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L1-Norm Quantile Regression

Youjuan LI and Ji ZHU

Classical regression methods have focused mainly on estimating conditional mean
functions. In recent years, however, quantile regression has emerged as a comprehen-
sive approach to the statistical analysis of response models. In this article we consider
the L1-norm (LASSO) regularized quantile regression (L1-norm QR), which uses the
sum of the absolute values of the coefficients as the penalty. The L1-norm penalty
has the advantage of simultaneously controlling the variance of the fitted coefficients
and performing automatic variable selection. We propose an efficient algorithm that
computes the entire solution path of the L1-norm QR. Furthermore, we derive an esti-
mate for the effective dimension of the L1-norm QR model, which allows convenient
selection of the regularization parameter.

Key Words: Effective dimension; LASSO; Linear programming; L1-norm penalty;
Variable selection.

1. INTRODUCTION

Classical regression methods have focused mainly on estimating conditional mean
functions. In recent years, however, quantile regression has emerged as a comprehensive
approach to the statistical analysis of response models, and it has been widely used in many
real applications, such as reference charts in medicine (Cole and Green 1992; Heagerty
and Pepe 1999), survival analysis (Yang 1999; Koenker and Geling 2001) and economics
(Hendricks and Koenker 1992; Koenker and Hallock 2001).

Suppose we have a set of training data (xxx1, y1), . . . , (xxxn, yn), where xxxi = (xi1,

xi2, . . . , xip) are the predictors, and yi ∈ R is the response. We consider the following
regularized model fitting for finding the 100τ% quantile function:

min
β0,βββ

n∑

i=1

ρτ (yi − β0 − βββTxxxi ) + λ‖βββ‖1, (1.1)
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164 Y. LI AND J. ZHU
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Figure 1. The check function with τ = 0.25. We divide data points into three sets based on their associated
residuals yi − f (xxxi ). The three sets are left, elbow, and right.

which we will refer to as the L1-norm quantile regression (L1-norm QR). The loss ρτ (∙) is
called the check function of Koenker and Bassett (1978):

ρτ (y − f (xxx)) =

{
τ ∙ (y − f (xxx)) if y − f (xxx) > 0,

−(1 − τ) ∙ (y − f (xxx)) otherwise,
(1.2)

where f (xxx) = β0 + βββTxxx . Here τ ∈ (0, 1) indicates the quantile of interest. The check
function is an analogue of the squared error loss in the context of least squares regression.
One can verify that given XXX = xxx , the population minimizer to the check function is the
100τ% conditional quantile, that is,

100τ% quantile of (Y |XXX = xxx) = arg min
f

EY |XXX=xxx [ρτ (Y − f (XXX))].

Figure 1 shows the check function with τ = 0.25.
The models considered are of the form f (xxxi ) = β0+βββTxxxi , and we penalize the model’s

complexity using the L1-norm of βββ = (β1, . . . , βp)
T. λ > 0 is a regularization parameter

that balances the quantile loss and the penalty.
Canonical examples using the explicit L1-norm penalty include the basis pursuit model

(Chen, Donoho, and Saunders 1998) and the LASSO model (Tibshirani 1996) for least
squares regression:

min
β0,βββ

n∑

i=1

(yi − β0 − βββTxxxi )
2 + λ‖βββ‖1.

The L1-norm penalty not only shrinks the fitted coefficients toward zero but also causes
some of the fitted coefficients to be exactly zero when making λ sufficiently large. The
latter property is not shared by other types of penalties such as the L2-norm penalty (Hoerl
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L1-NORM QUANTILE REGRESSION 165

and Kennard 1970). Thus, in situations where there are a lot of irrelevant noise variables,
the L1-norm penalty may prove superior to the L2-norm penalty from a prediction er-
ror perspective. From an inference/interpretation perspective, the L1-norm penalty allows
smooth variable selection and offers more compact models than the L2-norm penalty.

Note that (1.1) has an L1 loss + L1 penalty structure. Some previous work also con-
sidered this format. For example, in the case of p = 1, Koenker, Ng, and Portnoy (1994)
propose using λ

∫ 1
0 | f ′′(x)|dx as the penalty, that is,

min
f ∈F

n∑

i=1

ρτ (yi − f (xi )) + λ

∫ 1

0
| f ′′(x)|dx,

where F is a certain model space. With an appropriately chosen F , Koenker, Ng, and
Portnoy (1994) showed that the solution is a linear spline with knots at xi , i = 1, . . . , n,
which leads essentially also to an L1 loss + L1 penalty problem.

As in every regularized model fitting, choice of the regularization parameter is critical.
In practice, people usually prespecify a finite set of values for the regularization parameter,
then use either a validation dataset or a certain model-selection criterion to pick the regu-
larization parameter. Two commonly used criteria in the quantile regression literature are
the Schwarz information criterion (Schwarz 1978; Koenker, Ng, and Portnoy 1994) (SIC)
and the generalized approximate cross-validation criterion (Yuan 2006) (GACV):

SIC(λ) = ln

(
1

n

n∑

i=1

ρτ (yi − f (xxxi ))

)

+
ln n

2n
d f, (1.3)

GACV(λ) =

∑n
i=1 ρτ (yi − f (xxxi ))

n − d f
, (1.4)

where df is a measure of the effective dimensionality of the fitted model. Koenker, Ng, and
Portnoy (1994) heuristically argued that in the case of one-dimensional quantile smoothing
splines, the number of interpolated yi ’s is a plausible measure for the effective dimension
of the fitted model. In the case of GACV, Yuan (2006) used a smooth approximation of the
check function to estimate df.

For the rest of the article, we rewrite (1.1) as an equivalent constrained optimization
problem (the reason will become clear in Section 2):

min
β0,βββ

n∑

i=1

ρτ (yi − β0 − βββTxxxi ), (1.5)

subject to |β1| + ∙ ∙ ∙ + |βp| ≤ s, (1.6)

where s is the regularization parameter, playing the same role as λ. This constrained opti-
mization problem is equivalent to (1.1), in the sense that for every given positive value of s,
there exists a positive value of λ, such that the solutions to the two problems are identical.

In this article, we make two main contributions:

• We show that βββ(s), the fitted coefficients by solving (1.5)–(1.6) for a given s, is
piecewise linear as a function of s, and we derive an efficient algorithm that com-
putes the exact entire solution path {βββ(s), 0 ≤ s ≤ ∞}. We make a note that the al-
gorithm is fundamentally different from the LARS/LASSO algorithm in Efron et al.
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166 Y. LI AND J. ZHU

Figure 2. The solution path βββ(s) as a function of s. Any segment between two adjacent vertical lines is linear,
hence the whole solution path is piecewise linear. The indices of predictor variables are labeled on the right side
axis. Predictors 1, 2, and 5 are relevant variables, and the corresponding true coefficients are 3, −1.5, and 2,
respectively. As we can see, over a range of s, only these three predictors have nonzero fitted coefficients.

(2004) and the kernel quantile regression (KQR) algorithm we have developed ear-
lier in Li, Liu, and Zhu (2007), because we are now dealing with a nondifferentiable
loss function and a nondifferentiable penalty.

• We prove that the number of interpolated yi ’s is an estimate of the effective di-
mension of the fitted model, which allows convenient selection of the regularization
parameter s, and also justifies the conjecture of Koenker, Ng, and Portnoy (1994).

Before delving into the technical details, we illustrate the concept of sparsity and piece-
wise linearity of the solution path with a simple example: y = β0 +βββTxxx +ε, where β0 = 0,
βββT = (3, −1.5, 0, 0, 2, 0, 0, 0), xxx is distributed as Normal(0, III 8×8), and ε is distributed as
the standard double exponential. We generate 30 observations and fit the L1-norm QR
model with τ = 0.5. Figure 2 shows the solution path βββ(s) as a function of s. As we can
see, any segment between two adjacent vertical lines is linear, hence the whole solution
path is piecewise linear. Another important feature of this solution path is, over a certain
range of values of s, only the relevant predictor variables, that is, x1, x2, and x5, have
nonzero fitted coefficients.

The rest of the article is organized as follows: In Section 2, we derive an efficient
algorithm for computing the entire solution path. In Section 3, we propose the number
of interpolated yi ’s as an estimate for the effective dimension of the fitted L1-norm QR
model. In Section 4, we present numerical results on simulation datasets and a real-world
microarray dataset. We conclude the article in Section 5.
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L1-NORM QUANTILE REGRESSION 167

2. ALGORITHM

In this section, we derive an efficient algorithm that computes the exact solution path
{βββ(s), 0 ≤ s ≤ ∞}. We assume the (xxxi , yi ) are in general positions and the solution βββ(s)
is unique (except for the initial solution which is described in Section 2.2).

2.1 PROBLEM SETUP

Criterion (1.5)–(1.6) can be rewritten in an equivalent way:

min
β0,βββ

τ

n∑

i=1

ξi + (1 − τ)

n∑

i=1

ζi ,

subject to
p∑

j=1

|β j | ≤ s,

−ζi ≤ yi − f (xxxi ) ≤ ξi ,

ζi , ξi ≥ 0, i = 1, . . . , n,

where f (xxxi ) = β0 +
∑p

j=1 β j xi j . The above setting gives the Lagrangian primal function

L p : τ
n∑

i=1

ξi + (1 − τ)

n∑

i=1

ζi + λ∗(

p∑

j=1

|β j | − s) +
n∑

i=1

αi (yi − f (xxxi ) − ξi ) (2.1)

−
n∑

i=1

γi (yi − f (xxxi ) + ζi ) −
n∑

i=1

κiξi −
n∑

i=1

ηiζi ,

where λ∗, αi , γi , κi , and ηi are non-negative Lagrangian multipliers. Setting the derivatives
of L p to zero, we arrive at

∂

∂βββ
: λ∗ ∙ sign(β j ) −

n∑

i=1

(αi − γi )xi j = 0, ∀ j with β j 6= 0, (2.2)

∂

∂β0
:

n∑

i=1

(αi − γi ) = 0, (2.3)

∂

∂ξi
: τ = αi + κi , (2.4)

∂

∂ζi
: 1 − τ = γi + ηi , (2.5)

and the Karush–Kuhn–Tucker (KKT) conditions are

αi (yi − f (xxxi ) − ξi ) = 0, (2.6)

γi (yi − f (xxxi ) + ζi ) = 0, (2.7)

κiξi = 0, (2.8)

ηiζi = 0. (2.9)
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168 Y. LI AND J. ZHU

Since the Lagrange multipliers must be non-negative, we conclude from (2.4) and (2.5)
that both 0 ≤ αi ≤ τ and 0 ≤ γi ≤ 1 − τ . Furthermore, when yi − f (xxxi ) > 0 (hence
ξi > 0), we have αi = τ and γi = 0; when yi − f (xxxi ) < 0 (hence ζi > 0), we have
αi = 0, and γi = 1 − τ . These lead to the following relationships:

yi − f (xxxi ) > 0 ⇒ αi = τ , ξi > 0, γi = 0, ζi = 0;
yi − f (xxxi ) < 0 ⇒ αi = 0, ξi = 0, γi = 1 − τ , ζi > 0;
yi − f (xxxi ) = 0 ⇒ αi ∈ [0, τ ], ξi = 0, γi ∈ [0, 1 − τ ], ζi = 0.

Notice that (2.2) and (2.3) depend on αi and γi only in their difference. Let θi = αi −γi ,
hence using these relationships, we can define the following four sets that will be used later
when we calculate the solution path of the L1-norm QR:

• E = {i : yi − f (xxxi ) = 0, −(1 − τ) ≤ θi ≤ τ } (elbow)

• L = {i : yi − f (xxxi ) < 0, θi = −(1 − τ)} (left of the elbow)

• R = {i : yi − f (xxxi ) > 0, θi = τ } (right of the elbow)

• V = { j : β j 6= 0} (active set)

Since our goal is to compute the solution path βββ(s), we are interested in how the KKT
conditions change when the regularization parameter s increases. When s increases, we
define an event to be

• either a data point hits the elbow, that is, a residual yi − f (xxxi ) changes from nonzero
to zero, or

• a coefficient β j changes from nonzero to zero, that is, a variable leaves the active
set, V .

These two changes correspond to the nonsmooth points of
∑

i ρτ (yi − f (xxxi )) and ||βββ||1,
respectively. Note that it is also possible for a residual to change from zero to nonzero, or
a coefficient to change from zero to nonzero, and we handle these two cases towards the
end of Section 2.3. Given the above definition of the events, we can see:

• As s increases, the sets V , L, R, and E will not change (or equivalently, the KKT
conditions will not change), unless an event happens. When the KKT conditions do
not change, from (2.2)–(2.3), there are |E |+1 unknowns, that is, λ∗ and θi = αi −γi

with i ∈ E , and |V|+1 equations. For the solution to be unique, we have the number
of observations in the elbow equal to the number of variables in the active set, that
is, |E | = |V|.

• As s increases, points in E stay in the elbow, unless an event happens. Therefore,
nonzero β j ’s satisfy:

yi − (β0 +
∑

j∈V

β j xi j ) = 0 for i ∈ E .
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L1-NORM QUANTILE REGRESSION 169

Since |V| = |E |, there is one free unknown in this set of equations, which allows βββ

to change linearly when s increases, unless an event happens.

The basic idea of our algorithm is as follows: We start with s = 0 and increase it, keeping
track of the location of all data points relative to the elbow and also of the magnitude
of the fitted coefficients along the way. As s increases, for a point to pass through E , the
corresponding θi must change from τ to −(1−τ) or vice versa, hence by continuity, points
in E must linger in the elbow. Since all points in the elbow have yi − f (xxxi ) = 0, we can
establish a path for βββ. The elbow set will stay stable until either some other point comes to
the elbow or one nonzero fitted coefficient has dropped to zero.

2.2 INITIALIZATION

Initially, at s = 0, we can see from (1.6) that f (xxx) = β0. We can determine the value
of β0 via a simple one-dimensional optimization. For expositional simplicity, we focus on
the case that all the values of yi are distinct and ordered y1 < y2 < ∙ ∙ ∙ < yn . This is the
usual case for quantitative data and can always be realized by adding a small jitter to the
y values. We distinguish between two cases: the initial β0 is unique, and the initial β0 is
nonunique.

2.2.1 Case 1: The Initial β0 is Unique

This happens when nτ is a noninteger, for example, when τ = 0.5, and the number
of data points n is odd. In this case, it is easy to show that β0 must be equal to one of the
observed yi ’s and β0 = ybnτc+1; we denote it as yi∗ . All data points are therefore initially
divided into the three sets:

• E = {i∗ : point (xxxi∗ , yi∗)},

• L = {i : yi < yi∗}, and

• R = {i : yi > yi∗}.

From (2.3), we have
θi∗ = (1 − τ)nL − τnR,

where nL = |L| and nR = |R|. To find the initial V , we compute max j |
∑

i θi xi j |, and
according to (2.2) it corresponds to the largest feasible λ∗. Thus we get:

V = { j? : arg max
j

|
∑

i

θi xi j |}.

Therefore, for small enough s, we have

f (xxx) = β0 + s ∙ sign(
∑

i

θi xi j? )x j? ,

where β0 = yi∗ − s ∙ sign(
∑

i θi xi j? )xi∗ j? since (xxxi∗ , yi∗) stays in the elbow.
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170 Y. LI AND J. ZHU

2.2.2 Case 2: The Initial β0 is Nonunique

This happens when nτ is an integer, for example, when τ = 0.5 and the number of
data points n is even. In this case, it is easy to show that β0 can take any value between two
adjacent yi ’s and β0 ∈ (ynτ , ynτ+1); we denote them as (yi∗ , yi∗+1).

Although β0 is not unique, all the θi ’s are fully determined, that is,

• θi = −(1 − τ), yi ≤ yi∗ , and

• θi = τ, yi ≥ yi∗+1.

Hence again, we can divide all data points into the three sets:

• E = ∅,

• L = {i : yi ≤ yi∗}, and

• R = {i : yi ≥ yi∗+1}.

Similar to case 1, the initial V can be found by

V =

{

j? : arg max
j

|
∑

i

θi xi j |

}

,

and for sufficiently small s, we have

f (xxx) = β0 + s ∙ sign

(
∑

i

θi xi j?

)

x j? .

When s increases, Equation (2.3) imposes a constraint on all the θi ’s. Since to pass
through E , a θi must change from τ to −(1 − τ) or vice versa, by continuity, the sets L and
R will stay stable. Therefore

yi − β0 − s ∙ sign

(
∑

i

θi xi j?

)

xi j? < 0, i ∈ L,

yi − β0 − s ∙ sign

(
∑

i

θi xi j?

)

xi j? > 0, i ∈ R.

These inequalities imply that the solution for β0 is not unique, and β0 can be any value in
the interval

(

max
i∈L

(yi − s ∙ sign(θi xi j? )xi j? ), min
i∈R

(yi − s ∙ sign(
∑

i

θi xi j? )xi j? )

)

.

When s increases, the length of this interval will shrink toward zero, which corresponds to
two data points (from different sets) hitting the elbow simultaneously.
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L1-NORM QUANTILE REGRESSION 171

2.3 THE REGULARIZATION PATH

The algorithm focuses on the set of points E and the set of nonzero coefficients V . Until
an event (as defined in Section 2.1) has occurred, all sets will remain the same. Points in E
have f (xxxi ) = yi . Relying on this fact, we can calculate how βββ changes.

We use the subscript ` to index the sets above immediately after the `th event has
occurred, and let β`

0 , βββ`, and s` be the parameter values immediately after the `th event.
Also let f ` be the function at this point. For s` < s < s`+1, we can write

f (xxx) = f (xxx) − f `(xxx) + f `(xxx)

= (β0 − β`
0) +

∑

j∈V`

(β j − β`
j )x j + f `(xxx).

Suppose n`
E = |E`| and n`

V = |V`|, so for the points staying at the elbow, we have that

yi = (β0 − β`
0) +

∑

j∈V`

(β j − β`
j )xi j + yi , ∀i ∈ E`.

Also we have that ∑

j∈V`

(β j − β`
j ) ∙ sign(β`

j ) = s − s`.

To simplify, let ν0 = (β0 − β`
0)/(s − s`) and ν j = (β j − β`

j )/(s − s`). Then

ν0 +
∑

j∈V`

ν j xi j = 0, ∀i ∈ E`

∑

j∈V`

ν j ∙ sign(β`
j ) = 1.

Recall n`
E = n`

V , thus this gives us n`
E + 1 linear equations we can use to solve for each of

the n`
V + 1 unknown variables ν0 and ν j .

Now, define XXX` to be a n`
E × n`

V matrix with the entries equal to xi j where i ∈ E`, j ∈
V`, and let ννν denote the vector with the components equal to ν j , j ∈ V`. Using these we
have the following two equations

ν0111 + XXX`ννν = 000, (2.10)

νννTsign(βββ`
V ) = 1. (2.11)

Simplifying further, if we let

XXX`
0 =

(
111 XXX`

0 signT(βββ`
V )

)

, ννν0 =

(
ν0

ννν

)

, and 1110 =

(
000
1

)

,

Equations (2.10) and (2.11) can be combined to be

XXX`
0ννν0 = 1110.
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172 Y. LI AND J. ZHU

Since we assume (xxxi , yi ) are in general positions, XXX`
0 is usually of full rank, then we have

β0 = β`
0 + (s − s`)ν0, (2.12)

β j = β`
j + (s − s`)ν j , ∀ j ∈ V`. (2.13)

Thus for s` < s < s`+1, the β j and β0 proceed linearly in s. Also

f (xxx) = (s − s`)



ν0 +
∑

j∈V`

ν j x j



+ f `(xxx). (2.14)

Given s`, Equations (2.13) and (2.14) allow us to compute s`+1, the s at which the next
event will occur. This will be the smallest s larger than s`, such that either f (xxxi ) for i /∈ E`

reaches yi , or one of the coefficients β j for j ∈ V` reaches zero.
To update sets V and E when the `th event occurs, by the definition of an event in

Section 2.1, there will be |V| variables with nonzero coefficients and |V| + 1 points in the
elbow. Therefore, to maintain the KKT conditions, we need to either add a variable not in
V into V , or remove a point in E from E . The choice is such that the resulting loss in (1.5)
decreases with the fastest rate. We compute the rate of the change in the loss function as
the following:

1loss

1s
=

∑
i ρτ (yi − f (xxxi )) −

∑
i ρτ (yi − f `(xxxi ))

s − s`

= (1 − τ)
∑

i∈L



ν0 +
∑

j∈V

ν j xi j



− τ
∑

i∈R



ν0 +
∑

j∈V

ν j xi j



 .

We choose the update that corresponds to the smallest (negative) 1loss/1s, and terminate
the algorithm when all 1loss/1s are non-negative.

In fact, we can show that 1loss/1s is related to the parameter λ∗ in (2.2).

Theorem 1. The rate that the loss decreases along the solution path is the same as
the value of the parameter λ∗, that is,

1loss

1s
= −λ∗.

The details of the proof are in the Appendix.

2.4 COMPUTATIONAL COST

The major computational cost for updating the solutions at any step ` involves two
things: solving the system of n`

E + 1 linear equations, and finding the correct update for
V and E . The former takes O(n`2

E ) calculations by using inverse updating and downdating
since the sets usually differ by only one element between consecutive events, and the latter
requires O(pn`2

E ) computations.
According to our experience, the total number of steps taken by the algorithm is on

average O(min(n, p)). This can be heuristically understood in the following way: if n < p,
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L1-NORM QUANTILE REGRESSION 173

the data points can be perfectly interpolated by a linear model, then it takes O(n) steps for
every data point to reach the elbow; if n > p, then it takes O(p) steps to include all
variables into the fitted model. Since the maximum value of n`

E is min(n, p), it suggests
the worst computational cost is O(p min(n, p)3).

3. EFFECTIVE DIMENSION

It is well known that an appropriate value of the regularization parameter is crucial
for the performance of the fitted model in any regularized model fitting. One advantage
of computing the entire solution path is to facilitate the selection of the regularization
parameter. In practice, one can first use the efficient algorithm in Section 2 to compute
the entire solution path, then select the value of s that minimizes a certain model selection
criterion. This avoids a more computationally intensive cross-validation approach.

Two commonly used criteria for quantile regression are the SIC (1.3) and the GACV
(1.4), where both depend on the quantity df which should be an informative measure of the
complexity of a fitted model. Nychka et al. (1995) and Yuan (2006) proposed to use the
SURE divergence formula (Stein 1981)

n∑

i=1

∂ f̂ (xxxi )

∂yi
(3.1)

to estimate df, where f̂ (xxx) is a fitted model. To compute (3.1), they approximated the check
function with a differentiable function ρτ,δ(∙), which differs from ρτ (∙) within an interval
(−δ, δ):

ρτ,δ(r) =






τr r ≥ δ

τr2/δ 0 ≤ r < δ

(1 − τ)r2/δ −δ ≤ r < 0
−(1 − τ)r r < −δ

where δ is a small positive number.
Notice that (3.1) measures the sum of the sensitivity of each fitted value with respect

to the corresponding observed value. This quantity first appeared under the framework
of Stein’s unbiased risk estimation (SURE) theory (Stein 1981). Given xxx , assuming y is
generated according to a homoscedastic model:

y ∼ (μ(xxx), σ 2),

where μ is the true mean and σ 2 is the common variance, then the degrees of freedom of a
fitted model f̂ (xxx) can be defined as

df( f̂ ) =
n∑

i=1

cov( f̂ (xxxi ), yi )/σ
2.

Stein showed that under mild conditions,
∑n

i=1 ∂ f̂ (xxxi )/∂yi is an unbiased estimate of
df( f̂ ). Later on, Efron (1986) proposed the concept expected optimism based on (3.1), and
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174 Y. LI AND J. ZHU

Ye (1998) developed Monte Carlo methods to estimate (3.1) for general modeling proce-
dures. Meyer and Woodroofe (2000) discussed (3.1) in shape-restricted regression and also
argued that it provides a measure of the effective dimension. For detailed discussion and
complete references, we refer the readers to Efron (2004).

It turns out that in the case of L1-norm QR, for every fixed s and almost all yyy =
(y1, . . . , yn)T,

∑n
i=1 ∂ f̂ (xxxi )/∂yi has an extremely simple formula:

n∑

i=1

∂ f̂ (xxxi )

∂yi
= |E |. (3.2)

That is, the number of interpolated data points is a convenient estimate for the effective
dimension of f̂ (xxx), and this agrees with the heuristic conjecture of Koenker, Ng, and Port-
noy (1994). We outline the proof of (3.2) in this section, and leave all the details to the
Appendix.

As we have seen in Section 2, for a fixed response vector yyy = (y1, . . . , yn)T, there is
a sequence of s’s, 0 = s0 < s1 < s2 < ∙ ∙ ∙ < sL = ∞, such that in the interior of any
interval (s`, s`+1), the sets R,L, E , and V are constant with respect to s. These sets only
change at each s`. We thus define these s`’s as event points.

Lemma 1. For any fixed s > 0, the set of yyy = (y1, . . . , yn)
T such that s is an event

point is a finite collection of hyperplanes in Rn.
Denote this set as Ns . Then for any yyy ∈ Rn\Ns , s is not an event point. Notice Ns is a

null set, and Rn\Ns is of full measure.

Lemma 2. For any fixed s > 0, β̂ββ(yyy) is a continuous function of y, where β̂ββ(yyy) is the
fitted coefficient vector when the response vector is y.

Lemma 3. For any fixed s > 0 and any yyy ∈ Rn\Ns , the setsR,L, and E are locally
constant with respect to yyy.

Theorem 2. For any fixed s > 0 and any yyy ∈ Rn\Ns , we have the divergence
formula

n∑

i=1

∂ f̂ (xxxi )

∂yi
= |E |.

4. NUMERICAL RESULTS

In this section, we use both simulation data and a real-world data to demonstrate our
algorithm and the selection of s via the SIC criterion and the GACV criterion with df
estimated by |E | (Section 3). We also compare the performance of the L1-norm QR with
that of the L2-norm QR, that is, the L1-norm in (1.1) is replaced by the L2-norm.

4.1 SIMULATION DATA

We consider two scenarios:
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L1-NORM QUANTILE REGRESSION 175

1. p < n case

We mimicked the simulation found in Tibshirani (1996). Data were generated using
the mechanism:

y = β0 + βββTxxx + σε,

where β0 = 0, βββ ∈ R8, and xxx ∼ Normal(0, 6668×8). The pairwise correlation between x j

and xk was ρ| j−k|, with ρ = 0 for the independent case or ρ = 0.5 for the correlated case.
Three different error distributions were used: standard normal (N), double exponential

(DE), and a mixture distribution (Mix):

0.1 ∙ N (0, 52) + 0.9 ∙ N (0, 1).

We also considered three different settings of βββ as follows:

a. Dense: β j = 0.85, j = 1, . . . , 8, which corresponds to a dense scenario. We chose
σ = 1.75,

√
1.5, and

√
0.9, respectively, for the three error distributions when ρ =

0, and σ = 3, 2, and 1.6, respectively, for the three error distributions when ρ = 0.5.
The resulting signal-to-noise (S/N) ratios are all about 1.8. The S/N ratio is defined
as var(βββT XXX)/var(σε).

b. Sparse: βββ = (3, 1.5, 0, 0, 2, 0, 0, 0)T, which corresponds to a moderately sparse
case. We chose σ =

√
3,

√
1.5, and

√
0.9, respectively, for the three error distri-

butions when ρ = 0, and σ = 2,
√

2, and 1, respectively, for the three error distribu-
tions when ρ = 0.5. The resulting S/N ratios are all about 5.

c. Very Sparse: βββ = (5, 0, 0, 0, 0, 0, 0, 0)T, which mimics a very sparse situation. We
chose σ = 2,

√
2, and 1, respectively, for the three error distributions when ρ = 0

and 0.5. The resulting S/N ratios are all about 6.5.

We generated 100 training observations from each βββ setting, associated with each of
the three error distributions and each of the two dependence relationships among covari-
ates, along with 10, 000 validation observations and 10,000 test observations. We consid-
ered three different values of τ : 10%, 30%, and 50%. Since the error distributions are all
symmetric, these τ ’s are also representative of the upper quantiles 70% and 90%. We then
found the s’s that minimized the SIC criterion and the GACV criterion, respectively. The
validation set was used to select the gold standard s, which minimized the prediction error,
that is,

∑10,000
i=1 ρτ (yi − f̂ τ (xxxi )). Using these s’s we calculated the mean absolute devia-

tions on the test dataset in order to evaluate different models’ “goodness of fit.” Suppose the
fitted quantile function is f̂ τ (xxx) and the true quantile function is f τ (xxx), the mean absolute
deviation is defined as

Mean Absolute Deviation =
1

10,000

10,000∑

i=1

∣
∣
∣ f τ (xxxi ) − f̂ τ (xxxi )

∣
∣
∣ .

We repeated the procedure 100 times. We computed the mean absolute deviations and
recorded the effective dimensions of the selected models, that is, |E |.
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176 Y. LI AND J. ZHU

Table 1. Mean absolute deviations over 100 repetitions under the dense and very sparse scenarios. The numbers
in parentheses are the corresponding standard deviations. “L1-norm” and “L2-norm” are for the L1-
norm QR and the L2-norm QR, respectively. We report results on two model-selection methods, the
SIC and the GACV, via our solution path algorithm and our formula for the effective dimension of
the fitted model. The “Gold” (gold standard) serves as a benchmark. For the error distribution, “N”
is normal, “DE” is double exponential, and “Mix” is a mixture distribution. In all settings, n = 100,
p = 8, τ = 0.5, ρ = 0.5.

L1-norm L2-norm

SIC GACV Gold SIC GACV Gold

Dense

N 1.108 (0.169) 1.098 (0.168) 1.089 (0.170) 0.426 (0.077) 0.414 (0.079) 0.367 (0.069)
DE 1.139 (0.149) 1.126 (0.148) 1.120 (0.147) 0.339 (0.077) 0.322 (0.073) 0.274 (0.059)
Mix 1.151 (0.175) 1.138 (0.170) 1.132 (0.169) 0.264 (0.046) 0.252 (0.041) 0.221 (0.043)

Very sparse

N 0.340 (0.095) 0.366 (0.098) 0.270 (0.089) 0.543 (0.099) 0.524 (0.088) 0.457 (0.086)
DE 0.226 (0.085) 0.248 (0.081) 0.176 (0.072) 0.392 (0.096) 0.370 (0.081) 0.331 (0.078)
Mix 0.202 (0.056) 0.215 (0.057) 0.162 (0.050) 0.326 (0.052) 0.310 (0.047) 0.275 (0.046)

Table 1 shows the mean absolute deviation results for τ = 0.5 and ρ = 0.5, under the
dense and very sparse scenarios. Since the results for τ = 0.1 and τ = 0.3 are similar to
those of τ = 0.5, for lack of space, we omit them here. As we can see, in terms of the mean
absolute deviation, both the SIC and the GACV perform closely to the gold standard. In
the dense scenario, the L2-norm QR performs better than the L1-norm QR; while in the
very sparse scenario, the L1-norm QR performs better than the L2-norm QR.

Table 2 shows the effective dimensions of the selected models and Table 3 shows the
results on how frequently each variable was selected by the L1-norm QR when ε has a
double exponential distribution. As we can see, in terms of model selection, the SIC tends
to select a simpler model than the GACV and the gold standard. In the L1-norm QR model,
both the SIC and the GACV perform reasonably well in selecting relevant variables, how-
ever, the SIC tends to be more effective in removing irrelevant variables than the GACV
and the gold standard, especially in the very sparse case. It is interesting to observe that in
the very sparse scenario, the gold standard did not identify the true model (Table 2). The
true model contains only one relevant variable, while the gold standard on average selected
a little more than three variables. In fact, as Leng, Lin, and Wahba (2006) pointed out, when
the prediction accuracy is used as the criterion to choose the regularization parameter, the
LASSO-type procedure is not consistent in selecting variables, that is, the probability that
the LASSO-type procedure correctly identifies the set of relevant variables does not ap-
proach to 1 as the sample size goes to infinity. Our simulation results agree with Leng, Lin,
and Wahba (2006)’s statement.
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L1-NORM QUANTILE REGRESSION 177

Table 2. Estimated effective dimensions, that is, |E |, over 100 repetitions under the dense and very sparse
scenarios. The numbers in the parentheses are the corresponding standard deviations. Descriptions of
the columns and rows are the same as the caption in Table 1.

Dense L1-norm L2-norm

SIC GACV Gold SIC GACV Gold

Dense
N 7.1 (0.4) 7.3 (0.4) 8.0 (0.1) 4.5 (0.9) 5.7 (0.9) 7.0 (0.9)
DE 7.1 (0.5) 7.4 (0.4) 8.0 (0.0) 4.7 (0.8) 5.4 (0.9) 7.6 (0.8)
Mix 7.1 (0.6) 7.5 (0.4) 8.0 (0.0) 5.2 (0.8) 5.9 (0.7) 7.5 (0.8)

Very sparse
N 1.8 (0.8) 3.6 (1.2) 3.4 (1.1) 6.3 (0.7) 6.8 (0.7) 8.2 (0.5)
DE 1.6 (0.6) 3.0 (1.2) 3.4 (1.2) 6.4 (0.7) 6.9 (0.5) 8.3 (0.5)
Mix 1.6 (0.5) 3.1 (1.1) 3.5 (1.2) 6.4 (0.6) 7.0 (0.5) 8.3 (0.4)

Table 3. Number of times each predictor variable was selected (out of 100 repetitions) by the L1-norm QR:
n = 100, p = 8, τ = 0.5, ρ = 0.5, and ε ∼ double exponential.

X1 X2 X3 X4 X5 X6 X7 X8

Dense: βββ = (0.85, . . . , 0.85)

SIC 74 88 94 86 90 82 80 88
GACV 84 88 92 88 90 91 80 95
Gold 98 98 97 96 96 95 96 98

Sparse: βββ = (3, 1.5, 0, 0, 2, 0, 0, 0)

SIC 96 92 22 26 94 11 9 31
GACV 95 96 30 32 94 40 36 35
Gold 98 96 40 52 95 45 39 51

Very Sparse: βββ = (5, 0, 0, 0, 0, 0, 0, 0)

SIC 95 7 9 22 6 8 13 20
GACV 96 30 40 40 27 39 25 28
Gold 98 25 39 37 35 20 24 26
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178 Y. LI AND J. ZHU

4.1.1 p > n case

We mimicked the simulation found in Friedman et al. (2004). Data were generated
using the mechanism

y = β0 + βββTxxx + σε,

where β0 = 0, βββ ∈ R300, and xxx ∼ Normal(0, 666300×300). The pairwise correlation between
x j and xk was ρ| j−k|, with ρ = 0 for the independent case or ρ = 0.5 for the correlated
case.

Three different error distributions were used: standard normal (N), double exponential
(DE), and a mixture distribution (Mix):

0.1 ∙ N (0, 52) + 0.9 ∙ N (0, 1).

Again, we considered the dense, sparse, and very sparse scenarios as the following:

a. Dense: all 300 coefficients were generated from the standard normal distribution.

b. Sparse: 30 nonzero coefficients were generated from the standard normal distribu-
tion.

c. Very sparse: only three coefficients are nonzero.

In each case, the coefficients are scaled such that the signal var(βββT XXX) is 1, and the noise
var(σε) ranges in 0.1, 0.3, and 0.5.

We generated 50 training observations from each function, associated with each of the
three error distributions and each of the two dependence relationships among covariates,
along with 10,000 validation observations and 10,000 test observations. We considered
three different values of τ : 10%, 30%, and 50%. Since the SIC and the GACV criteria
break down in the p > n case, we only chose the golden standard models to compare the
L1-norm QR and the L2-norm QR. The validation set was used to select the gold standard
s. Using these s’s we calculated the mean absolute deviations with the test data.

We repeated the procedure 100 times, and computed the average mean absolute devia-
tions and the corresponding standard deviations. The results for τ = 50% and ρ = 0.5 are
reported in Table 4.

As we can see, in the p > n case, the two types of regularized quantile regression mod-
els perform quite differently. In the dense scenario when all 300 coefficients are nonzero,
neither the L2-norm QR nor the L1-norm QR performs very well, since there were too
few data (only 50 observations) available to estimate the 300 coefficients. However, in the
very sparse scenario when only three coefficients are nonzero, the L1-norm QR performs
significantly better than the L2-norm QR.

4.2 REAL DATA

In this section, we apply the L1-norm QR to a microarray-based study of cardiomy-
opathy in transgenic mice. The data are provided by Professor Mark Segal (Segal, Kam,
and Bruce 2003). The study applied inducible gene expression techniques to control the
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L1-NORM QUANTILE REGRESSION 179

Table 4. Mean absolute deviations over 100 repetitions under the dense and very sparse scenarios. The numbers
in the parentheses are the corresponding standard deviations. In all settings, n = 50, p = 300, τ = 0.5,
and ρ = 0.5. Descriptions of the columns and rows are the same as the caption in Table 1.

0.1 0.3 0.5

N/S Ratio L1 L2 L1 L2 L1 L2

Dense
N 0.678 (0.007) 0.629 (0.010) 0.647 (0.012) 0.515 (0.023) 0.656 (0.013) 0.540 (0.023)
DE 0.677 (0.008) 0.628 (0.010) 0.646 (0.012) 0.514 (0.024) 0.653 (0.014) 0.535 (0.022)
Mix 0.677 (0.006) 0.629 (0.011) 0.641 (0.014) 0.503 (0.022) 0.646 (0.016) 0.516 (0.024)

Very sparse

N 0.143 (0.030) 0.556 (0.019) 0.246 (0.053) 0.585 (0.022) 0.306 (0.065) 0.606 (0.020)
DE 0.113 (0.030) 0.557 (0.020) 0.193 (0.051) 0.582 (0.021) 0.236 (0.060) 0.599 (0.019)
Mix 0.087 (0.022) 0.555 (0.020) 0.146 (0.036) 0.575 (0.022) 0.199 (0.041) 0.589 (0.019)

expression of a G protein-coupled receptor, designated Ro1, which is a transgene modi-
fied from human kappa-opioid receptor. Thirty mice were divided into four experimental
groups (Redfern et al. 2000): The two-week group of six transgenic mice expressed Ro1
for two weeks, which is approximately the amount of time required to reach maximal ex-
pression of Ro1; these mice did not show symptoms of disease. The eight-week group of
nine transgenic mice expressed Ro1 for eight weeks and exhibited cardiomyopathy symp-
toms. The recovery group of seven transgenic mice expressed Ro1 for eight weeks before
expression was turned off for four weeks. The control group of eight mice was treated ex-
actly the same as the eight-week group except that they did not have the Ro1 transgene.
In Figure 3, the measures of Ro1 expression for these groups are denoted as 2, 8, R, and
C, respectively. The experiment reported a Ro1 model of cardiomyopathy: When Ro1 was
overexpressed in the heart of an adult mouse, the mouse developed a lethal cardiomyopa-
thy. There is further evidence that cardiomyopathy is due to overexpression of Ro1 since it
does not occur at more moderate expression levels of Ro1 (Redfern et al. 2000).

Identifying genes involved in the progression of cardiomyopathy, that is, gene expres-
sion changes associated with the Ro1 expression changes, may provide new diagnostic
markers for cardiomyopathy. In our analysis, the response of interest was Ro1 expression
and the predictors were all the 6,319 gene expressions measured using microarray tech-
nology. We fitted 50%, 75%, and 90% L1-norm QR functions and used five-fold cross-
validation to select the regularization parameter. The selected genes are listed in Table 5.
As we can see, there are quite a few overlaps between the genes selected by the L1-norm
QR and those selected by Segal, Kam, and Bruce (2003) (which is essentially LASSO). We
also notice that when there are a group of highly correlated genes, the L1-norm QR tends
to select only one or a few genes from the group (Zou and Hastie 2005). For example, gene
AA044561 has high pairwise correlations with gene AA061310 (ρ = 0.80), gene W75373
(ρ = 0.79), and gene AA111168 (ρ = 0.90). Consequently, gene AA044561 was the only
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180 Y. LI AND J. ZHU

Figure 3. Ro1 expression for the 30 mice.

gene from the group selected by the τ = 75% L1-norm QR model, and it was excluded
when other genes from the group were selected by other models. We recognize that these
data analysis results need to be validated by further biological experiments.

5. SUMMARY

Our work can be considered as an extension of the LASSO model (Tibshirani 1996),
where we use the check loss (for estimating the quantile function), and the LASSO uses
the squared error loss (for estimating the mean function).

Table 5. Genes selected by three L1-norm quantile regression models. The first column contains the gene IDs.
Other columns indicate genes selected by different models.

GeneBank τ = 50% τ = 75% τ = 90% Segal, Kam, and Bruce (2003)

D31717
√ √ √ √

U73744
√ √ √ √

U25708
√ √ √

AA061310
√ √

M30127
√ √ √

L38971
√

Z32675
√

W75373
√

AA044561
√

AA111168
√

M18194
√
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L1-NORM QUANTILE REGRESSION 181

Our work is also connected with Koenker, Ng, and Portnoy (1994), where p = 1,
and λ

∫ 1
0 | f ′′(x)|dx was used as the penalty. With an appropriately chosen model space,

Koenker, Ng, and Portnoy (1994) showed that the solution is a linear spline with knots
at the points xi , i = 1, . . . , n, which leads essentially also to an L1 loss + L1 penalty
problem.

We have gone beyond the spline model, and considered general L1 regularized quan-
tile regression. In particular, we have proposed an efficient algorithm that computes the
entire regularization path for the L1-norm QR. Our path algorithm was inspired by the
LARS/LASSO algorithm (Efron et al. 2004). Since we are dealing with a nondifferentiable
loss function, our algorithm is fundamentally different from the LARS/LASSO algorithm.
We have also proposed an estimate for the effective dimension of the fitted model that can
be used to select the regularization parameter. This estimate seems to work sufficiently
well on the simulation data (when n > p).

A. APPENDIX: PROOFS

A.1 PROOF OF THEOREM 1

From (2.2) we have

λ∗ ∙ sign(β j ) = τ
∑

i∈R

xi j − (1 − τ)
∑

i∈L

xi j +
∑

i∈E

θi xi j , j ∈ V .

Multiply each equation with ν j and add them up, we have

λ∗ ∙
∑

j∈V

ν j ∙ sign(β j ) = τ
∑

i∈R

∑

j∈V

ν j xi j − (1 − τ)
∑

i∈L

∑

j∈V

ν j xi j +
∑

i∈E

θi

∑

j∈V

ν j xi j

= τ
∑

i∈R




∑

j∈V

ν j xi j + ν0



− (1 − τ)
∑

i∈L




∑

j∈V

ν j xi j + ν0





+
∑

i∈E

θi

∑

j∈V

(
ν j xi j + ν0

)
− τ

∑

i∈R

ν0 + (1 − τ)
∑

i∈L

ν0 −
∑

i∈E

θiν0

= τ
∑

i∈R




∑

j∈V

ν j xi j + ν0



− (1 − τ)
∑

i∈L




∑

j∈V

ν j xi j + ν0





= −
1loss

1s
,

where we used the facts that
∑

j∈V

ν j xi j + ν0 = 0, ∀i ∈ E,

and

τ
∑

i∈R

ν0 − (1 − τ)
∑

i∈L

ν0 +
∑

i∈E

θiν0 = ν0

n∑

i=1

θi

= 0.
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182 Y. LI AND J. ZHU

Also notice that ∑

j∈V

ν j ∙ sign(β j ) = 1.

Hence we conclude
1loss

1s
= −λ∗.

A.2 PROOF OF LEMMA 1

For any fixed s > 0, suppose E ,R, and L are given, then we have

β0 +
∑

j∈V

β j xk j = yk, ∀ k ∈ E

∑

j∈V

|β j | = s.

These can be re-expressed as
(

0 sign(βββV )T

111 XXX

)(
β0

βββV

)

=

(
s

yyyE

)

,

where XXX is a nE × nV square matrix (since nE = nV ) with entries xk j , k ∈ E, j ∈ V . βββV
is a vector of length nV , with elements equal to β j , j ∈ V , and yyyE is a vector of length nE ,
with elements equal to yk, k ∈ E .

Then β0 and βββV can be expressed as
(

β0

βββV

)

= HHH

(
s

yyyE

)

,

where

HHH =

(
0 sign(βββV )T

111 XXX

)−1

.

Notice that β0 and βββV are linear in yyyE .
Now corresponding to the two events listed in Section 2.1, if s is an event point, one of

the following conditions has to be satisfied:

• ∃ j ∈ V s.t. β j = 0

• ∃i ∈ R ∪ L s.t. yi = β0 +
∑

j∈V β j xi j .

For any fixed E , R, and L, each of the above conditions defines a hyperplane of yyy in
Rn . Taking into account all possible combinations of E , R, and L, the set of yyy such that s
is an event point is a collection of finite number of hyperplanes.
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A.3 PROOF OF LEMMA 2

Let g(βββ, yyy) denote the function
∑n

i=1 ρτ (yi − f (xxxi )) + λ‖βββ‖1. We note that we con-
sider g(∙, ∙) as a function of βββ and yyy. Let βββ(yyy0) be the unique minimizer of g(βββ, yyy0), that
is, when the response vector yyy is fixed at yyy0, and similarly βββ(yyym) be the unique minimizer
of g(βββ, yyym), i.e., when the response vector yyy is fixed at yyym .

For any fixed yyy0 ∈ Rn , we wish to show that if a sequence yyym converges to yyy0, then
βββ(yyym) converges to βββ(yyy0).

Since βββ(yyym) are bounded, it is equivalent to show that for every converging subse-
quence, say βββ(yyymk

), the subsequence converges to βββ(yyy0). Suppose βββ(yyymk
) converges to

βββ∞, we will show βββ∞ = βββ(yyy0).
Let

1g(βββ(yyy), yyy, yyy′) = g(βββ(yyy), yyy) − g(βββ(yyy), yyy′),

where g(βββ(yyy), yyy′) is the value of g(∙, ∙) by plugging in βββ(yyy) for the regression coefficients
and yyy′ for the response vector. Then we have

g(βββ(yyy0), yyy0) = g(βββ(yyy0), yyymk
) + 1g(βββ(yyy0), yyy0, yyymk

)

≥ g(βββ(yyymk
), yyymk

) + 1g(βββ(yyy0), yyy0, yyymk
)

= g(βββ(yyymk
), yyy0) + 1g(βββ(yyymk

), yyymk
, yyy0) + 1g(βββ(yyy0), yyy0, yyymk

).

(A.1)

Using the fact that |a| − |b| ≤ |a − b| and yyymk
→ yyy0, it is easy to show that for large

enough mk , we have

|1g(βββ(yyymk
), yyymk

, yyy0) + 1g(βββ(yyy0), yyy0, yyymk
)|

= |g(βββ(yyymk
), yyymk

) − g(βββ(yyymk
), yyy0) + g(βββ(yyy0), yyy0) − g(βββ(yyy0), yyymk

)|

≤ |g(βββ(yyymk
), yyymk

) − g(βββ(yyymk
), yyy0)| + |g(βββ(yyy0), yyy0) − g(βββ(yyy0), yyymk

)|

≤ c1‖yyy0 − yyymk
‖1 + c2‖yyy0 − yyymk

‖1

≤ c‖yyy0 − yyymk
‖1, (A.2)

where c1 > 0, c2 > 0, and c > 0 are constants. Furthermore, using yyymk
→ yyy0 and

βββ(yyymk
) → βββ∞, we reduce (A.1) to

g(βββ(yyy0), yyy0) ≥ g(βββ∞, yyy0).

Since βββ(yyy0) is the unique minimizer of g(βββ, yyy0), we have βββ∞ = βββ(yyy0).
Similarly, one can prove that for any fixed s > 0, θθθ(yyy) is also a continuous function of

yyy.

A.4 PROOF OF LEMMA 3

For any fixed s > 0 and any fixed yyy0 ∈ Rn\Ns , since Rn\Ns is an open set, we can
always find a small enough ε > 0, such that Ball(yyy0, ε) ⊂ Rn\Ns . So s is not an event
point for any yyy ∈ Ball(yyy0, ε).

We claim that if ε is small enough, the sets V , R,L, and E stay the same for all
yyy ∈ Ball(yyy0, ε).
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Consider yyy and yyy0. Let Vyyy ,Ryyy,Lyyy, Eyyy,V0,R0,L0, E0 denote the corresponding sets,
and θθθ yyy, βββ yyy, f yyy, θθθ0, βββ0, f 0 denote the corresponding fits.

For any i ∈ E0, we have −(1 − τ) < θ0
i < τ . Therefore, by continuity, we also have

−(1 − τ) < θ
yyy
i < τ, i ∈ E0 for yyy close enough to yyy0; or equivalently, E0 ⊆ Eyyy, ∀yyy ∈

Ball(yyy0, ε) for small enough ε.
Similarly, for any i ∈ R0, since y0

i − f 0(xxxi ) > 0, again by continuity, we have
yi − f yyy(xxxi ) > 0 for yyy close enough to yyy0; or equivalently, R0 ⊆ Ryyy, ∀yyy ∈ Ball(yyy0, ε)

for small enough ε. The same applies to L0 and Lyyy as well.
Overall, we then have E0 = Eyyy , R0 = Ryyy and L0 = Lyyy for all yyy ∈ Ball(yyy0, ε) when

ε is small enough.
Regarding V0, by definition, β0

j 6= 0 for any j ∈ V0. By continuity, we have β
yyy
j 6=

0, j ∈ V0 for yyy close enough to yyy0. Therefore, V0 ⊆ Vyyy, ∀yyy ∈ Ball(yyy0, ε) for small
enough ε. On the other hand, we have

λ∗ ∙ sign(β j ) =
n∑

i=1

θi xi j , ∀ j ∈ V0,

and

λ∗ ∙ sign(β j ) >

n∑

i=1

θi xi j , ∀ j /∈ V0.

Using continuity again, we have Vyyy ⊆ V0. Therefore, we have V0 = Vyyy, ∀yyy ∈ Ball(yyy0, ε)

for small enough ε.

A.5 PROOF OF THEOREM 2

Using Lemma 3, we know that there exists ε > 0, such that for all yyy ∈ Ball(yyy, ε), the
sets V ,R,L, and E stay the same. This implies that for points in E , we have

∂ f (xxxi )

∂yi
= 1, i ∈ E .

Furthermore, since βββV is determined by yyyE , hence for points in R and L, we have

∂ f (xxxi )

∂yi
= 0, i ∈ R ∪ L.

Overall, we have
n∑

i=1

∂ f (xxxi )

∂yi
= |E |.
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