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Understanding the Metropolis-Hastings Algorithm 
Siddhartha CHIB and Edward GREENBERG 

We provide a detailed, introductory exposition of the 
Metropolis-Hastings algorithm, a powerful Markov chain 
method to simulate multivariate distributions. A sim- 
ple, intuitive derivation of this method is given along 
with guidance on implementation. Also discussed are 
two applications of the algorithm, one for implementing 
acceptance-rejection sampling when a blanketing func- 
tion is not available and the other for implementing the al- 
gorithm with block-at-a-time scans. In the latter situation, 
many different algorithms, including the Gibbs sampler, 
are shown to be special cases of the Metropolis-Hastings 
algorithm. The methods are illustrated with examples. 

KEY WORDS: Gibbs sampling; Markov chain Monte 
Carlo; Multivariate density simulation; Reversible 
Markov chains. 

1. INTRODUCTION 
In recent years statisticians have been increasingly 

drawn to Markov chain Monte Carlo (MCMC) methods 
to simulate complex, nonstandard multivariate distribu- 
tions. The Gibbs sampling algorithm is one of the best 
known of these methods, and its impact on Bayesian statis- 
tics, following the work of Tanner and Wong (1987) and 
Gelfand and Smith (1990), has been immense as detailed 
in many articles, for example, Smith and Roberts (1993), 
Tanner (1993), and Chib and Greenberg (1993). A con- 
siderable amount of attention is now being devoted to the 
Metropolis-Hastings (M-H) algorithm, which was devel- 
oped by Metropolis, Rosenbluth, Rosenbluth, Teller, and 
Teller (1953) and subsequently generalized by Hastings 
(1970). This algorithm is extremely versatile and gives 
rise to the Gibbs sampler as a special case, as pointed out 
by Gelman (1992). The M-H algorithm has been used 
extensively in physics, yet despite the paper by Hastings, 
it was little known to statisticians until recently. Papers 
by Muller (1993) and Tierney (1994) were instrumental 
in exposing the value of this algorithm and stimulating 
interest among statisticians in its use. 

Because of the usefulness of the M-H alogrithm, appli- 
cations are appearing steadily in the current literature (see 
Muller (1993), Chib and Greenberg (1994), and Phillips 
and Smith (1994) for recent examples). Despite its obvi- 
ous importance, however, no simple or intuitive exposi- 
tion of the M-H algorithm, comparable to that of Casella 
and George (1992) for the Gibbs sampler, is available. 
This article is an attempt to fill this gap. We provide a 
tutorial introduction to the algorithm, deriving the algo- 
rithm from first principles. The article is self-contained 
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since it includes the relevant Markov chain theory, is- 
sues related to implementation and tuning, and empir- 
ical illustrations. We also discuss applications of the 
method, one for implementing acceptance-rejection sam- 
pling when a blanketing function is not available, devel- 
oped by Tierney (1994), and the other for applying the 
algorithm one "block at a time." For the latter situation, 
we present an important principle that we call the prod- 
uct of kernels principle and explain how it is the basis of 
many other algorithms, including the Gibbs sampler. In 
each case we emphasize the intuition for the method and 
present proofs of the main results. For mathematical con- 
venience, our entire discussion is phrased in the context 
of simulating an absolutely continuous target density, but 
the same ideas apply to discrete and mixed continuous- 
discrete distributions. 

The rest of the article is organized as follows. In 
Section 2 we briefly review the acceptance-rejection 
(A-R) method of simulation. Although not an MCMC 
method, it uses some concepts that also appear in the 
Metropolis-Hastings algorithm and is a useful introduc- 
tion to the topic. Section 3 introduces the relevant Markov 
chain theory for continuous state spaces, along with the 
general philosophy behind MCMC methods. In Section 4 
we derive the M-H algorithm by exploiting the notion of 
reversibility defined in Section 3, and discuss some impor- 
tant features of the algorithm and the mild regularity con- 
ditions that justify its use. Section 5 contains issues related 
to the choice of the candidate-generating density and guid- 
ance on implementation. Section 6 discusses how the algo- 
rithm can be used in an acceptance-rejection scheme when 
a dominating density is not available. This section also ex- 
plains how the algorithm can be applied when the variables 
to be simulated are divided into blocks. The final section 
contains two numerical examples, the first involving the 
simulation of a bivariate normal distribution, and the sec- 
ond the Bayesian analysis of an autoregressive model. 

2. ACCEPTANCE-REJECTION SAMPLING 

In contrast to the MCMC methods described be- 
low, classical simulation techniques generate non-Markov 
(usually independent) samples, that is, the successive ob- 
servations are statistically independent unless correlation 
is artificially introduced as a variance reduction device. 
An important method in this class is the A-R method, 
which can be described as follows: 

The objective is to generate samples from the abso- 
lutely continuous target density wF(x) = f(x)/K, where 
x C -RI, f(x) is the unnormalized density, and K is the 
(possibly unknown) normalizing constant. Let h(x) be a 
density that can be simulated by some known method, and 
suppose there is a known constant c such that f(x) < ch(x) 
for all x. Then, to obtain a random variate from 7rF(.), 

* (*) Generate a candidate Z from h(.) and a value it 
from U1(0, 1), the uniform distribution on (0, 1). 
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* If u < f (Z)/ch(Z) 
-return Z = y. 

* Else 
-goto (*). 

It is easily shown that the accepted value y is a random 
variate from wF(.). For this method to be efficient, c must 
be carefully selected. Because the expected number of 
iterations of steps 1 and 2 to obtain a draw is given by c-, 
the rejection method is optimized by setting 

f(x) 
XF h(x)' 

Even this choice, however, may result in an undesirably 
large number of rejections. 

The notion of a generating density also appears in the 
M-H algorithm, but before considering the differences 
and similarities, we turn to the rationale behind MCMC 
methods. 

3. MARKOV CHAIN MONTE CARLO 
SIMULATION 

The usual approach to Markov chain theory on a contin- 
uous state space is to start with a transition kernel P(x,A) 
for x E ?Rd and A C 3, where 3 is the Borel o-field on kl. 
The transition kernel is a conditional distribution function 
that represents the probability of moving from x to a point 
in the set A. By virtue of its being a distribution function, 
P(x, RJd) = 1, where it is permitted that the chain can make 
a transition from the point x to x, that is, P(x, {x}) is not 
necessarily zero. 

A major concern of Markov chain theor, [see 
Nuinmelin (1984), Billingsley (1986), Bhattacharya and 
Waymire (1990), and, especially, Meyn and Tweedie 
(1993)] is to determine conditions under which there exists 
an invariant distribution -F* and conditions under which it- 
erations of the transition kernel converge to the invariant 
distribution. The invariant distribution satisfies 

r*(dy)= J P(x,dy)7r(x)dx (1) 

where wF is the density with respect to Lebesgue measure 
of wF* (thus wF*(dy) = wF(y) dy). The nith iterate is given by 
P("l)(x, A) = fR,i p('- 1)(x, dy)P(y, A), where P(')(x, dy) = 
P(x, dy). Under conditions discussed in the following, it 
can be shown that the nth iterate converges to the invariant 
distribution as n -> oc. 

MCMC methods turn the theory around: the invariant 
density is known (perhaps up to a constant multiple) it is 
wF(.), the tatrget density from which samples are desired- 
but the transition kernel is unknown. To generate samples 
from wFQ), the methods find and utilize a transition kernel 
P(x, dy) whose nth iterate converges to wF(.) for large ni. 
The process is started at an arbitrary x and iterated a large 
number of times. After this large number, the distribu- 
tion of the observations generated from the simulationi is 
approximately the target distribution. 

The problem then is to find an appropriate P(x, dy). 
What might appear to be a search for the proverbial needle 
in a haystack is somewhat simplified by the following con- 
siderations. Suppose that the transition kernel, for some 
function p(x, y), is expressed as 

P(x, dy) = p(x: y) dy7 + r(x)>5-(dy), (2) 

where p(x, x) = 0, X(dy) = 1 if x c dy and 0 otherwise, and 
U(x) = 1 - f,i p(x, y) dy is the probability that the chain re- 
mains at x. From the possibility that r(x) 7 0, it should be 
clear that the integral of p(x, y) over y is not necessarily 1. 

Now, if the function p(x, y) in (2) satisfies the reversibil- 
ity condition (also called "detailed balance," "microscopic 
reversibility," and "time reversibility") 

wT(X)p(X,y) = w ()))p(y),x), (3) 

then wF(.) is the invariant density of P(x, -) (Tierney 1994). 
To verify this we evaluate the right-hand side of (1): 

J P(x, A)7r(x) dx = p(x, y) dy -(x) dx 

+ J r(x)6,(A)wF(x) dx 

= j [J/ P(x y-(x) dx] dy 

+ j r(x)F(x) dx 

= j [JPO, x-(y) dx]d.y 

+ j r(x)-r(x) dx 

- 1-(y))lr(Y)dy +jr(x)-r(x)dx 

= F N')ci. (4) 

Intuitively, the left-hand side of the reversibility condition 
is the unconditional probability of moving from x to y, 
where x is generated from wF(*), and the right-hand side is 
the unconditional probability of moving from y to x, where 
y is also generated from wF( ). The reversibility condition 
says that the two sides are equal, and the above result 
shows that wF*(.) is the invariant distribution for P(., .). 

This result gives us a sufficient condition (reversibility) 
that must be satisfied by p(x, y). We now show how the 
Metropolis-Hastings algorithm finds a p(x, y) with this 
property. 

4. THE METROPOLIS-HASTINGS 
ALGORITHM 

As in the A-R method, suppose we have a density 
that can generate candidates. Since we are dealing with 
Markov chains, however, we permit that density to de- 
pend on the current state of the process. Accordingly, 
the candidate-gener-ating density is denoted q(x, y), where 
f q(x, y) dy = 1. This density is to be interpreted as saying 
that when a process is at the poinit x, the density generates 
a value y from q(x, y). If it happens that q(x, y) itself sat- 
isfies the reversibility condition (3) for all x, y, our search 
is over. But most likely it will not. We might find, for 
example, that for some x, y, 

wr(x)q(x,y2) > wr(y)q(y,x). (5) 

In this case, speaking somewhat loosely, the process 
moves from x to)' too often and from)y to x too rarely. 
A convenienlt way to correct this condition is to reduce the 
number of moves from x to)' by introducing a probability 
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o(x, y) < 1 that the move is made. We refer to o(x, y) as 
the probability of move. If the move is not made, the pro- 
cess again returns x as a value from the target distribution. 
(Note the contrast with the A-R method in which, when 
a y is rejected, a new pair (y, it) is drawn independently 
of the previous value of y.) Thus transitions from x to y 
(y # x) are made according to 

PMH(X, Y) - q(x, y)oa(x, y), x 7 y, 
where o(x, y) is yet to be determined. 

Consider again inequality (5). It tells us that the move- 
ment from y to x is not made often enough. We should 
therefore define cv(y, x) to be as large as possible, and 
since it is a probability, its upper limit is 1. But now the 
probability of move cv(x, y) is determined by requiring that 
PMH(X, Y) satisfies the reversibility condition, because then 

7r(x)q(x, y)ci(x, y) = 7r(y)q(y, x)a(y, x) 
= wr(y)q(y,x). (6) 

We now see that cv(x, y) = 7r(y)q(y, x)/7r(x)q(x, y). Of 
course, if the inequality in (5) is reversed, we set cv(x, y) = 
1 and derive cv(y, x) as above. The probabilities cv(x, y) and 
cv(y, x) are thus introduced to ensure that the two sides of 
(5) are in balance or, in other words, that PMH(X, Y) satis- 
fies reversibility. Thus we have shown that in order for 
PMH(X, Y) to be reversible, the probability of move must be 
set to 

o(x, y) = mmn [w(y)q(y, x), 1, if 7(x)q(x,y) > 0 
x7 y(x)q(x, y)>j 

= 1, otherwise. 

To complete the definition of the transition kernel for 
the Metropolis-Hastings chain, we must consider the pos- 
sibly nonzero probability that the process remains at x. As 
defined above, this probability is 

r(x) = 1 jq(x, y)a(x, y) dy. 

Consequently, the transition kernel of the M-H chain, de- 
noted by PMH(X, dy), is given by 

PMH(X, dy) = q(x, y)a(x, y) dy 

+ [I X q(x,y)a(x,y)dy] d (dy), 

a particular case of (2). Because PMH(X, Y) is reversible by 
construction, it follows from the argument in (4) that the 
M-H kernel has 7r(x) as its invariant density. 

Several remarks about this algorithm are in order. First, 
the M-H algorithm is specified by its candidate-generating 
density q(x, y) whose selection we take up in the next sec- 
tion. Second, if a candidate value is rejected, the current 
value is taken as the next item in the sequence. Third, 
the calculation of c(x, y) does not require knowledge of 
the normalizing constant of 7rw() because it appears both in 
the numerator and denominator. Fourth, if the candidate- 
generating density is symmetric, an important special case, 
q(x, y) = q(y, x) and the probability of move reduces to 
7r(y)/7r(x); hence, if 7r(y) > 7r(x), the chain moves to y; 
otherwise, it moves with probability given by 7r(y)/wr(x). 
In other words, if the jump goes "uphill," it is always ac- 
cepted; if "downhill," it is accepted with a nonzero proba- 
bility. [See Fig. 1 where, from the current point x, a move 

x Yi Y2 

Figure 1. Calculating Probabilities of Move With Symmetric 
Candidate-Generating Function (see text). 

to candidate Yi is made with certainty, while a move to 
candidate Y2 is made with probability 7r(y2)/7r(x).] This 
is the algorithm proposed by Metropolis et al. (1953). In- 
terestingly, it also forms the basis for several optimization 
algorithms, notably the method of simulated annealing. 

We now summarize the M-H algorithm in algorithmic 
form initialized with the (arbitrary) value x(?): 

* Repeatforj=1,2,...,N. 
* Generate y from q(x(J), ) and u from U(O, 1). 
* If it < c(x), y) 

-set x(y+l)=Y 
* Else 

-set P+)= x(j)- 

* Return the values {x(1), x(2),.. . (N) 

As in any MCMC method, the draws are regarded as a 
sample from the target density 7r(x) only after the chain has 
passed the transient stage and the effect of the fixed starting 
value has become so small that it can be ignored. In fact, 
this convergence to the invariant distribution occurs under 
mild regularity conditions. The regularity conditions re- 
quired are irreducibility and aperiodicity [see Smith and 
Roberts (1993)]. What these mean is that, if x and y are in 
the domain of 7r(.), it must be possible to move from x to dy 
in a finite number of iterations with nonzero probability, 
and the number of moves required to move from x to dy is 
not required to be a multiple of some integer. These con- 
ditions are usually satisfied if q(x, y) has a positive density 
on the same support as that of 7rwQ). It is usually also satis- 
fied by a q(x, y) with a restricted support (e.g., a uniform 
distribution around the current point with finite width). 

These conditions, however, do not determine the rate of 
convergence [see Roberts and Tweedie (1994)], so there 
is an empirical question of how large an initial sample 
of size no (say) should be discarded and how long the 
sampling should be run. One possibility, due to Gelman 
and Rubin (1992), is to start multiple chains from dis- 
persed initial values and compare the within and between 
variation of the sampled draws. A simple heuristic that 
workis in some situations is to make no and N increasing 
functions of the first-order serial correlation in the output. 
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This entire area, however, is quite unsettled and is being 
actively researched. For more details the reader should 
consult Gelman and Rubin (1992) and the accompanying 
discussion. 

5. IMPLEMENTATION ISSUES: 
CHOICE OF q(x,y) 

To implement the M-H algorithm, it is necessary that a 
suitable candidate-generating density be specified. Typi- 
cally, this density is selected from a family of distributions 
that requires the specification of such tuning parameters 
as the location and scale. Considerable recent work is be- 
ing devoted to the question of how these choices should 
be made and, although the theory is far from complete, 
enough is known to conduct most practical simulation 
studies. 

One family of candidate-generating densities, that ap- 
pears in the work of Metropolis et al. (1953), is given 
by q(x,y) = ql(y - x), where qlQ) is a multivariate den- 
sity [see Muller (1993)]. The candidate y is thus drawn 
according to the process y = x + z, where z is called the 
increment random variable and follows the distribution ql. 
Because the candidate is equal to the current value plus 
noise, this case is called a random walk chain. Possible 
choices for qi include the multivariate normal density and 
the multivariate-t with the parameters specified according 
to the principles described below. Note that when qi is 
symmetric, the usual circumstance, ql(z) = ql(-z); the 
probability of move then reduces to 

cv(x, y) = min 7{(X) I 

As mentioned earlier, the same reduction occurs if q(x, y) = 

q(y, x). 
A second family of candidate-generating densities is 

given by the form q(x,y) = q2(Y) [see Hastings (1970)]. 
In contrast to the random walk chain, the candidates are 
drawn independently of the current location x-an inde- 
pendence chain in Tierney's (1994) terminology. As in 
the first case, we can let q2 be a multivariate normal or 
multivariate-t density, but now it is necessary to specify 
the location of the generating density as well as the spread. 

A third choice, which seems to be an efficient solu- 
tion when available, is to exploit the known form of 7rT() 
to specify a candidate-generating density [see Chib and 
Greenberg (1994)]. For example, if 7r(t) can be written as 
7r(t) c< 4'(t)h(t), where h(t) is a density that can be sam- 
pled and 9,(t) is uniformly bounded, then set q(x, y) = h(y) 
(as in the independence chain) to draw candidates. In this 
case, the probability of move requires only the computa- 
tion of the 4' function (not 7r or h) and is given by 

cv(x, y) = min { (x): 

A fourth method of drawing candidates is to use the A-R 
method with a pseudodominating density. This method 
was developed in Tierney (1994), and because it is of inde- 
pendent interest as an M-H acceptance-rejection method, 
we explain it in Section 6.1. 

A fifth family, also suggested by Tierney (1994), is 
represented by a vector autoregressive process of or- 
der 1. These aultoregressive chains are produced by letting 

y = a + B(x - a) + z, where a is a vector and B is a matrix 
(both conformable with x) and z has q as its density. Then, 
q(x, y) = q(y - a - B(x - a)). Setting B = -I produces 
chains that are reflected about the point a and is a sim- 
ple way to induce negative correlation between successive 
elements of the chain. 

We now return to the critical question of choosing the 
spread, or scale, of the candidate-generating density. This 
is an important matter that has implications for the ef- 
ficiency of the algorithm. The spread of the candidate- 
generating density affects the behavior of the chain in at 
least two dimensions: one is the "acceptance rate" (the 
percentage of times a move to a new point is made), and 
the other is the region of the sample space that is covered 
by the chain. To see why, consider the situation in which 
the chain has converged and the density is being sampled 
around the mode. Then, if the spread is extremely large, 
some of the generated candidates will be far from the cur- 
rent value, and will therefore have a low probability of 
being accepted (because the ordinate of the candidate is 
small relative to the ordinate near the mode). Reducing 
the spread will correct this problem, but if the spread is 
chosen too small, the chain will take longer to traverse the 
support of the density, and low probability regions will be 
undersampled. Both of these situations are likely to be 
reflected in high autocorrelations across sample values. 

Recent work by Roberts, Gelman, and Gilks (1994) dis- 
cussed this issue in the context of q1 (the random walk pro- 
posal density). They show that if the target and proposal 
densities are normal, then the scale of the latter should be 
tuned so that the acceptance rate is approximately .45 in 
one-dimensional problems and approximately .23 as the 
number of dimensions approaches infinity, with the op- 
timal acceptance rate being around .25 in as low as six 
dimensions. This is similar to the recommendation of 
Muller (1993), who argues that the acceptance rate should 
be around .5 for the random walk chain. 

The choice of spread of the proposal density in the 
case of q2 (the independence proposal density) has also 
come under recent scrutiny. Chib and Geweke [work in 
progress] show that it is important to ensure that the tails of 
the proposal density dominate those of the target density, 
which is similar to a requirement on the importance sam- 
pling function in Monte Carlo integration with importance 
sampling [see Geweke (1989)]. It is important to mention 
the caveat that a chain with the "optimal" acceptance rate 
may still display high autocorrelations. In such circum- 
stances it is usually necessary to try a different family of 
candidate-generating densities. 

6. APPLICATIONS OF THE M-H ALGORITHM 

We hope that the reader is now convinced that the 
M-H algorithm is a useful and straightforward device with 
which to sample an arbitrary multivariate distribution. In 
this section we explain two uses of the algorithm, one 
involving the A-R method, and the other for implement- 
ing the algorithm with block-at-a-time scans. In the latter 
situation many different algorithms, including the Gibbs 
sampler, are shown to arise as special cases of the M-H 
algorithm. 
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6.1 An M-H Acceptance-Rejection Algorithm 

Recall that in the A-R method described earlier, a con- 
stant c and a density h(x) are needed such that ch(x) 
dominates or blankets the (possibly) unnormalized target 
density f(x). Finding a c that does the trick may be dif- 
ficult in some applications; moreover, if f(x) depends on 
parameters that are revised during an iterative cycle, find- 
ing a new value of c for each new set of the parameters 
may significantly slow the computations. For these rea- 
sons it is worthwhile to have an A-R method that does not 
require a blanketing function. Tierney's (1994) remark- 
able algorithm does this by using an A-R step to generate 
candidates for an M-H algorithm. This algorithm, which 
seems complicated at first, can be derived rather easily 
using the intuition we have developed for the M-H algo- 
rithm. 

To fix the context again: we are interested in sampling 
the target density 7r(x), 7r(x) = f(x)/K, where K may be 
unknown, and a pdf h(.) is available for sampling. Suppose 
c > 0 is a known constant, but thatf(x) is not necessarily 
less than ch(x) for all x; that is, ch(x) does not necessarily 
dominate f(x). It is convenient to define the set C where 
domination occurs: 

C ={x: f(x)< ch(x)}. 

In this algorithm, given x(") = x, the next value x("+l) is 
obtained as follows: First, a candidate value z is obtained, 
independent of the cutrrent value x, by applying the A-R 
algorithm with ch( ) as the "dominating" density. The A- 
R step is implemented through steps 1 and 2 in Section 2. 

What is the density of the rv y that comes through this 
step? Following Rubinstein (1981, pp. 45-46), we have 

q(y) = P(yI U < f(Z)/ch(Z)) 
P(U < f(Z)/ch(Z) Z = y) x h(y) 

Pr(U < f(Z)/ch(Z)) 

But because P(U < f(Z)/ch(Z) I Z = y) = min{f(y)/ 
ch(y), 1}, it follows that 

q(y) _ min{f(y)/ch(y), 1} x h(y) 
d 

where d _ Pr(U < f(Z)/ch(Z)). By simplifying the nu- 
merator of this density we obtain a more useful represen- 
tation for the candidate-generating density: 

q(y) =f(y)/cd, ify E C 
= h(y)/d, ify C. (7) 

(Note that there is no need to write q(x, y) for this density 
because the candidate y is drawn independently of x.) 

Because ch(y) does not dominate the target density in 
CC (by definition), it follows that the target density is not 
adequately sampled there. See Figure 2 for an illustration 
of a nondominating density and the C region. This can be 
corrected with an M-H step applied to the y values that 
come through the A-R step. Since x and y can each be in 
C or in CC, there are four possible cases: (a) x E C, y E C; 
(b) and (c) x fC, y C Corx E C, y fC; and (d) x fC, 
y E4C. 

The objective now is to find the M-H moving proba- 
bility cv(x, y) such that q(y)c~(x, y) satisfies reversibility. 

Figure 2. Acceptance-Rejection Sampling With Pseudodominat- 
ing Density ch(x). 

To proceed, we derive cv(x, y) in each of the four possible 
cases given above. As in (2), we consider 7r(x)q(y) and 
-r(y)q(x) [or, equivalently, f(x)q(y) and f(y)q(x)] to see 
how the probability of moves should be defined to ensure 
reversibility. That is, we need to find cv(x, y) and c(y, x) 
such that 

f (x)q(y)ca(x, y) = f (y)q(x)ca(y, x) 

in each of the cases (a)-(d), where q(y) is chosen from (7). 

Case (a): x E C, y E C. In this case it is easy to verify 
thatf(x)q(y) _ f(x)f (y)/cd is equal to f (y)q(x). Accord- 
ingly, setting cv(x, y) = c(y, x) = 1 satisfies reversibility. 

Cases (b) and (c). x f C, y E C or x E C, y f C. 
In the first case f(x) > ch(x), or h(x) < f(x)/c, which 
implies (on multiplying both sides by f (y)/d) that 

f (y)h(x) f (y)f (x) 
d cd 

or, from (7), f(y)q(x) < f(x)q(y). We now see that there 
are relatively too few transitions from y to x and too many 
in the opposite direction. By setting ci(y, x) = 1 the first 
problem is alleviated, and then ca(x, y) is determined from 

f(y)h(x) = ca(x,y) cd 
d c 

which gives ca(x, y) = ch(x)/f (x). If x E C, y , C, reverse 
the roles of x and y above to find that ca(x, y) = 1 and 
a (y,x) = ch (y)/f(y). 

Case (d): x f C, y f C. In this case we have 
f(x)q(y) = f(x)h(y)/d and f (y)q(x) = f (y)h(x)/d, and 
there are two possibilities. There are too few transitions 
from y to x to satisfy reversibility if 

f (x)h() > f (y)q(x). 
d 

In that case set cv(y, x) = 1 and determine cv(x, y) from 

f (x)h(y) f (y)h(x) 
cv(x, y) d/ d 
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which implies 

(x, y) = min { f (y)h(x) I 11 
f (x)h(y) J 

If there are too few transitions from x to y, just interchange 
x and y in the above discussion. 

We thus see that in two of the cases, those where x E C, 
the probability of move to y is 1, regardless of where y lies. 
To summarize, we have derived the following probability 
of move to the candidates y that are produced from the 
A-R step: 

* Let Cl = {f(x) < ch(X)}; and C2 = {f(y) < ch(y)}. 
* Generate it from U(0, 1) and 

-if Cl = I, then let a = 1; 
-if Cl = 0 and C2 = 1, then let ae = (ch(x)/f(x)); 
-if Cl = 0 and C2 = 0, then let ae = min{(f(y)h(x)/ 

f(x)h(y), )1}. 
* If it < c 

-return y. 
* Else 

-return x. 

6.2 Block-at-a-Time Algorithms 

Another interesting situation arises when the M-H al- 
gorithm is applied in turn to subblocks of the vector x, 
rather than simultaneously to all elements of the vector. 
This "block-at-a-time" or "variable-at-a-time" possibility, 
which is discussed in Hastings (1970, sec. 2.4), often sim- 
plifies the search for a suitable candidate-generating den- 
sity and gives rise to several interesting hybrid algorithms 
obtained by combining M-H updates. 

The central idea behind these algorithms may be il- 
lustrated with two blocks, x = (xI x2), where xi E Rd. 

Suppose that there exists a conditional transition kernel 
PI (x, dyl 1 x2) with the property that, for a fixed value 
of X2, 7*12(. 1 X2) iS its invariant distribution (with density 
712( X2)), that is, 

7Fj12(dyi I x2) = PI (xI dy I x2)7m12(x1 I x2) dxl. (8) 

Also, suppose the existence of a conditional transition ker- 
nel P2(x2, dy2 I x1) with the property that, for a given xl, 
7r*1(. I x1) is its invariant distribution, analogous to (8). 
For example, PI could be the transition kernel generated 
by a Metropolis-Hastings chain applied to the block x, 
with x2 fixed for all iterations. Now, somewhat surpris- 
ingly, it turns out that the product of the transition kernels 
has 7r(x], x2) as its invariant density. The practical sig- 
nificance of this principle (which we call the product of 
kernels principle) is enormous because it allows us to take 
draws in succession from each of the kernels, instead of 
having to run each of the kernels to convergence for every 
value of the conditioning variable. In addition, as sug- 
gested above, this principle is extremely useful because it 
is usually far easier to find several conditional kernels that 
converge to their respective conditional densities than to 
find one kernel that converges to the joint. 

To establish the product of kernels principle it is nec- 
essary to specify the nature of the "scan" through the 
elements of x (Hastings mentions several possibilities). 
Suppose the transition kiernel P1 (., x2) produces Yi given 

x1 and x2, and the transition kernel P2(A, Yi) generates 
Y2 given x2 and Yl. Then the kernel formed by multiplying 
the conditional kernels has 7*(., ) as its invariant distri- 
bution: 

If P,(XI dyI I X2)P2(X2, dy2 I Y)(X1, X2) dxl dx2 

= P2(X2 dY2 Yi ) [PI (XI dYl I x2)7112(x I x2)dxI] 

X 72(X9) dX2 

= JP2(x2) dY2 YD)7r *2(dyl1 X2)w2(x2)dx2 

f jP(xd dy )1t72102 IYI)7*(dy1) 

= Iw(dy1) fP2(x2,dy2 I Y172l1 (X2 I Y1)dX2 

= wj (dy1)7r11(dy2 I YI) 
= 7 Y*(dyi 

where the third line follows from (8), the fourth from Bayes 
theorem, the sixth from assumed invariance of P2, and the 
last from the law of total probability. 

With this result in hand, several important special cases 
of the M-H algorithm can be mentioned. The first special 
case is the so-called "Gibbs sampler." This algorithm is 
obtained by letting the transition kernel P1 (x1, dy, 1 x2) = 

7Fj2(dyi x2), and P2(x2,dy2 I Yi) = 7r*1(dy2 I y), that 
is, the samples are generated directly from the "full con- 
ditional distributions." Note that this method requires that 
it be possible to generate independent samples from each 
of the full conditional densities. The calculations above 
demonstrate that this algorithm is a special case of the 
M-H algorithm. Alternatively, it may be checked that the 
M-H acceptance probability ca(x, y) = 1 for all x, y. 

Another special case of the M-H algorithm is the so- 
called "M-H within Gibbs" algorithm (but see our com- 
ments on terminology below), in which an intractable full 
conditional density [say 71122(Y 1 x2)] is sampled with the 
general form of the M-H algorithm described in Section 4 
and the others are sampled directly from their full condi- 
tional distributions. Many other algorithms can be sim- 
ilarly developed that arise from multiplying conditional 
kernels. 

We conclude this section with a brief digression on ter- 
minology. It should be clear from the discussion in this 
subsection that the M-H algorithm can take many different 
forms, one of which is the Gibbs sampler. Because much 
of the literature has overlooked Hastings's discussion of 
M-H algorithms that scan one block at a time, some un- 
fortunate usage ("M-H within Gibbs," for example) has 
arisen that should be abandoned. In addition, it may be de- 
sirable to define the Gibbs sampler rather narrowly, as we 
have done above, as the case in which all full conditional 
kernels are sampled by independent algorithms in a fixed 
order. Although a special case of the M-H algorithm, it is 
an extremely important special case. 

7. EXAMPLES 

We next present two examples of the use of the M-H 
algorithm. In the first we simulate the bivariate normal 
to illustrate the effects of various choices of q(x, y); the 
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second example illustrates the value of setting up blocks 
of variables in the Bayesian posterior analysis of a second- 
order autoregressive time series model. 

7.1 Simulating a Bivariate Normal 

To illustrate the M-H algorithm we consider the simu- 
lation of the bivariate normal distribution No(ut, E), where 
,u = (1, 2)' is the mean vector and E = (-i ): 2 x 2 is the 
covariance matrix given by 

1 .90 
E .9 1J' 

Because of the high correlation the contours of this dis- 
tribution are "cigar-shaped," that is, thin and positively 
inclined. Although this distribution can be simulated di- 
rectly in the Choleski approach by letting y = t + P'ui, 
where t - N2(0,12) and P satisfies P'P = , this 
well-known problem is useful for illustrating the M-H 
algorithm. 

From the expression for the multivariate normal den- 
sity, the probability of move (for a symmetric candidate- 
generating density) is 

a(X, y)= min [ 2( ( )]7} (expF I - pai)'(Y - At)] 

x y Ek2. (9) 

We use the following candidate-generating densities, for 
which the parameters are adjusted by experimentation to 
achieve an acceptance rate of 40% to 50%: 

1. Random walk generating density (y = x + z), where 
the increment random variable z is distributed as bivariate 
uniform, that is, the ith component of z is uniform on the 
interval (-6i, hi). Note that ?1 controls the spread along 
the first coordinate axis and 62 the spread along the second. 
To avoid excessive moves we let 6, = .75 and 62 = 1. 

2. Random walk generating density (y = x + z) with 
z distributed as independent normal N2(0, D), where D = 

diagonal(.6, .4). 
3. Pseudorejection sampling generating density with 

"dominating function" ch(x) = c(27)-ll D 1-/2 exp[- 1 

(x - pI)'D(x - i)], where D = diagonal(2, 2) and c = .9. 
The trial draws, which are passed through the A-R step, 
are thus obtained from a bivariate, independent normal 
distribution. 

4. The autoregressive generating density y = ,u - (x - 
A) + z, where z is independent uniform with ?i = 1 = ?2. 
Thus values of y are obtained by reflecting the current 
point around At and then adding the increment. 

Note that the probability of move in cases 1, 2, and 4 is 
given by (9). In addition, the first two generating densities 
do not make use of the known value of pt, although the 
values of the 6i are related to E. In the third generating 
density we have set the value of the constant c to be smaller 
than that which leads to true domination. For domination 
it is necessary to let all diagonal entries of D be equal to 
1.9 (the largest eigenvalue of S) and to set c = D /Z 
[see Dagpunar (1988, p. 159)]. 

Each of these four candidate-generating densities repro- 
duces the shape of the bivariate normal distribution being 

simulated, although overall the best result is obtained from 
the fourth generating density. To illustrate the character- 
istics of the output, the top panel of Figure 3 contains 
the scatter plot of N = 4,000 simulated values from the 
Choleski approach and the bottom panel the scatter plot 
of N = 6,000 simulated values using the fourth candidate- 
generating density. More observations are taken from the 
M-H algorithm to make the two plots comparable. The 
plots of the output with the other candidate-generating 
densities are similar to this and are therefore omitted. At 
the suggestion of a referee, points that repeat in the M-H 
chain are "jittered" to improve clarity. The figure clearly 
reveals that the sampler does a striking job of visiting the 
entire support of the distribution. This is confirmed by the 
estimated tail probabilities computed from the M-H out- 
put for which the estimates are extremely close to the true 
values. Details are not reported to save space. 

For the third generating density we found that reduc- 
tions in the elements of D led to an erosion in the number 
of times the sampler visited the tails of the distribution. 
In addition, we found that the first-order serial correlation 
of the sampled values with the first and second candidate- 
generating densities is of the order .9, and with the other 
two it is .30 and .16, respectively. The high serial cor- 
relation with the random walk generating densities is not 
unexpected and stems from the long memory in the can- 
didate draws. Finally, by reflecting the candidates we see 
that it is possible to obtain a beneficial reduction in the 
serial correlation of the output with little cost. 

7.2 Simulating a Bayesian Posterior 

We now illustrate the use of the M-H algorithm to sam- 
ple an intractable distribution that arises in a stationary 
second-order autoregressive [AR(2)] time series model. 
Our presentation is based on Chib and Greenberg (1994), 
which contains a more detailed discussion and results for 
the general ARMA( p, q) model. 

For our illustration, we simulated 100 observations from 
the model 

Yt = 0i't-i + 02Yt-2 + Et, t = 1, 2, . . . 100, (10) 

where 1 = 1, 02 =-.5, and Et N(0, 1). The values 
Of 0 = (01, 2) lie in the region S c R22 that satisfies the 
stationarity restrictions 

?'1+?)2 < l; -1+ 02 < 02 2>- 

Following Box and Jenkins (1976), we express the (exact 
or unconditional) likelihood function for this model given 
the n = 100 data values Y,n = (Yl, Y2, .., y,)' as 

1,2) = 4 - u2) x (0_2)-(n-2)/2 

x exp - w ,0 (11) 

where wt - (Yt- I, Yt-2)', 

is f ~( ) = ((X2) l Vl|l2exp K-22Y 21V- ( 12) 

isthe density of Y2 = (Yl,Y2' 
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Figure 3. Scatter Plots of Simulated Draws. Top panel: Generated by Choleski approach. Bottom panel: Generated by M-H with reflection 
candidate-generating density. 

and the third term in (11) is proportional to the density of 
the observations (Y3 .. . ., y,) given Y2. 

If the only prior information available is that the process 
is stationary, then the posterior distribution of the param- 
eters is 

7r(0 o-2 1 y l) X l(, 502)j[o C S], 

where I[r C S] is 1 if C C S and 0 otherwise. 
How can this posterior density be simulated? The an- 

swer lies in recognizing two facts. First, the blocking 
strategy is useful for this problem by taking ?b and CJ2 as 
blocks. Second, from the regression ANOVA decomposi- 
tion, the exponential term of (11) is proportional to 

exp 2 

where GI = G-1 Zt3(w,y,) and G = >i2L3(w,w'). This is 
the kernel of the normal density with mean ?b and covari- 
ance matrix ou2G-1. These observations immediately lead 
to the following full conditional densities for c2 and q: 

1. The density of c2 given X and Yl, is inverted gamma 
with parameters n/2 and Y2V1 Y2 + Zt(yt-w 

2. The density of ? given cJ2 and Ysl is 

wQ y$ " Y112) DC PQ$2) X {fror( I u -2G-1)Ir[ C SI 
(13) 

wherefnor is the normal density function. 

A sample of draws from w(ou2, q $ Yn) can now be ob- 
tained by successively sampling ?b from ir( I Y, o2), and 
given this value of q, simulating cJ2 from 1r((J2 y Yn ( i). 
The latter simulation is straightforward. For the former, 
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Table 1. Summaries of the Posterior Distribution for 
Simulated AR(2) Model 

Posterior 

Param. Mean Num. SE SD Median Lower Upper Corr. 

01 1.044 .002 .082 1.045 .882 1.203 .133 
02 -.608 .001 .082 -.610 -.763 -.445 .109 
a2 1.160 .003 .170 1.143 .877 1.544 .020 

because it can be shown that IV-' 1/2 is bounded for all 
values of q in the stationary region, we generate candi- 
dates from the density in curly braces of (13), following 
the idea described in Section 5. Then, the value of q is 
simulated as: At thejth iteration (given the current value 

2(i)), draw a candidate 0(i+?) from a normal density with 
mean X and covariance o2-J)G-1; if it satisfies stationarity, 
move to this point with probability 

min{kl /(0(J+) Io-2(,)),} 

mm 
(J) 

02(J))1 
and otherwise set 0/j+) = /i), where (F, -) is defined in 
(12). The A-R method of Section 2 can also be applied 
to this problem by drawing candidates $0+') from the nor- 
mal density in (13) until U < f(q(+1l), 2(j)). Many draws 
of X may be necessary, however, before one is accepted 
because T(q,o 2) can become extremely small. Thus the 
direct A-R method, although available, is not a competi- 
tive substitute for the M-H scheme described above. 

In the sampling process we ignore the first no = 500 
draws and collect the next N = 5,000. These are used 
to approximate the posterior distributions of X and o2. 
It is worth mentioning that the entire sampling process 
took just 2 minutes on a 50 MHz PC. For comparison we 
obtained samples from the A-R method, which took about 
4 times as long as the M-H algorithm. 

The posterior distributions are summarized in Table 1, 
where we report the posterior mean (the average of the 
simulated values), the numerical standard error of the pos- 
terior mean (computed by the batch means method), the 
posterior standard deviations (the standard deviation of 
the simulated values), the posterior median, the lower 2.5 
and upper 97.5 percentiles of the simulated values, and 
the sample first-order serial correlation in the simulated 
values (which is low and not of concern). From these re- 
sults it is clear that the M-H algorithm has quickly and 
accurately produced a posterior distribution concentrated 
on the values that generated the data. 

8. CONCLUDING REMARKS 

Our goal in this article is to provide a tutorial expo- 
sition of the Metropolis-Hastings algorithm, a versatile, 
efficient, and powerful simulation technique. It borrows 
from the well-known A-R method the idea of generating 
candidates that are either accepted or rejected, but then 
retains the current value when rejection takes place. The 
Markov chain thus generated can be shown to have the 
target distribution as its limiting distribution. Simulat- 
ing from the target distribution is then accomplished by 

running the chain a large number of times. We provide 
a simple, intuitive justification for the form taken by the 
probability of move in the M-H algorithm by showing its 
relation to reversibility. We also discuss implementation 
issues and two applications, the M-H acceptance rejection 
algorithm and the use of the algorithm in block-at-a-time 
setting. Finally, the procedures are illustrated with two 
examples. 

[Received Ap-il 1994. Revised Jiami-cy 1995. ] 
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