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This paper considers the problem of scaling the proposal distribution
of a multidimensional random walk Metropolis algorithm in order to
maximize the efficiency of the algorithm. The main result is a weak
convergence result as the dimension of a sequence of target densities, n,
converges to `. When the proposal variance is appropriately scaled accord-
ing to n, the sequence of stochastic processes formed by the first compo-
nent of each Markov chain converges to the appropriate limiting Langevin
diffusion process.

The limiting diffusion approximation admits a straightforward effi-
ciency maximization problem, and the resulting asymptotically optimal
policy is related to the asymptotic acceptance rate of proposed moves for
the algorithm. The asymptotically optimal acceptance rate is 0.234 under
quite general conditions.

The main result is proved in the case where the target density has a
symmetric product form. Extensions of the result are discussed.

Ž .1. Introduction. The random walk algorithm of Metropolis et al. 1953
is known to be an effective Markov chain Monte Carlo method for many
diverse problems. However, its efficiency depends crucially on the scaling of
the proposal density. If the variance of the proposal is too small, the Markov
chain will converge slowly since all its increments will be small. Conversely,
if the variance is too large, the Metropolis algorithm will reject too high a
proportion of its proposed moves. A number of authors have suggested

winformal guidelines for scaling proposal to target variance ratios e.g., Besag
Ž .x wand Green 1993 or monitoring acceptrreject ratios see, e.g., Besag, Green,

Ž .xHigdon and Mengersen 1995 . However, although such rules of thumb often
work well in practice, to date there have been no theoretical results to
support them.

In this paper, we consider the asymptotic problem as the dimension of the
state space, n, converges to infinity. By considering suitably regular se-
quences of canonical target densities and rescaling the proposal variance by a

Ž .factor 1rn , we obtain a weak convergence result for the sequence of
algorithms restricted to a fixed finite set of components, C, to the appropriate
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Langevin diffusion on R c. Finding the asymptotically optimal scaling is then
a simple matter of optimizing the speed of the Langevin diffusion.

Specifically, let
n

n n1.1 p x s f xŽ . Ž . Ž .Łn i
is1

be an n-dimensional product density with respect to Lebesgue measure. The
random walk Metropolis algorithm with Gaussian proposal density,

1 y1 2n n n n< <q x , y s exp y y x ,Ž .n nr2 2½ 52 2sn2psŽ .n

n � n n 4 nproduces a Markov chain X s X , X , . . . , where X is chosen randomly as0 1 m
follows. We adopt the notation xn for an n-vector with components x n, . . . , x n.1 n

n Ž n . n nGenerate Y according to q X ,? and set X s Y with probabilityn my1 m

p Y nŽ .nn na X , Y ' 1 n .Ž .my 1 np XŽ .n my1

n n Ž .Otherwise, we set X s X . Therefore, a ?,? is known as the acceptancem my1
� n 4function. Produced in this way, it is easy to see that X is a Markov chain,m

reversible with respect to p , and is p -irreducible, aperiodic and hencen n
w Ž .ergodic see, e.g., Roberts and Smith 1994 or Mengersen and Tweedie

Ž .x1966 .
We introduce the following conditions on f : we assume that f 9rf is

Lipschitz continuous and
8f 9 XŽ .

A1 E ' M - `,Ž . f ž /f XŽ .
4f 0 XŽ .

A2 E - `.Ž . f ž /f XŽ .

The main result of this paper is therefore that for each fixed one-
� n 4dimensional component of X , n G 1 , the one-dimensional process converges

weakly to the appropriate Langevin diffusion.
Let C 2 denote the space of real-valued functions with continuous second

2 2 Ž . n nderivative. Let s s l r n y 1 , and for integers n, define U s X . Inn t w nt x, 1
other words U n consists of the first component of X n .t w nt x

Note that in the definition of s 2, we use the divisor n y 1. This could ben
replaced by n, which seems to be a more appropriate divisor for small n at

w Ž .xleast in the Gaussian case see Gelman, Roberts and Gilks 1996 . The
asymptotic result is unaltered by the choice of divisor; however, our preferred
choice here leads to a simpler proof.

Let us denote weak convergence of processes in the Skorokhod topology
w Ž .xby « see, e.g., Ethier and Kurtz 1986 .

We can now state the result more precisely as follows.
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2 Ž . Ž .THEOREM 1.1. Suppose f is positive and C and that A1 and A2 hold.
` Ž 1 2 .Let X s X X , . . . be such that all of its components are distributed0 0,1 0, 2

according to f and assume that X i s X j for all i F j. Then, as n ª `,0, j 0, j

U n « U,

where U is distributed according to f and U satisfies the Langevin SDE0

f 9 UŽ .t1r21.2 dU s h l dB q h l dtŽ . Ž . Ž .Ž .t t 2 f UtŽ .
and

'l I
2h l s 2 l F yŽ . ž /2

with F being the standard normal cumulative cdf and

2f 9 XŽ .
I ' E .f ž /f XŽ .

Ž .Here h l is sometimes called a speed measure for the diffusion process.
We can write U s V , where V is the Langevin diffusion with speedt hŽ l .t
measure unity:

f 9 VŽ .t
dV s dB q dt .t t 2 f VŽ .t

Therefore the ‘‘most efficient’’ asymptotic diffusion has the largest speed
measure.

The result is illuminating for two reasons. First, since U n is produced by
speeding up time by a favor of n, the complexity of the algorithm is therefore
n. Although complexity results exist for Markov chain Monte Carlo with finite

w Ž .xstate spaces see, e.g., Frigessi and den Hollander 1993 , no such results are
available in continuous state spaces. In Section 3 we will discuss the general-
ization of Theorem 1.1 to the case where the components are dependent, and
the related ideas of phase transition.

Second, and perhaps more importantly in practice, Theorem 1.1 has the
following corollary. First let

a l s p x n a x n , y n q x n , y n dx n dy nŽ . Ž . Ž . Ž .HHn n n

be the average acceptance rate of the random walk Metropolis algorithm in n
dimensions, and let

'l I
a l s 2F yŽ . ž /2
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COROLLARY 1.2.

i lim a l s a l .Ž . Ž . Ž .n
nª`

Ž . Ž . Ž .ii h l is maximized to two decimal places by

2.38ˆl s l s .'I

Also

ˆa l s 0.23Ž .
ˆŽ .and h l s 1.3rI.

This result gives rise to the useful heuristic for random walk Metropolis in
practice:

Tune the proposal variance so that the average acceptance rate is roughly 1r4.

w Ž .xThe accompanying paper Gelman, Roberts and Gilks 1996 discusses the
use of this heuristic in practice, and other related issues.

Note that the optimal value l is scaled, not by the standard deviation of
'Ž .the target density as is often suggested , but by 1r I . However if f is

Gaussian, it is easy to verify that I is exactly the reciprocal of the variance of
ˆf. In general, I is a measure of ‘‘roughness’’ of f}high values of I lead to l

having to be small.
We only state Theorem 1.1 for univariate components, although implicit in

our method of proof is the stronger statement that for integers c ) 1, the
process consisting of the first c components of X n converges to a collectionw nt x

Ž .of c independent processes each distributed according to 1.2 .

Ž . n2. Proof of Theorem 1.1. Define the discrete time generator of X ,

np YŽ .nn n nG V x s nE V Y y V x 1 n ,Ž . Ž . Ž .Ž .n nž /p xŽ .n

for any function V for which this definition makes sense.
The expectation here is taken with respect to the proposal distribution.

n n Ž 2 Ž . .Therefore, Y y x ; N 0, l r n y 1 I . In the Skorokhod topology, it doesn
Žnot cause any problems to treat G as a continuous time generator of an

.process with jumps at times of a Poisson process at rate n . We shall restrict
attention to test functions V which are functions of the first component only.

Our proof of Theorem 1.1 will demonstrate uniform convergence of G ton
Ž .G, the generator of the limiting one-dimensional Langevin diffusion, for a

suitably large class of real-valued functions V, where

1 1 d
GV x s h l V 0 x q log f x V 9 x .Ž . Ž . Ž . Ž . Ž . Ž .

2 2 dx
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Notice that G acts on functions of R n, whereas in the limit we are merelyn
interested in functions of the first component, so that G generally just acts on
functions of R. This will involve a minor abuse of notation, but this will
nevertheless add to the clarity of the sequel. Now, by Theorem 2.1 of Chap-

Ž . Ž .ter 8 of Ethier and Kurtz 1986 , since drdx log f is Lipschitz, a core for the
` Žgenerator has domain C infinitely differentiable functions on compactc

. `support . This will enable us to restrict attention to functions in C .c
Although the putative diffusion limit is Markov, the sequence of approxi-

� n 4mations U , n ) 1 is not, although the approximations can be considered to
� n 4be embedded in the sequence of Markov processes Z , n ) 1 with

Zn s X n , . . . , X n ,Ž .t w nt x , 1 w nt x , n

so that U n is the first component of Zn.
� n 4Define the sequence of sets F : R , n ) 1 byn

< < y1r8 < < y1r8F s R x , . . . , x y I - n l S x , . . . , x y I - n ,Ž . Ž .� 4 � 4n n 2 n n 2 n

where
n1 2

R x , . . . , x s log f x 9Ž . Ž .Ž .Ýn 2 n in y 1 is2

and
ny1

S x , . . . , x s log f x 0 .Ž . Ž .Ž .Ýn 2 n in y 1 is2

LEMMA 2.1. For fixed t,
nP Z g F , 0 F s F t ª 1 as n ª `.s n

PROOF. Since Zn ; p , Zn ; p , 0 F s F t, since p is stationary. There-0 n s n
fore,

n w xP Z f F , for some 0 F s F t F tnP Z f F .s n p nn

w Ž .xŽ .Note that E R X , . . . , X according to p s I, so that, by the weak law ofn 2 n n
large numbers, for all « ) 0,

< <P R Z y I ) « ª 0 as n ª `.Ž .p nn

Ž .Moreover, by Markov’s inequality and A1 ,

4 1r2w xP Z f F F E R Z y I nŽ .Ž .p n p nn n

3M
F .3r2n y 1Ž .

It follows that
n y1r8< <P Z g R y I - n , 0 F s F t ª 1� 4s n
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as required. The proof that
n y1r8< <P Z g S x , . . . , x y I - n , 0 F s F t ª 1Ž .� 4s n 2 n

Ž .follows similarly using A2 . I

In the sequel, we shall use the following collection of preliminary results.

Ž . xPROPOSITION 2.2. The function g x s 1 n e is Lipschitz with coefficient
1. That is,

< < < <g x y g y F x y y ; x , y g RŽ . Ž .

LEMMA 2.3. Let
2n log f x 0 lŽ .Ž .i 2 2W s W x s Y y x q log f x 9 ,Ž . Ž . Ž .Ž . Ž .Ýn n i i i i2 2 n y 1Ž .is2

Ž 2 Ž ..where Y ; N x , l r n y 1 independently for all i s 2, . . . , n. Theni i

< <sup E W ª 0 as n ª `.n
nx gFn

PROOF.
2 2< <E W F E Wn n

2n1 2s log f x 0 q log f x 9Ž . Ž .Ž . Ž .Ž .Ý i i2 ž /4 n y 1Ž . is2

n2 2q log f x 0Ž .Ž .Ž .Ý i24 n y 1Ž . is2

by direct calculation. However, for x n g F ,n

2n log f x 0 q log f x 9Ž . Ž .Ž . Ž .Ž .i i y1r8F nÝ 2 n y 1Ž .is1

Ž . w < <x2 nand, since log f 0 is bounded, E W ª 0 uniformly for x g F . In n

Ž 2 .PROPOSITION 2.4. If A ; N m, s , then
m m

A 2w xE 1 n e s F q exp m q s r2 F ys y ,Ž .ž / ž /s s
Ž .where F ? is the standard normal cumulative distribution function.

Armed with these preliminary results, we are now in a position to state
two uniform convergence results which play major roles in the proof of
Theorem 1.1

LEMMA 2.5. For V g C`,c

lim sup sup n E V Y y V x - `,Ž . Ž .1 1
nª` x gR1
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Ž 2 .where as usual, Y is distributed N x , s and the expectation is taken with1 1 n
respect to this normal random variable.

PROOF.
21V Y y V x s V 9 x Y y x q V 0 Z Y y xŽ . Ž . Ž . Ž . Ž . Ž .1 1 1 1 1 1 1 12

Ž . Ž .for some Z g x , Y or Y , x . Therefore,1 1 1 1 1

1 n
2nE V Y y V x F K l ,Ž . Ž .1 1 2 n y 1

where K is an upper bound for V 0. I

LEMMA 2.6. Suppose V g C` is a function of the first component of Zn.c
Then

< n <sup G V x y GV x ª 0 as d ª `.Ž . Ž .n 1
nx gFn

n Ž . Ž ny.PROOF. Decomposing Y the proposal into Y , Y ,1

np YŽ .nn n nG V x s nE V Y y V x E 1 n ,Ž . Ž . Ž .Ž .n Y Yny n1 ž /p xŽ .n

we begin by concentrating on the inner expectation, which we will call E
w Ž .xs E Y . Write1

n

E s E 1 n exp « Y q log f Y y log f xŽ . Ž . Ž .Ž .Ý1 i i½ 5
is2

f YŽ .Ž .1
where we write « Y s logŽ .1 ž /f xŽ .Ž .1

n 1 2s E 1nexp « Y q log f x 9 Y yx q log f x 0 Y yxŽ . Ž . Ž . Ž . Ž .Ž . Ž .Ý1 i i i i i i½ 2is2

1 3q log f Z - Y y xŽ . Ž .Ž .i i i 56

Ž . Ž .for some Z g x , Y or Y , x .i i i i i
Therefore, by Proposition 2.2, we can write

n

E y E 1 n exp « Y q log f x 9 Y y xŽ . Ž . Ž .Ž .Ý1 i i i½
is2

2l 2y log f x 9Ž .Ž .Ž .i 52 n y 1Ž .

1 4 l3

< < < <F E W q sup log f z - ,Ž .n 1r2 1r26 n y 1 2pŽ . Ž .zgR
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where W is as defined in Lemma 2.3. Also by that result,n

n

sup E y E 1 n exp « Y q log f x 9 Y y xŽ . Ž . Ž .Ž .Ý1 i i i½nx gF is2n

2l 2y log f x 9Ž .Ž .Ž .i 52 n y 1Ž .

s w n say ª 0 as n ª `.Ž . Ž .
However,

2n l 2
« Y q log f x 9 Y y x y log f x 9Ž . Ž . Ž . Ž .Ž . Ž .Ž .Ý1 i i i i2 n y 1Ž .is2

Ž Ž . 2 2 .is distributed N « Y y l R r2, l R , so that, by Proposition 2.4,1 n n

n

E 1 n exp « Y q log f x 9 Y y xŽ . Ž . Ž .Ž .Ý1 i i i½
is2

2l 2y log f x 9Ž .Ž .Ž .i 52 n y 1Ž .

lRny1r2 y1s F R l « Y yŽ .n 1ž /ž /2

lR1r2
n y1r2 y1q exp « Y F y y « Y R lŽ . Ž .Ž .1 1 nž /2

J M « say.Ž .
Therefore we can write

f YŽ .1
sup G V y nE V Y y V x M logŽ . Ž .Ž .n 1 1 ž /ž /n f xŽ .1x gFn

< <F w n nE V Y y V x ª 0 as n ª `.Ž . Ž . Ž .1 1

It therefore remains to consider the term

f YŽ .1
nE V Y y V x M log .Ž . Ž .Ž .1 1 ž /f xŽ .1

Now a Taylor series expansion of the integrand about x gives1

f YŽ .1
V Y y V x M logŽ . Ž .Ž .1 1 ž /f xŽ .1

1 V - ZŽ .12 3s V 9 x Y y x q V 0 x Y y x q Y y xŽ . Ž . Ž . Ž . Ž .1 1 1 1 1 1 1 1ž /2 6

1 2
= M 0 q Y y x M9 0 log f x 9 q Y y x T x , W ,Ž . Ž . Ž . Ž . Ž . Ž .Ž .1 1 i 1 1 1 12
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where
f WŽ . 21

T x , W s M0 log log f W 9Ž . Ž .Ž .Ž .1 1 1ž /f xŽ .1

f WŽ .1q log f W 0 M9 logŽ .Ž .1 ž /f xŽ .1

w x w xand where Z , W g x , Y or Y , x . However, since V has compact1 1 1 1 1 1
< .Ž i.Ž . < Ž i.Ž . <support, S say, there exists K - ` such that log f x , V x F K for

Žx g S, i s 1,2,3, and it is easy to check that M9 and M0 are bounded again
.by K say . Now

lR1r2
n

M 0 s 2 M9 0 s 2F yŽ . Ž . ž /2
so that

f YŽ .1
E n V Y y V x M logŽ . Ž .Ž .1 1 ž /f xŽ .1

1r2R l 1 1n 2s 2nF y V 0 x q log f x 9V 9 x E Y y xŽ . Ž . Ž . Ž .1 i 1 1 1ž /ž /2 2 2

qE B x , Y , n ,Ž .1 1

where
3 4< < < < < <E B x , Y , n F a K nE Y y x q a K nE Y y xŽ . Ž . Ž .1 1 1 1 2 1 1

5< <q a K nE Y y xŽ .3 1 1

w < Ž . <xand a , a and a are polynomials in K. Therefore, E B x , Y , n is1 2 3 1 1
Ž y1r2 .uniformly 0 n and so

< <sup G V x y GV x ª 0 as n ª `. IŽ . Ž .n
nx gFn

PROOF OF THEOREM 1.1. From Lemma 2.6, we have uniform convergence
for vectors contained in a set of limiting probability 1. This essentially proves

Ž .the result by Theorem 8.7 of Chapter 4 of Ethier and Kurtz 1986 . There
` wremains one further technical point: we need that C separates points seec

Ž . xEthier and Kurtz 1986 , page 113 . However, this is easily checked. I

The proof of Corollary 1.2 follows directly from the proof of Theorem 1.1.

3. Extensions. Theorem 1.1 assumes that p has the product formn
Ž .given in 1.1 . In this section we will discuss generalizations of this result.

� 4Assume in this section that p , n G 1 is a sequence of densities satisfyingn
the projective consistency requirement

p x n , x dx s p x n .Ž .Ž .H nq1 nq1 nq1 n
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Crucial to the asymptotic arguments of Section 2 is the fact that the limiting
Ž n. nvalue of G V x only depends on x through x . Therefore the first compo-n 1

nent of the process is asymptotically Markov. The following condition is
therefore an essential condition in any generalization of Theorem 1.1

Ž . � 4 ŽE1 The tail s-algebra, TT s F s X , n G 1 is p-trivial where p isnG1 n
.the appropriate limiting measure of the p ’s .n

Ž .In a thermodynamic context, E1 is a phase transition condition. The
Ž .product form for p given in 1.1 is essentially the infinite temperature case.n

Ž .It is difficult to formulate E1 into a general result giving sufficient
conditions for Theorem 1.1 to hold for a larger class of densities than those

Ž .satisfying the form of 1.1 . However, there are a number of interesting
examples where extensions are possible. We briefly sketch three directions for
extensions, although we do not give any formal proofs.

1. Suppose that p has the formn

n
np x s f x .Ž . Ž .Łn i i

is1

We allow the functions to be different; however, in order for any sensible
limit to be possible, an extra law of large numbers condition on these
functions is necessary to ensure that analogy of Lemma 2.1 holds. Under
such a condition, the proof of Theorem 1.1 can easily be generalized, and

Ž .weak convergence is obtained to the Langevin diffusion in 1.2 . We omit
details of this. The most interesting consequence of this result is that

Ž .although the form of h l in this example will turn out to be more
Ž .complicated than that appearing in 1.2 , relative efficiency as a function of

acceptance rate is unaltered, so that the ‘‘optimal efficiency’’ is again
achieved at an acceptance rate of 0.234. The robustness of this result is the
most useful practical implication of this paper. The product form density
appearing here serves only to preclude the possibility of nontrivial tail
s-algebras. However the robustness of the relationship between acceptance
rates and efficiency is likely to hold far more generally, where the tail
s-algebra is trivial.

2. Suppose p has the Markov formn

ny1
np x s f x P x , x ,Ž . Ž . Ž .Łn 1 1 i iq1

is1

Žwhere P is the transition kernal of an ergodic Markov chain which
.therefore has a trivial trail s-algebra . In this case a generalization of

Theorem 1.1 is possible. Here the weak limiting process needs to be an
infinite-dimensional diffusion to preserve the Markov property, and the
details of the analogous results to Lemmas 2.1, 2.5 and 2.6 need to be more

Žinvolved, requiring a rate of convergence condition such as geometric
.ergodicity for P .
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3. Suppose p has an exchangeable form. Suppose X , X , . . . is a randomn 1 2
sequence distributed according to p . Then by de Finetti’s theorem, for un

< <measurable in TT, X u , X u , . . . are conditionally iid. Therefore we would1 2
expect the limiting Langevin diffusion to be the conditioned diffusion

1 d log kŽ .1r2dX s h l dB q h l X dt ,Ž . Ž . Ž .t , 1 t t , 12 dx
Ž .where k is the conditional density assuming that this exists of X given1

u , where u is determined by the initial behavior of the initial sequence X .0
Recall that the initial value for the Markov chain is a initial sequence from
the stationary distribution of the limiting process on R n. In this example,
the limiting probability measure is not even defined. This gives therefore a
kind of asymptotic reducibility, and so the Metropolis algorithm in this

Ž .case is not O n .
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