
� π�x�q�x�y� > 0,

1� π�x�q�x�y� = 0.

(1)

If the proposed value is accepted, we set Xn+1 =
Yn+1; otherwise, we set Xn+1 = Xn. The function
α�x�y� above is chosen precisely to ensure that the
Markov chain X0�X1� � � � is reversible with respect to
the target density π�y�, so that the target density
is stationary for the chain.
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In applying Metropolis–Hastings algorithms, it is
necessary to choose the proposal density q�x�y�.
Typically, q is chosen from some family of distri-
butions, for example, normal distributions centered
at x. There is then a need to select the “scaling” of
the proposal density (e.g., the variance of the nor-
mal distributions) in order to have some level of
optimality in the performance of the algorithm.
An important special case of the Metropolis–

Hastings method is the symmetric random-walk
Metropolis (RWM) algorithm. In this case, we
take the Markov chain described by q alone to
be a simple symmetric random walk, so that
q�x�y� = q�y − x� and the single-argument q den-
sity (sometimes called the increment density) is
a symmetric function about 0. In this case, the
acceptance probability in (1) simplifies to

α�x�y� = min
{
1�

π�y�
π�x�

}
�

1.1 A First Example

A simple example illustrates the issues involved.
Suppose the target π�y� is the standard normal den-
sity. Suppose also that the proposal density q�x�y�
is taken to be the normal density N�x�σ2�, where
σ is to be chosen. That is, if Xn = x, then we
chooseYn+1 ∼ N�x�σ2� and setXn+1 to eitherYn+1
[with probability α�x�y�] or Xn [with probability
1 − α�x�y�], as above.
It is intuitively clear that we can make the algo-

rithm arbitrarily poor by making σ either very
small or very large. For extremely small σ , the
algorithm will propose small jumps. These will
almost all be accepted (since α will be approxi-
mately 1, because of the continuity of π and q).
However, the size of the jumps is too small for the
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Fig. 1. Standard normal target density with proposal distribu-
tions for a normal proposal random walk Metropolis algorithm
with three alternative proposal scalings. The alternative propos-
als are all centered about the current point x = −1 and are shown
using dotted lines.

algorithm to explore the space rapidly, and the algo-
rithm will therefore take a long time to converge to
its stationary distribution. On the other hand, if σ
is taken to be extremely large, the algorithm will
nearly always propose large jumps to regions where
π is extremely small. It will therefore reject most
of its proposed moves and hence stay fixed for large
numbers of iterations. It seems reasonable that
there exist “good” values for σ , between these two
extremes, where the algorithm performs optimally.
This is illustrated by simulation in Figure 1.
Figure 2 shows trace plots giving examples of all

three types of behavior: a situation where the pro-
posal variance is too high so the chain gets stuck in
different regions of the space, a situation where the
proposal variance is too low so that the chain crawls
to stationarity and a case where the proposal vari-
ance is tuned appropriately (using Theorem 1 below)
and the chain converges at a reasonable rate.

1.2 Efficiency of Markov Chains and
Related Concepts

To compare different implementations of MCMC,
we require some notion of efficiency of Markov
chains to guide us. For an arbitrary square-
integrable function g, we define its integrated
autocorrelation time by

τg = 1 + 2
∞∑
i=1

Corr�g�X0�� g�Xi���

where X0 is assumed to be distributed according
to π. If a central limit theorem for X and g exists,
then the variance of the estimator

�n
i=1 g�Xi�/n for

estimating E�g�X�� is approximately Varπ�g�X��×
τg/n. This suggests that the efficiency of Markov
chains can be compared by comparing the reciprocal
of their integrated autocorrelation times, that is,

eg�σ� = (
Varπ�g�X�� τg

)−1

=
(
lim
n→∞nVar

(�n
i=1 g�Xi�

n

))−1

�
(2)

However, this measure of efficiency is highly
dependent on the function g chosen. Thus, for two
different Markov chains, different functions g could
order their efficiency differently. Where specific
interest is in a particular function g� eg�σ� is a sen-
sible criterion to be using, but where interest is in
a whole collection of functionals of the target distri-
bution (perhaps the cdf of a component of interest
for example), its use is more problematic.
We shall see later in Section 2.2 that, in the

high-dimensional limit, at least for algorithms
which “behave like diffusion processes,” all effi-
ciency measures eg are virtually equivalent. In
such cases, we can produce a unique limiting effi-
ciency criterion. We shall use this criterion to define
a function-independent notion of efficiency.
It will turn out that a quantity related to effi-

ciency is the algorithm’s acceptance rate, that is,
the probability in stationarity that the chain’s pro-
posed move is accepted. Alternatively, by the ergodic
theorem, the acceptance rate equals the long-term
proportion of proposed moves accepted by the chain:

a =
∫
α�x�y�π�x�q�x�y�dxdy

= lim
n→∞n−1#
accepted moves��

(3)

the latter identity indicating a sensible way to esti-
mate a without extra computational effort.

1.3 Goal of This Paper

The goal of this paper is to review and further
develop guidelines for choosing good values of σ in
situations such as those in Section 1.1, especially
when the dimension of the space is large. The guide-
lines we describe are in terms of the asymptotic
overall acceptance rate of the chain, which makes
them easily implementable. Much, but not all, of
what follows is a synthesis of Roberts, Gelman
and Gilks (1997), Roberts (1998), Roberts and
Rosenthal (1998) and Breyer and Roberts (2000).
Extensions to consider heterogeneity in scale are
also given.
Our results provide theoretical justification for

a commonly used strategy for implementing the
multivariate random-walk Metropolis algorithm,
which dates back at least as far as Tierney (1994).
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Fig. 2. Simple Metropolis algorithm with (a) too-large variance (left plots), (b) too-small variance (middle) and (c) appropriate variance
(right). Trace plots (top) and autocorrelation plots (below) are shown for each case.

The strategy involves estimating the correlation
structure of the target distribution, either empiri-
cally based on a pilot sample of MCMC output or
perhaps numerically from curvature calculations
on the target density itself, and using a proposal
distribution for the random walk algorithm to
be a scalar multiple of the estimated correlation
matrix. In the Gaussian case, if the correlation
structure is accurately estimated, then scaling the
proposal in each direction proportional to the target
scaling can be shown to optimize the algorithm’s
efficiency.
With knowledge of such optimal scaling prop-

erties, the applied user of Metropolis–Hastings
algorithms can tune “their” proposal variances by
running various versions of the algorithm, with
variance at the appropriate level [e.g., O�d−1� or
O�d−1/3�, say], and making finer adjustments to get
the approximate acceptance rate close to optimal.

Thus, optimal scaling results are of importance
in the practical implementation of Metropolis–
Hastings algorithms.

1.4 Outline of This Paper

In Section 2, we shall review the results of
Roberts, Gelman and Gilks (1997) for random-walk
Metropolis (RWM) algorithms with target distribu-
tion consisting of approximately i.i.d. components.
They showed that optimality is achieved if the
variance of the proposal distribution is O�d−1�
and the overall acceptance rate (i.e., the long-run
expected proportion of accepted moves) is close to
0.234. In Section 3, we review the results of Roberts
(1998), who showed that the same acceptance rate
is approximately optimal for a quite different class
of discrete RWM algorithms.
In Section 4, we consider the Metropolis-

adjusted Langevin (MALA) algorithms, which
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are Metropolis–Hastings algorithms whose pro-
posal distributions make clever use of the gradient
of the target density. We review results of Roberts
and Rosenthal (1998), who proved that, for target
distributions of the form (5), optimality is achieved
if the variance of the proposal distribution is
O�d−1/3� and we have an overall acceptance rate
close to 0�574. That is, MALA algorithms have a
larger optimal proposal variance and a larger opti-
mal acceptance rate. This demonstrates that MALA
algorithms asymptotically mix considerably faster
than do RWM algorithms.
In Section 5, we shall review the results of Breyer

and Roberts (2000), who showed that the optimal
acceptance rate for the random-walk Metropolis
algorithm is again optimal for a class of Markov
random-field models, but only when the local corre-
lations are small enough to avoid phase-transition
behavior.
In Section 6, we extend some of the above results

to cases other than target distributions of the
form (5). In particular, we consider the case where
the target distribution consists of components which
each have different scaling Ci. Now, if the Ci values
are known, then it is best to scale the proposal dis-
tribution components also proportional to Ci; that
way, the resulting chain corresponds precisely to
the previous case where all components are iden-
tical. However, if the quantities Ci are unknown
and the proposal scaling is taken to be the same in
each component, then we prove the following. Once
again, the optimal acceptance rate is close to 0.234.
However, in this case, the algorithm’s asymptotic
efficiency is multiplied by a factor E�Ci�2/E�C2

i �
compared to what it could have been with differ-
ent proposal distribution scaling in each compo-
nent. Since we always have E�Ci�2/E�C2

i � < 1 for
nonconstant 
Ci�, this shows that the RWM algo-
rithm becomes less efficient when the components
of the target distribution have significantly differ-
ent scalings. For MALA algorithms, we show that
this effect is even stronger, depending instead on
the sixth moments of the target component scal-
ings 
Ci�. Simulations are presented which confirm
our theoretical results.
In Section 7, we consider various examples

related to our theorems. In some cases, the exam-
ples fit in well with our theorems, and we provide
simulations to illustrate this. In other cases, the
examples fall outside our theoretical results and
exhibit different behavior, as we describe.

2. PROPOSAL VARIANCE OF
CONTINUOUS i.i.d. RWM

Suppose we are given a density π with respect
to Lebesgue measure on Rd and a class of sym-

metric proposal increment densities for the RWM
algorithm given by

qσ�x� = σ−dq�x/σ��(4)

where q is some fixed density and where σ > 0
denotes some measure of dispersion (typically the
standard deviation) of the distribution with den-
sity qσ . Thus, from a random variable Z with
density q, we can produce one with density qσ
as Zσ = σZ. As already noted, we can make the
Metropolis–Hastings algorithm inefficient by tak-
ing σ either very small or very large, and our goal
is to determine optimal choices of σ .
For ease of analysis, we here let π have the simple

product form

π�x� =
d∏
i=1

f�xi�(5)

and suppose that the proposal is of the form

qσ�x�dx ∼ N�0� Idσ2
d��(6)

a normal distribution with mean 0 and variance σ2
d

times the identity matrix. Our goal is to character-
ize the optimal values of σ2

d in a practically useful
way.
We shall assume that there exists a positive con-

stant � such that

σ2
d = �2/d�(7)

Indeed, if the variance is larger than O�d−1�, then
the acceptance rate of the algorithm converges to
0 too rapidly, whereas for smaller order scalings,
the jumps of the algorithm (which are almost all
accepted) are too small. That is, it can be shown
that taking σ2

d to be O�d−1� is optimal. Our goal is
then to optimize the choice of � in (7) above.
For fixed d, the algorithm involves d components,

X�1�� � � � �X�d�, say, which are constantly interacting
with each other. Thus, there is no reason to think
that any proper subset of the d components should
itself form a Markov chain. However, for target den-
sities of the form (5), each component acts like an
independent Markov chain as d → ∞. Therefore,
by considering any one component (say X�1�), by
independence this gives us information about the
behavior of any finite collection of the components
of interest. For simplicity, therefore, we shall write
all our results in terms of convergence of single
components.
Note that, when we consider dependent densities

in Section 5, asymptotic independence of the con-
stituent components is not achieved; therefore, to
consider the limiting behavior, we need to look at
a genuinely infinite-dimensional limit process. As a
result of this, we refrain from a formal statement of
that result.
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2.1 RWM Algorithm as d→∞
For each component, since we are making steps of

decreasing size according to (7) as d → ∞, any indi-
vidual component’s movement will grind to a halt
unless we somehow speed up time to allow steps of
the algorithm to happen more quickly. We do this
by stipulating that the algorithm is updated every
d−1 time units. As d → ∞, therefore, the algorithm
makes smaller jumps more and more frequently,
and its limit needs to be described as a continuous-
time stochastic process. Since its jumps get smaller
and smaller, the limiting trajectory will resemble a
continuous sample path, and, as we shall see, it will
be a diffusion process.
Let the RWM chain on Rd be denoted 
X�1�

n � � � � �

X
�d�
n � and consider the related one-dimensional pro-

cess given by

Zd
t = X

�1�
�td�(8)

where �· denotes the integer part function. That is,
Zd is a speeded-up continuous-time version of the
first coordinate of the original algorithm, parame-
terized to make jumps [of size O�σd� = O�d−1/2�,
by (7)] every d−1 time units. The process Zd is not
itself Markovian, since it only considers the first
component of a d-dimensional chain. However, in
the limit as d goes to ∞, the process Zd converges
to a Markovian limit, as we now describe.
We require a number of smoothness conditions on

the density f in (5). The details of sufficient condi-
tions appear in Roberts, Gelman and Gilks (1997),
although these conditions can be weakened also.
The essential requirements are that log f is con-
tinuously differentiable and that

I ≡ Ef

[(
f′�X�
f�X�

)2]
< ∞�(9)

We denote weak convergence by ⇒, let Bt be
standard Brownian motion and write ��z� =
�1/√2π� ∫ z−∞ e−s2/2 ds for the cumulative distribu-
tion function of a standard normal distribution. The
following result is taken from Roberts, Gelman and
Gilks (1997).

Theorem 1. Consider the RWM 
X�1�
n � � � � �X

�d�
n �

on Rd. Define the process Zd
t by �8�. Suppose that π

and q are given by �5� and �6�, respectively, with σ2

given by �7�. Under the above regularity conditions
on f,

Zd ⇒ Z�(10)

where Z is a diffusion process which satisfies the
stochastic differential equation

dZt = h���1/2dBt + h���∇ log f�Zt�
2

dt�(11)

with

h��� = �2 × 2�
(

−
√
I�

2

)
�= �2 × AI���(12)

and I given by �9�. Here the acceptance rate a =
AI��� = 2��−√

I�/2�. The speed of the limiting dif-
fusion, as a function of this acceptance rate, is pro-
portional to

AI���
[
�−1

(
AI���
2

)]2
�(13)

The scaling which gives rise to the optimal limiting
speed of the diffusion �and hence the optimal asymp-
totic efficiency of the algorithm� is given by

�opt
�= 2�38
I1/2

�

and the corresponding optimal acceptance rate is

AI��opt� �= 0�234�

For any fixed function g, the optimal asymptotic effi-
ciency eg �as given in �2� is proportional to 1/d.

This theorem thus says that, for RWM algorithms
on target densities of the form

�n
i=1 f�xi�, the effi-

ciency of the algorithm as a function of its asymp-
totic acceptance rate can be explicitly described and
optimized. In particular, acceptance rates approx-
imately equal to 0.234 lead to greatest efficiency
of the algorithm. Since the process Zd had time
scaled by a factor of d, the theorem also says that
the convergence time of the algorithm grows with
dimension like O�d� [or, equivalently, the efficiency
is O�1/d�]. Hence, if the computation time for com-
pleting each iteration of the algorithm grows with d
(which appears likely for most examples), then the
overall complexity of the algorithm is O�d2�.
The quantity I, which is the variance of the

derivative of the log density of f, can be interpreted
as a measure of “roughness” of the target distribu-
tion. It measures local variation in f rather than
any global scale property. For Gaussian f, I is the
reciprocal of the variance of the density f, so in this
case (12) reduces to

h��� = �2 × 2�
(
−�/2

√
Var�f�

)
�

The first graph in Figure 3 shows the function h
of Theorem 1, as a function of �, for fixed I. Dif-
ferent I values will distort the curve, causing its
maximum to appear to the left or right for lower or
higher values of I, respectively. The second graph
shows h��� as a function of A���, specifically as the
function a �→ aA−1

I �a�2 = a��−1�a2 �2 × 4/I. Note
that the shape of this second curve is independent
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Fig. 3. Efficiency of RWM as a function of � (top) and of accep-
tance rate (bottom), in the infinite-dimensional limit. In this case,
I = 1.

of I and hence of f, apart from the global multiplica-
tive factor of I−1. Hence, the “optimal” acceptance
rate is approximately 2��−ηopt/2� = 0�234. Since
the constant 4/I plays no role in the optimization of
efficiency, we shall omit it when talking about the
algorithm’s relative efficiency.

Remark. It must be stressed that Theorem 1
is an asymptotic result, valid for large d. In fact,
the “appropriate” scaling in Figure 2(c), which
minimizes the first-order autocorrelation of the
algorithm, achieves acceptance rate 0�44; the
asymptotics do not directly apply since d = 1
there. However, even in five dimensions, the opti-
mal acceptance rate is so close to 0�234 as to
not matter at all in practice. This can be seen
in Figure 4, which is computed using the crite-
rion of minimizing the first-order autocorrelation
of the identity function for the algorithm on stan-
dard Gaussian densities. These data were taken
from a simulation study which was first reported in
Gelman, Roberts and Gilks (1996).

One interpretation of the efficiency curve, the sec-
ond plot in Figure 3, is as follows. The number of
iterations needed to reach a prescribed accuracy
in estimating any function is proportional to the
inverse of this efficiency. As a result, an algorithm
with say 50% of the optimal efficiency would need
to be run for twice as long to obtain the same accu-
racy of results. On the other hand, the importance
of the precise optimal acceptance rate should not
be overstated. The relative efficiency curve given in
Figure 3 is relatively flat around 0�234, and any
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Fig. 4. Optimal scaling as a function of acceptance rate, using
the minimum autocorrelation criterion, as dimension increases
for the case of Gaussian target densities. This analysis comes from
a simulation study on standard Gaussian target densities.

algorithm with acceptance rate between say 0�15
and 0�5 will be at least 80% efficient. It is therefore
of little value to finely tune algorithms to the exact
optimal values.
It is likely that the assumption of second-order

differentiability could be relaxed to some extent,
while leaving the asymptotics of Theorem 1 intact.
On the other hand, the asymptotics of Theorem 1
may be completely altered if f is allowed to actually
be discontinuous. For example, let f be the indica-
tor function of �0�1. Then it is fairly straightfor-
ward to show that any scaling of the form (7) for any
� > 0 will lead to acceptance rates converging to zero
(in fact, exponentially quickly). In this case, optimal
scaling will have to scale the jumps in each dimen-
sion by a term which converges to zero quicker than
d−1/2. Such questions are currently being investi-
gated by Roberts and Yuen (2001); initial investiga-
tions suggest that the correct scaling in this case
is σ2 = �2/d2, with an optimal acceptance rate of
approximately 0�13.
Theorem 1 applies only to the special case of a

density of the form
�d

i=1 f�xi�, that is, correspond-
ing to i.i.d. components. Minor generalizations are
possible; for example, it suffices to have a density
of the form

�d
i=1 fi�xi� where fi → f [see Roberts,

Gelman and Gilks (1997)]. However, it is reasonable
to ask what happens if the different components are
not identically distributed or are not independent.
Such issues are examined in subsequent sections.
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2.2 Assessing Efficiency of Markov Chains

Now, as already discussed in Section 1.2, the
efficiency eg�σ� of a Markov chain can depend on
the function g for which we are trying to obtain
Monte Carlo estimates. Therefore, we cannot rely
on integrated autocorrelation times for some par-
ticular function g to provide unambiguous criteria
by which to assess efficiency.
However, if we look at high-dimensional problems

in situations where the algorithm can be shown to
converge to a diffusion process as in Theorem 1, it
does not matter which function g we choose, and
all functions lead to essentially the same notion of
efficiency.
Indeed, suppose we let g be a function of the

first variable X�1� of the chain. Recall that, for esti-
mation of π�g� �= ∫

g�x�π�x�dx for a function g
using (4), a natural measure of efficiency is the
inverse autocorrelation time formula (2). Define also

e
�∞�
g ��� =

(
lim
T→∞

TVar

(∫ T
t=0 g�Zt�

T

))−1

(14)

and the corresponding quantity for the standard
Langevin diffusion

eLg =
(
lim
T→∞

TVar

(∫ T
t=0 g�Lt�

T

))−1

�(15)

Now from (14) it is easy to see that e�∞�
g ��� = h���eLg .

Furthermore, from (2), for large d we can write

e
�d�
g ��d−1/2� =

(
lim
T→∞

�Td�Var
(��Td�

i=1 g
(
X

�1�
i

)
�Td�

))−1

=
(
lim
T→∞

�Td�Var
(��Td�

i=1 g�Zd
i/d�

�Td�
))−1

≈
(
lim
T→∞

�Td�Var
(∫ T

0 g�Zs�ds
T

))−1

≈ d−1e
�∞�
g ����

(16)

so that

lim
d→∞

de
�d�
g ��d−1/2� = e

�∞�
g ��� = h���eLg �(17)

Since the only term on the right-hand side which
depends on our scaling parameter � is h�·�, which
is independent of the function of interest g, it fol-
lows that the corresponding optimization problem
is independent of g as well. That is why Theorem
1 is useful regardless of the function g under
investigation.
Note also that, for a diffusion process satisfying

(11), the speed measure h��� can be understood in
terms of simple autocorrelations of an arbitrary

function g. Indeed, it is easily demonstrated that,
for small ε > 0, there is a positive constant Bπ�g

which depends on the target density π and function
of interest g, such that

Corr�g�Zε�� g�Z0�� ∼ 1 − Bπ�gεh����(18)

Hence, maximizing h is equivalent to minimizing
Corr�g�Zε�� g�Z0��. For computational reasons, it is
most convenient to just estimate single autocorrela-
tions ρK of order K > 0 for some chosen function(s)
g. We shall also translate our results in terms pro-
portional to the number of iterations needed to esti-
mate g to a desired accuracy, by defining

convergence time �= −K

log�ρK� �

3. RWM IN A DISCRETE STATE SPACE

Theorem 1 says that, in the limit as d → ∞,
certain RWM algorithms on continuous state space
problems look like diffusion processes, and diffusion
processes only make sense on a continuous state
space. Hence, we might expect different asymptotic
behavior for discrete state space problems. To inves-
tigate this, we consider the following discrete prob-
lem, which can be thought of as an analog of the
continuous state space problem of Section 2.
Let π� 
0�1�d → �0�1 be the product measure

of a collection of d independent random variables
each taking the value 0 with probability p, or 1 with
probability 1 − p. Thus, π is a discrete distribution
on the vertices of a d-dimensional hypercube given
by

π�i1� i2� � � � � id� = p�
j� ij=1���1 − p��
j� ij=0���(19)

Assume without loss of generality that p < 1/2.
We shall consider the following random scan ver-

sion of the RWM algorithm, for which we can find
an explicit solution. Suppose that, at each iteration,
the algorithm picks r sites uniformly at random,
S = 
j1� j2� � � � � jr�, say. The proposed move is then
to change the value at each state in S and to leave
all states in 
1� � � � � d�\S unaltered. From a cur-
rent state x, then, the algorithm proposes a move
to state y with yj = xj for j /∈ S and yj = 1−xj for
j ∈ S. The acceptance rate a is given by the usual
α�x�y� = 1 ∧ �π�y�/π�x��.
In this context, the notion of scaling needs to

be modified: the number of sites r in S takes the
place of variance in this situation. Clearly, the opti-
mal choice of r will depend heavily on p. For p
close to 1/2, it will be possible to propose updates of
large numbers of components without changing the
value of π drastically. These moves will therefore
be accepted with reasonable probability, and so the
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optimal value of r is likely to be large. Conversely,
for small values of p, if r is large, most proposed
moves are likely to be rejected.
We again investigate the optimality problem in

the limiting case as d → ∞. Fix r (so that it does
not depend on d) and let d go to infinity along odd
values. Let Sd

t =X
�1�
�td, so Sd is a continuous-time

binary process (non-Markovian) making jumps
at times which are integer multiples of 1/d, analo-
gous to the continuous model. The following result
is taken from Roberts (1998).

Theorem 2. (i) Assume X0 is distributed accor-
ding to π. Then, as d → ∞,

Sd ⇒ S�

where S is a two-state continuous-time Markov chain
with stationary distribution �p�1−p�. TheQ-matrix
�describing its transition rates� for S has the form

Q = e�r� ×
(−�1 − p� 1 − p

p −p

)
�

where e�r� is available �and given in Roberts �1998�
as an explicit Binomial expectation.

(ii) Let a�p� r� denote the acceptance rate for the
algorithm for fixed target and algorithm parameters
p and r, respectively. Let p ↗ 1/2 in such a way
that λ = �1/2 − p�2r remains constant. Then, for p
close to 1/2, we can write

e�r� ≈ 2r × a�p� r�

≈ 2
�1/2 − p�2λ × 2�

(−2
√
λ
)
�

If p ≈ 1/2, then the optimal choice of r is approx-
imately that achieving acceptance rate a = 0�234,
and the efficiency curve as a function of acceptance
rate converges to that of continuous RWM �as shown
in Figure 3, bottom�.

This theorem says that, in the discrete 
0�1�d
model, if p ≈ 1/2, then the optimal scaling prop-
erties are very similar to those of the continuous�d

i=1 f�xi� model of the previous section.

4. MALA ALGORITHM

As in the RWM case, we shall again consider
the case where the target density takes the prod-
uct form (5). We will consider the MALA proposal
given by

Yn+1 ∼ N

(
Xn + σ2

d

2
∇ logπ�Xn�� σ2

dId

)
�(20)

This proposal is chosen so as to mimic a Langevin
diffusion for the density π�y� and, therefore, pro-
vide a “smarter” choice of proposal. In particular,
since the proposal (20) tends to move the chain
in the direction of ∇ logπ�Xn�, it tends to move
toward larger values of π, which tends to help
the chain converge to π�·� faster. For more details,
see, for example, Roberts and Tweedie (1996) and
Roberts and Rosenthal (1998).
We again ask how the optimal value of σ2

d should
depend on d for large d and investigate how these
optimal scalings can be characterized in practically
useful ways. As a first attempt to solve this problem,
we might again set σ2

d = �2/d as for the RWM case
and define

Zd
t = X

�1�
�td�

Using this approach, it turns out that the overall
acceptance rate converges to 1 and Zd ⇒ Z as d →
∞, where, in this case,

dZt = �dBt + �2∇ logπ�Zt�
2

dt�(21)

The speed of this limiting algorithm is �2, which
is unbounded, and therefore the limiting optimiza-
tion problem is ill posed. The fact that the speed
is unbounded, as we choose arbitrarily large �, sug-
gests that larger variances for proposals should be
adopted in this case.
The scaling σ2

d = O�d−1/3� was suggested in the
physics literature [Kennedy and Pendleton (1991)].
This turns out to be the correct scaling rate and
defines a limiting optimal scaling. The following
result is taken from Roberts and Rosenthal (1998).

Theorem 3. Consider a Metropolis–Hastings
chain X0� X1� � � � for a target distribution having
density π and with MALA proposals as in �20�.
Suppose π satisfies �5�. Let σ2

d = �2/d1/3 and set

Zd
t = X

�1�
�d1/3t�

where X
�1�
n is the first component of Xn. Then,

assuming various regularity conditions on the den-
sities f �described in detail in Roberts and Rosenthal
�1998�, as d → ∞, we have the following:

(i) Zd converges weakly to the continuous-time
process Z satisfying

dZt = g���1/2 dBt + g���∇ logπ�Zt�
2

dt�

where

g��� = 2�2��−J�3��(22)
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and J is given by

J =
√

E
(
5�log f�′′′�X�2 − 3�log f�′′�X�3

48

)
�(23)

where the expectation is with respect to f.
(ii) The acceptance rate a of the algorithm is given

by 2��−J�3�, and the scaling which gives optimal
asymptotic efficiency is that having asymptotic
acceptance rate equal to 0�574.

Thus, as for the RWM case, the optimality can be
characterized in terms of the acceptance rate in a
manner which is otherwise independent of proper-
ties of f. The MALA algorithm thus has a smaller
convergence time [O�d1/3� instead of O�d�] and
larger optimal asymptotic acceptance rate (0.574
instead of 0.234), as compared to RWM algorithms.
[Balanced against this, of course, is the need to
compute ∇ logπ�Xn� at each step of the algorithm.]
Note that, similar to the RWM case, there is no
need to calculate or estimate J, since the optimality
result is stated in terms of asymptotic acceptance
rate only.
The regularity conditions needed for this result

rely again on smoothness conditions on the func-
tion log f. In Roberts and Rosenthal (1998), the
existence of eight continuous derivatives of log f is
assumed, though it is clear that these conditions
can be relaxed to some extent at least.

5. A GIBBS RANDOM-FIELD MODEL

One can try to relax the independence assump-
tions in Section 2. The following result is an infor-
mal version of a statement taken from Breyer and
Roberts (2000) in the context of finite-range Gibbs
random-field target distributions, which gives a fla-
vor of the problems encountered.
Suppose that µ�dx� is a continuous probability

measure on �. We define a Gibbs measure on ��r

which has a density with respect to
�

k∈�r µ�dxk�
given by

exp
{
− ∑

k∈�r

Uk�x�
}
�(24)

whereUk is a finite-range potential (depending only
on a finite number of neighboring terms of k), which
is everywhere finite. [Formally, this framework only
defines finite-dimensional conditional distributions;
therefore, (24) needs to be interpreted in terms of
conditional distributions.]

Example. We give a simple Gaussian example
of a Markov random field. Suppose µ denotes the
measure µ�dx� ∝ exp
−τx2/2�dx and define the

neighborhood structure on �r by l ∼ m if and only
if �l−m� = 1; that is, l and m differ in only one coor-
dinate, and in that coordinate by only one. Define

Uk�x� = −ρ
�

l∼k xkxl

4r
�

The one-dimensional full conditionals are given by

xk�x−k ∼ N

(
ρx̄∼k

τ
�
1
τ

)
�

where x̄∼k denotes the mean of the x values at
neighboring states.

Now we can consider RWM on πi with Gaussian
proposals with variance given by (6) with proposal
variance σ2

i . We are now ready to informally state
the following result which is taken from Breyer and
Roberts (2000). We take 
Ai� to be a sequence of
hyperrectangular grids increasing to �r as i → ∞.

Theorem 4. Consider RWM with Gaussian pro-
posals with variance σ2

i = �2/�Ai�. Call this chain
X�i� and consider the speeded-up chain

Z
�i�
t = X

�i�
�t�Ai��(25)

speeded up by a factor �Ai�. Then, under certain
technical conditions discussed below, Z�i� converges
weakly to a limiting infinite-dimensional diffusion
on ��r

. Moreover, the relative efficiency curve as
a function of acceptance rate is again that given
by Figure 2 and the corresponding optimal scal-
ing problem for � has a solution which can again
be characterized as that which achieves acceptance
rate 0�234.

This theorem thus says that, under appropriate
technical conditions, RWM (with Gaussian proposal
distributions) on Markov random-field target dis-
tributions again has the same optimality proper-
ties (including the 0.234 optimal acceptance rate)
as RWM on the target distributions given by prod-
uct densities

�d
i=1 f�xi�.

The most important technical condition assumed
for Theorem 4 is that the random field has no
phase transition; in fact, the field’s correlations
decrease exponentially quickly as a function of
distance. [This avoids the multiplicity of distribu-
tions satisfying (24).] It should be emphasized that
phase-transition behavior is indeed possible for
these types of distributions, and the consequences
for practical MCMC are very important. In order for
the algorithm to mix in this case, the proposal needs
to make considerably larger jumps, and the optimal
acceptance rate will then necessarily converge to 0.
In practice, this makes the algorithm prohibitively
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slow (typically taking a time exponential in d to
mix adequately). Therefore, for all intents and pur-
poses, problems with heavy dependence structure
(sufficient to mimic phase transition) will not yield
practically useful algorithms.
It is interesting to note that phase-transition

behavior of this type does not happen for r = 1,
where ergodicity ensures that (24) uniquely specifies
the full distribution. In this case, for large i, algo-
rithms are considerably more robust to dependence
between components. This supports (for example)
the prolific success of MCMC algorithms in hierar-
chical models [see, e.g., Smith and Roberts (1993)]
where dependence is propagated through a one-
dimensional hierarchical structure only. On the
other hand, for a multidimensional Markov random
field, if significant phase-transition-type behavior
does occur, then the optimal scaling properties can
be very different than the above.

6. EXTENSIONS TO MORE GENERAL
TARGET DISTRIBUTIONS

Theorems 1 and 3 assume that the target density
π is of the special form π�x� = �d

i=1 f�xi�, con-
sisting of i.i.d. components. This assumption is
obviously very restrictive. However, the essential
result, that the optimal acceptance rate should be
about 0.234 for random-walk Metropolis (RWM)
algorithms, and about 0.574 for Langevin (MALA)
algorithms, appears to be considerably more robust.
Thus, in this section, we consider somewhat more
general target distributions and optimal scaling
properties in a broader context. We have already
demonstrated robustness of the 0�234 rule to dif-
ferent dependence structures in Section 5. Next we
shall consider the notion of heterogeneity of scale
between different components.
We assume that π is of the form

π�x� =
d∏
i=1

Ci f�Cixi��(26)

where f is again a fixed one-dimensional den-
sity (satisfying the same regularity conditions as
for Theorem 1), but where now there is an arbi-
trary scaling factor Ci > 0 in each component.
We again assume that the proposals are given by
q�y�µ�dy� ∼ N�0� Idσ2

d�, a normal distribution with
variance σ2

d times the identity. To make a reason-
able limiting theory as d → ∞, we assume that
the values Ci are i.i.d. from some distribution hav-
ing mean 1 and finite variance. Then we have the
following.

Theorem 5. Consider RWM with target density of
the form �26�, where 
Ci� are i.i.d. with E�Ci� = 1

and E�C2
i � ≡ b < ∞ and with proposal distribu-

tion N�0� Idσ2
d�, where σ2

d = �2/d for some � > 0.
Let Wd

t = C1X
�1�
�td. Then, as d → ∞�Wd

t converges
to a limiting diffusion process Wt satisfying

dWt = 1
2
g′�Wt��C1s�2 dt + �C1s�dBt�

where Bt is standard Brownian motion and where

s2 = 2�2��−�b1/2I1/2/2�

= 1
b

× 2��2b��(− ��2b�1/2I1/2/2)�(27)

with I = Ef��g′�X��2. Hence, the efficiency of the
algorithm �when considering functionals of the first
coordinate only�, as a function of acceptance rate, is
identical to that of Theorem 1, except multiplied by
the global factor of C2

1/b. In particular, the optimal
acceptance rate is still equal to 0�234. For a fixed
function f, the optimal asymptotic efficiency is pro-
portional to C2

1/bd.

This result does not appear in any of the MCMC
scaling literature, so we have sketched a proof which
appears in the Appendix.
This theorem shows that the optimal acceptance

properties for RWM on the “inhomogeneous” target
distribution (26) are identical to the case where the
target satisfies (5). However, at least if C1 = 1, the
efficiency of the algorithm is slowed down by a fac-
tor b, where b = E�C2

i �/E�Ci�2. Of course, if the
Ci are constant, then there is no slow-down effect
at all. However, if the Ci are nonconstant, then we
will have b > 1, and the algorithm will be slower
than the algorithm for the corresponding homoge-
neous target distribution.
On the other hand, if the values of Ci are known,

then, instead of using the proposal distribution
q ∼ N�0� σdId�, one could use a proposal which
scales proportional to Ci in each component. In
this case, the scalings Ci would be the same for
the target and the proposal, so they would “cancel
out,” and the resulting algorithm would be precisely
equivalent to running the original RWM algorithm
on the corresponding target distribution satisfy-
ing (5), that is, to setting Ci = 1 for each i. By
Theorem 5, this would be more efficient by a factor
of b. We therefore have the following.

Theorem 6. Consider running a Metropolis algo-
rithm on a target density of the form �26� to estimate
some function of the first component only. Suppose
we use either homogeneous proposals of the form
q ∼ N�0� σ2

dId� or inhomogeneous proposals of the
form q ∼ N�0� σ̄2

d diag�C1� � � � � Cd��. Then, in either
case, it is optimal to tune the algorithm to an
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asymptotic acceptance rate of 0�234, and the asymp-
totic efficiency is proportional to d−1. �On the other
hand, note that the optimal value of σ̄2

d itself is not
equal to the optimal value of σ2

d.� However, the opti-
mal inhomogeneous-proposal algorithm will have
asymptotic relative efficiency which is larger than
that of the optimal homogeneous-proposal algorithm
by a factor of bC2

1, where b = E�C2
i �/E�Ci�2.

This theorem suggests that, if the target den-
sity is even approximately of the form (26), with
significantly varying values of Ci, then it may be
worthwhile to obtain a preliminary estimate of the
Ci and then use inhomogeneous proposals of the
form q ∼ N�0� σ̄2

d diag�C1� � � � � Cd�� when running
the Metropolis algorithm.

Remark. On examining the proof of Theorem 5,
we see that, in the infinite-dimensional limit, the
“rejection penalty” for trying big moves depends
only on the components 2� � � � � d. Hence, if we were
merely interested in the first component, it would
make sense to make bigger jumps in that com-
ponent than others. In fact, best of all would be
to just update the first component and ignore all
the others. However, this argument uses strongly
the independence between components. In practice,
where dependence between components is present,
it will be necessary for all components to converge
rapidly to have confidence in the stationarity of any
one component.

Remark. In fact, Theorem 5 extends readily to
target densities whose first component has a differ-
ent form of density to all other components, that is,
specifically target densities of the form

π�x� = f1�x1�
d∏
i=2

Ci f�Cixi��(28)

provided that the function f1 does not depend on d;
see Section 7.
Finally, the arguments above can be mimicked for

investigating the effect of heterogeneity of compo-
nents of the target density on MALA. In this case,
the following result holds (we omit the proof).

Theorem 7. Consider a Metropolis–Hastings
chain X0�X1� � � � for a target distribution having
density π, with MALA proposals as in �20�. Sup-
pose π satisfies �26�, let σ2

d = �2/d1/3 and set

Zd
t = X

�1�
�d1/3t�

Assume the same regularity conditions on the densi-
ties f as in Roberts and Rosenthal �1998�.

(i) Zd converges weakly to

dZt = h���1/2 dWt + h���∇ logπ�Zt�
2

dt

as d → ∞, where

h��� = 2�2��−Jk�3��(29)

J is given by �23�, and with
k =

√
E�C6

i �/E�Ci�6�(30)

(ii) The asymptotic acceptance rate of the algo-
rithm is given by 2��−kJ�3�, and the optimal scal-
ing is that having asymptotic acceptance rate 0�574.

(iii) The efficiency of this algorithm is reduced
by a factor of k1/3, compared to the corresponding
homogeneous algorithm with Ci = 1 for all i.

Therefore, Langevin algorithms are considerably
more sensitive to scale changes than Metropolis
algorithms: the cost of heterogeneity is governed by
the L6 norm of the 
Ci�, rather than the L2 norm
as in the Metropolis case.

7. EXAMPLES AND SIMULATIONS

In this section, we provide various examples
and simulations to further illustrate the theorems
presented above.

7.1 Inhomogeneous Multivariate
Gaussian Examples

We performed a large simulation study to demon-
strate examples of Theorems 5 and 6 working in
practice. We considered three classes of distribu-
tions, as follows.

1. Independent and identically distributed normal
components, π�x� = exp
−�d

i=1 x
2
i /2�; that is,

if f is a standard normal density in (26), then
we take Ci = 1 for all i.

2. Normal components with the first having
smaller scale, π�x� = exp
−2x2

1 − �d
i=2 x

2
i /2�;

that is, we take Ci = 1 for all i != 1 and take
C1 = 2.

3. Normal components with C1 = 1 but with the
otherCi’s being chosen from the Exponential�1�
distribution.

For each of these three cases, we performed runs in
dimensions 5�10�15� � � � �50, together with 100 and
200. For each dimension, we used spherically sym-
metric Gaussian proposals with various values of
the proposal variance, and the algorithm was run
for 100,000 iterations. We concentrated on analysis
of the first component for simplicity. In each case,
we estimated this component’s integrated autocor-
relation time (called convergence time for short in
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what follows) using the empirical lag-k autocorrela-
tion ρ̂k of the first component:

τ̂ ≈ −k

log�ρ̂k�
�

This estimate becomes increasingly accurate as the
diffusion limit is approached—as the arguments at
the end of Section 2 indicate.
Figure 5 summarizes the results of our simula-

tions for the first two distributions. We have plot-
ted the convergence time of the algorithm divided
by dimension (since by Theorem 5 this ought to
be stable as d → ∞) against the acceptance rate
of the algorithm. The plotting symbol indicated the
dimension in which the simulation was performed
in each case.
According to Theorem 5, the optimal (i.e.,

minimal) convergence time is proportional to b/C2
1.

Therefore, we should expect that the optimal con-
vergence time of distribution 1 to be 4 times that
of distribution 2. This is seen quite clearly in the
minima achieved in each case: just below 1.5 in dis-
tribution 1 and around 0�38 for distribution 2. Note
that, as expected, the optimal values are achieved
at acceptance rates between 0�2 and 0�25 although
it is difficult to be precise about optimal acceptance
rates because the functions are inevitably rather
flat around the optimal values and there is still
some Monte Carlo error in our simulations.
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Fig. 5. Convergence times for Metropolis algorithms as a function of their acceptance rates. The plotting symbol indicates the dimension
of the simulation.

Figure 6 shows the results of our simulation in
distribution 3. The plotting symbol used in each
case refers to a particular collection of random Ci’s.
Here the additional randomness of the Ci’s means
that even in 50 dimensions, the optimal scaling for
the algorithm can vary quite appreciably, depend-
ing on the particular values of the Ci’s. However,
the robustness of the optimal acceptance rate 0�234
remains intact despite this.
If Ci ∼ Exp(1), then b is easily computed to be 2,

so, according to Theorem 5, we ought to lose a fac-
tor of 2 in efficiency between distribution 2 and
distribution 1. Our results show very good agree-
ment with Theorem 5. For instance, Figure 5 sug-
gests that a minimum convergence time is around
3d/2, which is around 300 for d = 200. Figure 6(d)
shows that the minimized convergence time in 200
dimensions is around 600 for distribution 3, a loss
of efficiency by a factor of around 2.

7.2 A Multimodel Example

For example, consider a target density of the form

π = 1
2
N�−Md�Id� + 1

2
N�Md�Id��

where Md = �md�0�0� � � � �0�. This distribution has
half its mass near �md�0� � � � �0� and the other half
near �−md�0� � � � �0�.
Strictly speaking, this distribution is not of the

form (26), since the first coordinate is not merely
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Fig. 6. Convergence times of RWM in the heterogeneous environment of distribution 3 in dimensions 5, 30, 50 and 200. Here the plotting
number indicates a particular random collection of Ci ’s.

a rescaling of the other coordinates. However, if md

does not depend on d, then the asymptotic results of
Theorem 5 still apply. Figure 7 shows such a simu-
lation in various dimensions, with md = 3 through-
out. This is demonstrated in Figure 7(a) where the
convergence time is O�d� as expected.
On the other hand, suppose now that md = √

d/2
[which is equivalent to having the two normal com-
ponents centered at �0�0� � � � �0� and �1�1� � � � �1�,
respectively]. In this case, since md is growing
with d, then the asymptotic results of Theorem 5
do not apply. Indeed, in this case, for large d the
chain will tend to spend long amounts of time in
one of the two components of π before moving to
the other. Hence, there is no limiting diffusion at
all. Indeed, computing autocorrelations in this case
can be quite deceptive, since the autocorrelations
could be small even though the chain spends all
its time in just one of the two components, and a
Langevin diffusion limit is not a good description of
the process. Figure 7(b) shows an estimate of con-
vergence time from autocorrelations, scaled by d2.
In fact, the true convergence time is at least expo-
nential in d in this example, and this can be proved
by the use of capacitance ideas [see, e.g., Sinclair

and Jerrum (1989)], although we do not attempt to
show that in this paper.

7.3 Example: Multivariate Normal
with Correlations

Suppose now that π is a d-dimensional multi-
variate normal distribution, but with nontrivial
covariance matrix 9. Since 9 must be symmetric
(and hence self-adjoint), it follows that we can find
an orthogonal rotation of the axes which trans-
forms π into another multivariate normal, but
this one having independent components, that is,
a diagonal variance/covariance matrix of the form
9′ = diag�λ1� � � � � λd�, where 
λi� are the eigenval-
ues of 9.
Now, if we knew 9 or could estimate it, then we

could use proposals of the form q ∼ N�x� σ29�. This
would be equivalent to starting with a target distri-
bution satisfying (5) and running standard RWM.
By Theorem 6, this would be better than using a
fixed N�x� σ2Id� distribution. This provides theo-
retical justification for the commonly used strategy
of running random walk Metropolis with increment
distribution having covariance structure which is
set to be proportional to the empirically estimated
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Fig. 7. (a) Convergence time as a function of acceptance rate for RWM on the bimodal example, with md = 3 throughout, and (b) τ̂/d2

as a function of acceptance rate in the case md = √
d/2. Note that in (b) τ̂ does not well estimate the convergence time. In dimension 100

and 200, the algorithm in (b) fails to leave its starting mode at all, so that convergence has certainly not occurred, even though the plot of
τ̂ seems to suggest convergence ought to occur within the 500,000 iterations for which the algorithm was run. The problem is that, since
the separation distance is increasing with d, there is no longer a diffusion limit and Theorem 5 does not apply.

correlation structure of the target density; see, for
example, Tierney (1994).
In any case, this suggests that the behavior of

ordinary RWM on a multivariate normal distribu-
tion is governed by the eigenvalues of 9.
In particular, suppose that 9 has 1’s on the

diagonal and ρ off the diagonal (corresponding to
a collection of normal random variables with unit
variance and pairwise correlation ρ). Then the
eigenvalues of 9 are λ1 = dρ+1−ρ (with multiplic-
ity 1 and eigenvector x̄) and λ2 = · · · = λd = 1 − ρ
(with multiplicity d−1 and eigenvectors of the form
xi − x̄ for any i). This corresponds to C1 = 1/

√
λ1 =

1/
√
dρ + 1 − ρ and C2 = · · · = Cd = 1/

√
1 − ρ.

Here f is the standard normal density, so that
g′�x� = −x. Hence, the limiting diffusion satisfies
dWt = − 1

2C
2
1Wts

2 dt+C1sdBt, which can be solved
explicitly (as an Ornstein–Uhlenbeck process) to
give that Wt = e−C2

1s
2t2/2W0 + N�0� �1 − e−C1st��.

Since C1 = 1/
√
dρ + 1 − ρ, for large d we see that

C2
1 = O�d−1� and is therefore very small, so the

diffusion converges very slowly.
For this example, Theorem 5 does not strictly

apply, although, since it describes the algorithm as
being O�C2

1/d�, it therefore suggests that, in this
case, the algorithm is O�d2�. In fact, by speeding
up time by d2 instead of d an analogous weak con-

vergence result can be demonstrated to show that,
in this case, the algorithm is in fact O�d2�.
On the other hand, the above analysis is for

functions of the first eigenvector only, that is, for
functions of x̄. Suppose instead we renumber the
eigenvalues of 9, so that the large eigenvalue is
numbered λd (or λ2) instead of λ1. This corresponds
to considering functions which are orthogonal to x̄,
that is, which are functions of xi − x̄. In this case,
we obtain C2

1 = 1/�1 − ρ� which is not small, so the
diffusion converges much faster.
We conclude that, for RWMwith normal proposals

on the multivariate normal target distribution with
9 as above, the algorithm will converge quickly for
functions orthogonal to x̄, but will converge much
more slowly [O�d2�] for functions of x̄ itself. This is
illustrated in Figure 8.

7.4 Some Simulations with MALA

Figure 9 shows the O�d1/3� performance of MALA
on product form densities of the type in (5). These
simulations were performed using distribution 1.
Again notice the stability of these curves, even in
relatively small dimensional problems. The asymp-
totically optimal acceptance rate 0�574 performs
excellently even in five dimensions.



OPTIMAL SCALING FOR VARIOUS METROPOLIS–HASTINGS ALGORITHMS 365

0.2 0.4 0.6 0.8

2
4

6
8

10

5

5

5

5

5

5

5
5

5
5

5
5

555555555

10

10

10

10

10

10
10

10
10

10
1010101010101010101010

15

15

15

15

15

15
15

15
15

151515151515151515151515

20

20

20

20

20

20
20

20
20

20
2020202020202020202020

25

25

25

25

25

25
25

25
25

252525252525252525252525

30

30

30

30

30

30
30

30
30

303030303030303030303030

35

35

35

35

35
35

35
35

35
353535353535353535353535

40

40

40

40

40
40

40
40

40404040404040404040404040

45

45

45

45

45
45

45
45

45
454545454545454545454545

50

50

50

50

50

50
50

50
50505050505050505050505050

100

100

100

100

100

100
100

100
100100

100100100100100100100100100100100

200

200

200

200

200

200
200

200
200

200200200200200200200200200200200200
555555555555555555555 101010101010101010101010101010101010101010


151515151515151515151515151515151515151515

202020202020202020202020202020202020202020
252525252525252525252525252525252525252525
303030303030303030303030303030303030303030
353535353535353535353535353535353535353535

404040404040404040404040404040404040404040
454545454545454545454545454545454545454545
505050505050505050505050505050505050505050

100100100100100100100100100100100100100100100100100100100100100

200200200200200200200200200200200200200200200200200200200200200

acceptance rate

τ̂ /
d

2

Fig. 8. Convergence time as a function of acceptance rate for RWM on the exchangeable normal example using x̄ as the function of
interest. Note that the convergence time is scaled by d2 in this case, demonstrating the O�d2� behavior.

8. DISCUSSION

In this paper, we have summarized and extended
recent work on scaling of RWM and MALA
algorithms. The remarkable thing about the accep-
tance rate criteria for scaling of algorithms is their
robustness to different types of target distribu-
tions, to dependence in the target density and to
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Fig. 9. MALA Langevin algorithm, showing its optimality at around 0.574 and its convergence time being O�d1/3�.

homogeneity in scale between different components.
However, as we show in our results and examples,
the efficiency of the algorithm itself can still depend
critically on properties of the target density.
How should these results be used in practice?

The asymptotic efficiency curve given in Figure 3
(bottom) shows that there is very little to be gained
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from fine tuning of acceptance rates. For RWM on
smooth densities, any acceptance rate between 0�1
and 0�4 ought to perform close to optimal. One sur-
prising feature of this is that very low acceptance
rates of, say, 0�1 can be very close to optimal, even in
highly regular problems. Similar general comments
can be made about MALA algorithms and RWM on
discontinuous densities.
In high-dimensional problems, tuning accep-

tance rates can be quite difficult. Therefore, the
results described here on the way optimal proposal
variances scale in high-dimensional problems are
practically useful as guidelines. For instance, when
performing MALA on a Gaussian image analysis
problem on a 100 × 100 square grid, suppose we
have already tuned a proposal on a 20× 20 subgrid
to give a variance σ2, say. Then using the fact that
optimal variances for MALA scale like d−1/3, we
should start to look for the optimal variance for
the larger problem by choosing variances around
σ2 × �100/20�−2/3 ≈ 0�34σ2. We would always
advocate monitoring acceptance rates in addition
to using scaling rules, since heterogeneity between
components may distort the simple picture provided
by just dimension-dependent scaling.
Although there are many clean mathematical

statements that can be made in this area, as with
many Monte Carlo problems, there is a point where
the practitioner needs to extrapolate beyond the
constraints imposed by the theorem’s regularity
conditions. We hope we have demonstrated using
our examples that the conclusions we can draw
from theoretical results can be extended with con-
fidence to situations where the theorem does not
strictly apply, and that the application of these
results in real problems is often straightforward.
It is not necessary for the practitioner to under-
stand the detailed mathematical arguments behind
the scaling rules we apply, but it is important to
understand where and when they can be applied.
All these results rely on the assumption of light-

tailed proposals (satisfying some kind of moment
constraints). We have stated most of these results
for Gaussian proposals but it is not difficult to gen-
eralize this. However, the assumption of light-tailed
proposals is not merely a technicality. Most of the
scaling results described here (and all of those in
Euclidean space) are based on diffusion approxi-
mations of the algorithm in high dimensions. The
entire character of the algorithms changes when
heavy-tailed proposals are used [see, e.g., Jarner
and Roberts (2001)], and the algorithms tend to
make sudden jerky movements followed by peri-
ods of inactivity as opposed to the diffusion-type
behavior we see here.

APPENDIX: PROOF OF THEOREM 5

Most of the proof is very similar to the corre-
sponding proof of Theorem 1 in Roberts, Gelman
and Gilks (1997). The key point of departure is
the computation of the quantity f�y�/f�x� used in
the accept/reject ratio. Here yi = xi + σZi are the
proposal values (with 
Zi� i.i.d. standard normal).
Setting g = log f, we compute that

f�y�
f�x� = exp

[
d∑
i=2

(
g�Ciyi� − g�Cixi�

)]

× exp
{
g�C1y1� − g�C1x1�

}
= exp

[
d∑
i=2

(
g�Cixi + CiσZi� − g�Cixi�

)]

× exp
{
g�C1y1� − g�C1x1�

}
≈ exp

[
d∑
i=2

(
CiσZig

′�Cixi�

+ 1
2

�CiσZi�2g′′�Cixi�
)]

× exp
{
g�C1y1� − g�C1x1�

}
�

Now, as d → ∞, using laws of large numbers, the
quantity inside the square brackets is seen to con-
verge in distribution to the N�− 1

2σ
2bR1� σ2bRI�

distribution, where R = �d
i=2

(
g′�Cixi�

)2, so that,
for large d,R = O�d−1�. It then follows [again, as in
Roberts, Gelman and Gilks (1997)] that the asymp-
totic acceptance rate is equal to 2��− 1

2�b
1/2I1/2�, by

applying this Taylor series expansion to the expres-
sion in (1). The result then follows similar lines
to that described in Roberts, Gelman and Gilks
(1997), where a further Taylor expansion is per-
formed, this time just of the first component term,
and limits of expectations are taken in order to
calculate the infinitesimal change in expected func-
tions in small time periods. These calculations then
characterize the limiting process according to the
powerful mathematical theory of weak convergence
of Markov processes. The precise mathematical
framework for, these calculations involves comput-
ing the generator of the limiting process, which
in, turn characterizes the dynamics of the limiting
process; see Roberts, Gelman and Gilks (1997) for
details. This leads to the expression (27). Now let-
ting A��� denote the asymptotic acceptance rate a,
using proposal variance �2/d, we can reexpress (27)
as

s2 = 4
bI

(
�−1

(
A���
2

))2

× A����
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so that the maximization problem is expressed
solely in terms of A��� and the other constants b� I
etc. only affect the maximized value itself.
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