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a b s t r a c t

In this paper, we develop and compare two alternative approaches for calculating the effect of the actual
intake when treatments are randomized, but compliance with the assignment in the treatment arm is
less than perfect for reasons that are correlated with the outcome. The approaches are based on different
identification assumptions about these unobserved confounders. In the first approach, which stems from
[Sommer, A., Zeger, S., 1991. On estimating efficacy in clinical trials. Statistics in Medicine 10, 45–52],
the unobserved confounders are modeled by a discrete indicator variable that represents subject-type,
defined in terms of the potential intake in the face of each possible assignment. In the second approach,
confounding is modeled without reference to subject-type in the spirit of the Roy model. Because the
two models are non-nested, and model comparison and assessment of the approaches in a real data
setting is one of our central goals, we formulate the discussion from a Bayesian perspective, comparing
the two models in terms of marginal likelihoods and Bayes factors, and in terms of inferences about the
treatment effects. The latter we calculate from a predictive perspective in a way that is different from
that in the literature, where typically only a point summary of that effect is calculated. Our real data
analysis focuses on the JOBS II eligibility trial that was implemented to test the effectiveness of a job
search seminar in decreasing the negative mental health effects commonly associated with job loss. We
provide a comparative analysis of the data from the two approacheswith prior distributions that are both
reasonable in the context of the data and comparable across the model specifications. We show that the
approaches can lead to different evaluations of the treatment.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

Consider an experiment where subjects are randomized into
either a treatment arm or control arm but intake in the treatment
arm is not necessarily the same as the assignment. Such an
experiment, which we refer to as an eligibility trial, often arises in
the testing of the effectiveness of new interventions, for instance
a medical treatment or a social program. In this paper, we develop
and compare two alternative approaches for calculating the effect
of the actual intake from such a trial when the lack of compliance
in the treatment arm is potentially caused by unobserved factors
that also affect the outcome. The approaches are based on different
identification assumptions about these unobserved confounders.
Because the two approaches are non-nested, we formulate the
discussion from a Bayesian perspective, comparing the twomodels
in terms of marginal likelihoods and Bayes factors, and in terms of
inferences about the treatment effects. The latterwe calculate from
a predictive perspective in a way that is different from that in the
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literature where typically only a point summary of that effect is
calculated.

The specific problemmay be described formally as follows. We
have a random sample of n individuals. For the ith individual in
the sample, the random treatment assignment is indicated by zi =

l (l = 0, 1), where l = 0 indicates assignment to the control arm
and l = 1 assignment to the treatment arm. The treatment intake
is xi ∈ {0, 1} which is necessarily the same as zi only if zi = 0. In
the treatment arm, however, the observed intake is not necessarily
the same as the assignment. In other words,

xi =

{
0 if zi = 0
0 or 1 if zi = 1. (1.1)

The observed outcome is yi which we assume is continuous.
The main concern is that the intake and assignment are not the
same in the treatment arm for reasons that are potentially related
to the outcome. Observed confounders, that is, covariates that
simultaneously affect the outcome and the intake in the treatment
arm, are denoted bywi : p×1 and the objective of the analysis is to
isolate the effect of the treatment intake on the outcome, given the
sample data y = (y1, . . . , yn), x = (x1, . . . , xn), z = (z1, . . . , zn),
and the observed confoundersW = (w1, . . . ,wn).
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It is well known that with hidden confounders the determina-
tion of the treatment effect requires auxiliary, untestable assump-
tions (Pearl, 2000). One set of assumptions has been extensively
explored in the recent literature (for example, Sommer and Zeger
(1991), Imbens and Rubin (1997), Frangakis and Rubin (1999), Hi-
rano et al. (2000), Jo (2002), Yau and Little (2001), Ten have et al.
(2003), Barnard et al. (2003), Frangakis et al. (2004), Levy et al.
(2004), Mealli et al. (2004)). In econometrics, the literature on
the LATE effect (for example, Imbens and Angrist (1994)) parallels
these developments. In this approach, the unobserved confounders
are modeled as a discrete variable that represents subject type. In
particular, each subject is viewed as having two possible potential
intakes, xil, where xil is the potential intake under the assignment
zi = l. Only one of these potential intakes is realized depending on
the observed assignment. In other words,

xi = xi0(1 − zi) + xi1zi.

Now a subject is one of four types depending on the values
of both potential intakes: complier (if xi0 = 0 and xi1 = 1),
never-taker (if xi0 = 0 and xi1 = 0), defier (if xi0 = 1 and
xi1 = 0) and always-taker (if xi0 = 1 and xi1 = 1). Under certain
untestable assumptions, most importantly, the absence of always
takers (because these cannot be identified in the eligibility set-up
where subjects in the control arm have no possibility of getting the
training), the absence of defiers (the monotonicity assumption),
and that assignment is a proper instrumental variable, it becomes
possible to find the causal effect of the actual intake on the outcome
for the strata of compliers.

In many important problems it may be helpful to contrast the
subject type approach with an approach that does not rely on
the notion of a discrete confounder variable. Such an approach,
which we term the general confounder approach, stems from the
so-called Roy model. The Roy approach has been common in the
non-eligibility setting, for example, Heckman and Honore (1990),
Heckman and Vytlacil (2005) and, from the Bayesian perspective,
by amongst others, Chib and Hamilton (2000, 2002), Deb et al.
(2006), Chib (2007) and Chib and Jacobi (2007). The confounder in
this case is a continuous latent variable (see for example Heckman
et al. (2001)). In this paper we show how this assumption can be
used to formulate a model for analyzing eligibility data. The model
is conceptually simple and easily fit.

An important point to emphasize is that our modeling and
inferential procedures are based on Chib (2007) and, therefore,
do not require the unknowable joint distribution of the potential
outcomes. As a result of this, in the type model, our analysis is
simpler in terms of the required prior inputs and computational
intensity than the approaches of Hirano et al. (2000), Barnard et al.
(2003) and others. For example, the latter paper assumes a zero
correlation between the potential outcomes, which is equivalent
to assuming a prior distribution with all its mass concentrated
on zero for the correlation parameter. We need to make no such
assumption. Another point relates to our approach for fitting the
general confoundermodel. Although the overall approach is drawn
from that of Chib (2007) the details are different because intake in
the control arm is non-stochastic, whereas in the model of Chib
(2007) this was not the case. Finally, we note that within each
framework, we compute a range of treatment effects, including
the average and quantile treatment effects, that are based on the
marginal predictive distributions of the potential outcomes.

Because one of our objectives is to the formal comparison of
the models in terms of marginal likelihoods and Bayes factors, the
prior distribution on the parameters in the different models in our
empirical analysis is constructed in a reasoned way from another
sample of subjects that was exposed to the same experiment.
In addition, the prior distributions are formulated to reflect the
assumption of a neutral treatment effect and the assumption of a
positive treatment effect. We explain our method for arriving at
these prior distributions below. The empirical analysis shows that
the two alternative approaches can lead to different evaluations of
the treatment.

The remainder of the paper is organized as follows. In
Section 2 we consider the type confounder approach and develop
the framework for estimation and calculation of the treatment
effect, and in Section 3 we provide the corresponding analysis
from the general confounder assumption. The question of model
comparisons via Bayes factors andmarginal likelihoods is taken up
in Section 4. Section 5 presents results on the performance of the
inferential methods in simulation studies while Section 6 provides
a detailed analysis of data from the 1991 JOBS II Intervention
Project, a job search seminar for the recently unemployed that was
designed to prevent the deterioration in mental health associated
with job loss. We focus on finding the effect of the job-training on
subsequent depression scores under each approach. We conclude
the paper with remarks in Section 7.

2. Type confounder approach

2.1. Model formulation

We begin our discussion with a formulation of the subject-type
approach in fully Bayesian terms without involvement of the joint
distribution of potential outcomes and from the new, simplifying
perspective, that subject-type is a discrete unobserved confounder.
FollowingHirano et al. (2000), Jo (2002) and Frangakis et al. (2004),
the distribution of the confounder is modeled with covariates.

Under the notations introduced in the previous section,we start
by modeling the joint density of each potential outcome yij and
intake given the treatment assignment and the covariates

p(yi, xi = 0|wi, zi = l) ≡ p(y0i, xi = 0|wi, zi = l)
p(yi, xi = 1|wi, zi = l) ≡ p(y1i, xi = 1|wi, zi = l)

subject to the restriction on intake given in (1.1). The notation
emphasizes the point that yi (the observed outcome for the
ith observation) is a place holder for the appropriate potential
outcome yji.

The idea of formulating the problem in terms of these joint
densities is due to Chib (2007) where it is pointed out that
the joint distribution of the potential outcomes is not necessary
for inferences about the causal treatment effect in settings with
unobserved confounders, and also not particularly useful in the
Bayesian context. By proceeding without the joint distribution of
the potential outcomes no prior assumptions about unidentified
correlation parameter(s) are needed in the model formulation and
no unobserved outcomes have to be simulated in themodel fitting,
simplifying the computation of such models.

Now let si = k indicate a discrete confounder random variable
that affects both the intake xi and the potential outcome yji.
Suppose that this discrete confounder takes two possible values
{0, 1} that represent subject type, namely {n, c}, for never-taker
and complier, respectively. Then, conditional on zi = l and si = k,
the joint density of (yi, xi) (equivalently (yji, xi)) can be factored as

p(yi, xi = j|wi, zi = l, si = k)
≡ p(yji, xi = j|wi, zi = l, si = k) (2.1)

= pj(yi|wi, si = k)Pr(xi = j|yij,wi, zi = l, si = k) (2.2)

where pj(yi|wi, si = k) is the density of yji conditional on the
latent subject type and the second term is the conditional mass
function of xi = j. The former density does not involve zi = l on
account of the so-called exclusion restriction. Notice, too, that the
second term is either zero or one, for any value of yi or wi. This
can be seen from Table 1 which gives the distribution of type by
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Table 1
Distribution of types by treatment arm and intake

xi = 0 xi = 1
zi = 0 c, n —
zi = 1 n c

treatment arm and intake. For example, if zi = 0 and si = 1,
then xi = 0, so that Pr(xi = 0|yi,wi, zi = 0, si = 1) = 1.
In addition, if zi = 1 and si = 0, then xi = 0, implying that
Pr(xi = 0|yi,wi, zi = 1, si = 0) = 1. Thus, given zi = l and
si = k, the intake is fully determined.

To derive the joint density of the outcome and the intake, let
Ilj = {i : zi = l and xi = j} denote the sample indices of the
subjects in each of the three non-empty cells of Table 1. Also let

Pr(si = 1|vi,α) = qci = φ(v′

iα)

denote the probability of subject type c , where φ is the cdf of the
standard normal distribution. We assume that this probability is
a function of the q × 1 vector of pre-treatment variables vi that
is a subset of wi. It is independent of zi because of the random
assignment of subjects to the treatment arms. Since we do not
observe the subject type in the control arm, the joint density of yi
and xi = j conditional on zi = l, is given by appropriately averaging
over possible types:

p(yi, xi = j|wi, zi = l)

=


(1 − qci) p0(yi|wi, si = 0)

+ qci p0(yi|wi, si = 1) if i ∈ I00
(1 − qci) p0(yi|wi, si = 0) if i ∈ I10
qci p1(yi|wi, si = 1) if i ∈ I11.

(2.3)

This expression does not involve themass function of the intake
due to the discussion surrounding (2.1).

Thus, from (2.3)we see that themodeling of (yi, xi = j) requires
three type and treatment state specific distributions, p0(yi|wi, si =

0), and pj(yi|wi, si = 1), for j = 0, 1. For specificity, assume that
these are student-t with known degrees of freedom ν and of the
form

p0(yi|wi, si = 0) = tν(yi|w′

iβ0n, η
2
0n)

pj(yi|wi, si = 1) = tν(yi|w′

iβjc, η
2
jc), j = 0, 1 (2.4)

where β0n and βjc are type and treatment state-specific p-
dimensional vectors of regression parameters, η2

0n and η2
jc are

the corresponding dispersion parameters and tν(·|µ, s2) is the
student-t density function with ν degrees of freedom (ν > 2),
mean µ and variance νs2/(ν − 2). The student-t assumption
is a generalization of the common Gaussian assumption in the
literature.

We complete the model specification with a prior distribution
for the model parameters ψ = (β, η2,α) where β =

(β0c,β0n,β1c) and η2 = (η2
0c, η

2
0n, η

2
1c). We assume that the

parameters are mutually independent and that the prior density
is of the form

π(ψ) = π(α)
∏
j=0,1

∏
k∈Kj

π(ψjk)

where π(α) = Nq(α|α0, A0),ψjk = (βjk, η
2
jk), K0 = {c, n}, K1 =

{c},

π(ψjk) = Np(βjk|βjk,0, Bjk,0)IG

(
η2
jk

∣∣∣∣njk,0

2
,
djk,0
2

)
,

and IG(·|n, d) is the inverse-gamma density.
2.2. Posterior distribution and computations

We now discuss how the model we have specified can be
fit. We rely on Markov chain Monte Carlo (MCMC) methods to
sample from the posterior distribution. Because our formulation
is different than that in the literature, the MCMC fitting method is
also different. Letψ = (β, η2,α)denote themodel parameters and
π(ψ|y, x, z,W) ∝ f (y, x|z,W,ψ)π(ψ), the posterior distribution
which is proportional to the product of the likelihood f (y, x|z,W)

of the observed data and the prior distribution π(ψ), where the
likelihood function is

f (y, x|z,W,ψ) =

n∏
i=1

p(yi, xi = j|wi, zi = l)

=

∏
i∈I00

(1 − qci)tν(yi|w′

iβ0n, η
2
0n) + qcitν(yi|w′

iβ0c, η
2
0c)

×

∏
i∈I10

(1 − qci)tν(yi|w′

iβ0n, η
2
0n)
∏
i∈I11

qcitν(yi|w′

iβ1c, η
2
1c). (2.5)

The posterior distribution is not tractable because of the mixture
distribution in the control arm. MCMC computations can be
simplified, however, by including s00 = {si : i ∈ I00} as unknown
parameters. In addition, it is helpful to rewrite the student-t
density tν(·|µ, s2) in familiar form as N (·|µ, λ−1

i s2), where λi ∼

G( ν
2 ,

ν
2 ), and then augment the parameter space to include λ =

{λi : i ≤ n}.
Under these assumptions and augmentations, the posterior

density of interest becomes π(ψ,λ, s00|y, x, z,W) which is
proportional to

π(ψ)

n∏
i=1

G
(
λi

∣∣∣υ
2

,
υ

2

)∏
i∈I00

N (yi|w′

iβ0si , λ
−1
i η2

0si)p(si|α)

×

∏
i∈I10

I[si = 0] (1 − φ(v′

iα)) N (yi|w′

iβ0n, λ
−1
i η2

0n)

×

∏
i∈I11

I[si = 1] φ(v′

iα) N (yi|w′

iβ1c, λ
−1
i η2

1c) (2.6)

where p(si|α) = I[si = 0][1 − φ(v′

iα)] + I[si = 1][φ(v′

iα)] is
the probability mass function of si. It is easy to see that the prior
times the likelihood function in (2.5) emerges from this augmented
distribution if one integrates out {si} and {λi} term by term.

MCMC sampling of this distribution can be implemented in
a completely natural way. One possible algorithm (that we have
extensively tested to be efficient) proceeds in the following
fashion.

• Sample s00 and λ jointly conditioned on the data (y, x, z,W)

and the remaining unknowns. This is done by sampling si for
subjects in I00 (marginalized over λi) with probability

Pr
(
si = 1

∣∣yi, xi,α,β0c,β0n, η
2
0c, η

2
0n

)
=

qcitν(yi|w′

iβ0c, η
2
0c)

qci tν(yi|w′

iβ0c, η
2
0c) + (1 − qci) tν(yi|w′

iβ0n, η
2
0n)

. (2.7)

Once si has been so generated for subjects in I00, we know the
type of all n subjects in the sample (since subjects in I10 are of
type si = 0 and those in I11 are of type si = 1). We can now
sample each λi from the Gamma density

π(λi|yi, xi,wi, si,β, η2)

= G

(
λi

∣∣∣∣ν + 1
2

,
ν + (yi − w′

iβjk)η
−2
j,k (yi − w′

iβjk)

2

)
.
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• In the second and third steps, conditional on the subject types
s = {si : i ≤ n} and the sub-samples of individuals i ∈

Ijk, we sample the regression parameters βjk and the variance
parameters η2

jk. Specifically, let

yjk = {yi : i ∈ Ijk}; xjk = {xi : i ∈ Ijk}
Wjk = {wi : i ∈ Ijk}; λjk = {λi : i ∈ Ijk}

denote the sub-sample of observations, by intake state j and
type k, on the outcome, intake, covariates and latent scale,
respectively. Then, our sampling of βjk is from

π(βjk|yjk, xjk,Wjk, η
2
jk,λjk)

= N

βjk

∣∣∣∣∣∣Bjk

B−1
jk,0βjk,0 +

∑
i∈Ijk

λiwiη
−2
jk yi

 ,

B−1
jk,0 +

∑
i∈Ijk

λiwiη
−2
jk w′

i


−1 (2.8)

and that of η2
jk from

π(η2
jk|yjk, xjk,Wjk,βjk,λjk)

= IG

η2
jk

∣∣∣∣njk,0 + njk

2
,

djk,0 +
∑
i∈Ijk

λi(yi − w′

iβjk)
2

2

 (2.9)

where njk denotes the number of individuals in the set Ijk.
• Wefinish ourMCMCalgorithmby samplingα fromπ(α|y, x,W,

s00) via theMetropolis Hastings algorithm (Chib andGreenberg,
1994, 1995) as the distribution is not available in closed form.
The proposal value α+ is drawn from a tailored multivariate-t
distribution t20(µ,V) where µ is the approximate mode of

ln

[ ∏
iεI0c∪I1c

φ(si|v′

iα)
∏
iεI0n

1 − φ(si|v′

iα)

]
and V is the inverse Hessian of the density evaluated at µ. The
proposal value α+ is then accepted with probability

αMH = min{1, r1r2}

where

r1 =
π(α+)

π(α)

∏
iεI0c∪I1c

Φ(si|v′

iα
+)
∏
iεI0n

(1 − Φ(si|v′

iα
+))∏

iεI0c∪I1c
Φ(si|v′

iα)
∏
iεI0n

(1 − Φ(si|v′

iα))

and

r2 =
t(α|µ,V, 20)
t(α+|µ,V, 20)

.

2.3. Inferring treatment effects for compliers

The treatment effects analysis investigates whether the actual
intake of the training program has a positive causal effect on
outcomes for compliers. Chib (2007) has shown that the Bayesian
predictive approach is useful in drawing inferences about causal
treatment effects. In this section we show how these predictive
distributions can be calculated. We use these distributions to
compute various treatment effects, such as quantile treatment
effects, and a predictive version of the common complier-average
causal effect. We call this predictive effect the predictive average
causal effect (PACE).
We begin our predictive analysis by considering a subject that
is randomly drawn from the subpopulation of compliers. Let yjc,n+1
denote the potential outcome for subject n + 1 who is a complier.
The relevant predictive densities p(yjc,n+1|y, x,W, z, sn+1 = 1) are
given by∫

p(yjc,n+1|wn+1,βjc, η
2
jc)I(sn+1 = 1)p(sn+1|vn+1,α)

× π(βjc, η
2
jc,α,wn+1, vn+1|y, x,W, z)

× dβjc dη
2
jc dα dwn+1 dvn+1 (2.10)

where p(yjc,n+1|wn+1,βjc, η
2
jc) is tν(yjc,n+1|w′

n+1βjc, η
2
jc) and the

unknowns are marginalized with respect to the posterior distribu-
tion.

Since the integral cannot be calculated analytically, we use the
methodof composition to generate draws fromp(yjc,n+1|y, x,W, z,
sn+1 = 1). This is done by appending the following steps at the end
of each MCMC iteration.

• First, we randomly sample w(g)
n+1 and v(g)

n+1 from the full set of
covariates.

• Next, we sample s(g)n+1 = I[v(g)
n+1α

(g)
+ u(g)

n+1 > 0], where u(g)
n+1 ∼

N (0, 1).
• We then check compliance: If s(g)n+1 = 1 we draw y

(g)

jc,n+1(j =

0, 1) from

tν(yjc,n+1|w
′(g)
n+1β

(g)
jc , η2(g)

jc ).

Otherwise we skip and move to the next step in the chain.

The resulting draws (y
(1)

0c,n+1, . . . , y
(G)

0c,n+1) and (y
(1)

1c,n+1, . . . ,

y
(G)

1c,n+1) are stored and used to compute the treatment effects of
interest. For example,

PACE = E(y1c,n+1|y, x,W, z, sn+1 = 1)

− E(y0c,n+1|y, x,W, z, sn+1 = 1) (2.11)

is computed from the simulated draws in an obvious manner.

3. General confounder approach

3.1. Modeling

Consider now an alternative way of modeling unobserved
confounding in which the hidden confounder, instead of being
discrete with a two point distribution, is assumed to be non-
specific with a distribution of some particular form. As in Section 2,
we follow Chib (2007) and phrase the problem in terms of the joint
density of p(yji, xi = j|wi, zi = l), for l = 0, 1, without involving
the joint distribution of the potential outcomes. For subjects in the
control arm, Pr(xi = 0|wi, zi = 0) = 1, and it is only necessary
to specify a marginal model of the potential outcome yi0. In other
words, joint modeling of the potential outcome and the intake
is only needed for subjects in the treatment arm. For generality,
we allow the marginal distributions of the potential outcomes to
be different. Just as the type confounder model, we impose the
exclusion restriction that the marginal distribution of yji does not
depend on the assignment zi = l. Specifically, we assume that

p(yji, xi = j|wi, zi = l)

=

{
p0(y0i|wi) if i ∈ I0
pj(yji, xi = j|wi, zi = 1), j = 0, 1 if i ∈ I1

(3.1)

where Il = {i : zi = l} denotes the sample indices of a subject with
zi = l. On decomposing the joint density in terms of a marginal
density of the outcome and a conditional probability of the intake,
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and writing out the j = 0 and j = 1 cases fully, we can write the
latter model explicitly as

p(yji, xi = j|wi, zi = l)

=

{p0(y0i|wi) if i ∈ I00
p0(y0i|wi)Pr(xi = 0|wi, zi = 1, y0i) if i ∈ I10
p1(y1i|wi)Pr(xi = 1|wi, zi = 1, y1i) if i ∈ I11

(3.2)

where, as before, Ilj = {i : zi = l and xi = j}. Thus, for subjects
in the control arm the model is specified in terms of the marginal
density p(y0i|wi). Because of the maintained exclusion restriction,
this marginal density is the same as the marginal density of y0i of
subjects in the treatment arm who forgo the treatment.

The task at hand, therefore, is to specify the form of

p(yi, xi = j|wi, zi = 1) ≡ p(yji, xi = j|wi, zi = 1), j = 0, 1.

We generate these two joint densities from the model

yji = w′

iβj + εji, j = 0, 1

x∗

i = v′

iγ + ui

xi = I
{
x∗

i > 0
}

where vi is a vector of pretreatment variables that is a subset ofwi
and x∗

i is a latent variable. Note that the role of zi = 1 is implicit
in this formulation since it serves merely to pinpoint the fact that
when zi = 1 the outcome and intake are jointly determined. To
model continuous unobserved confounders we assume that

(εji, ui)|λi ∼ N2
(
0, λ−1

i �j
)

where

�j =

(
η2
j ωj

ωj 1

)
is up to scale the conditional covariance matrix between the yji
and x∗

i . Here λi is a positive random-variable that is assumed to
be iid gamma

(
ν
2 ,

ν
2

)
for some known value ν > 2. We could

entertain other possible mixing distributions but our choice of the
gamma distribution leads to the bivariate student-t distribution
which is simple to work with and comparable to the one in the
type confounder model.

If we let β = (β0,β1, γ), σ
2
j = η2

j − ω2
j (for reasons presented

below) and ψj = (βj, ωj, σ
2
j ), it follows that the joint density of yji

and x∗

i for subjects in I1 is

p∗(yji, x∗

i |wi, zi = 1,ψj, γ, λi) = N2(yji, x∗

i |Xj,iβ, λ−1
i �j) (3.3)

where

Xj,i =

(
w′

i × (1 − j) w′

i × j 0
0 0 v′

i

)
.

Therefore, marginal of λi, the joint densities

p∗(y0i, x∗

i |wi, zi = 1,ψ0, γ)

and

p∗(y1i, x∗

i |wi, zi = 1,ψ1, γ)

are bivariate student-t . From here on, integrating out the
latent scale while paying particular attention to the interval of
integration, we get that for i ∈ I1,

p(yi, xi = j|wi, zi = 1,ψj, γ) ≡ p(yji, xi = j|wi, zi = 1,ψj, γ)

= pj(yi|wi,βj, η
2
j )

∫
Aj
p∗(x∗

i |wi, zi = l, yi,βj, η
2
j , ωj)dx∗

i

= tν(yi|w′

iβj, η
2
j )Tν+1

{
(2j − 1)

µji

hjiφj

}
(3.4)
where Aj is the set (−∞, 0) if j = 0 and (0, ∞) if j = 1, tν is the
student-t density with ν degrees of freedom, Tν+1{·} is the cdf of
the standard t-density,

µji = v′

iγ + ωjη
−2
j (yi − w′

iβj)

h2
ji = [υ(υ + 1)][1 + (yi − w′

iβj)
2η−2

j /ν]

φ2
j = 1 − ω2

j /η
2
j .

Setting j = 0 in Eq. (3.3), and noting that the intake is non-
stochastic when zi = 0, it follows that

p(yi, xi = 0|wi, zi = 0,β0, η
2
0) = p(y0i, xi = 0|wi, zi = 0,β0, η

2
0)

= tν(yi|w′

iβ0, η
2
0). (3.5)

3.2. Prior

To complete the model specification we now supply a prior
density for the model parameters ψ = (γ,ψ0,ψ1). Specifically,
we assume that σ 2

j is distributed inverse-gamma and βj andωj are
Gaussian:

π(ψj) = IG

(
σ 2
j

∣∣∣∣nj,0

2
,
dj,0
2

)
Np(βj|βj,0, Bj,0)N (ωj|mj,0,Mj,0)

where the quantities indexed by zero are the prior hyperparam-
eters, and p is the dimension of βj. We assume that ψ0 and ψ1

are apriori independent. Notice that σ 2
j is the determinant of �j

and our choice of an inverse-gamma distribution for it ensures that
�j is positive definite. We note for future use that these assump-
tions imply that the prior density of the p + 1-dimensional vector
β̃1 = (β1, ω1) isNp+1(β̃1|β̃1,0, B̃1,0)withmean β̃1,0 = (β1,0|m1,0)
and covariance matrix

B̃1,0 =

(
B1,0 0
0 M1,0

)
.

We further assume that γ is distributed as Nq(γ|γ0,G0),
independent of ψj. Putting these assumptions together, the prior
on ψ = (β,ψ0,ψ1) is of the form

π(ψ) = Nq(γ|γ0,G0)

1∏
j=0

IG

(
σ 2
j |

nj,0

2
,
dj,0
2

)
× Np(βj|βj,o, Bj,0)N (ωj|mj,0,Mj,0). (3.6)

3.3. Posterior distribution and fitting

Estimation of ψ from the posterior density π(ψ|y, x) ∝

π(ψ)f (y, x|ψ) requiresMCMCmethods. FollowingAlbert andChib
(1993), let x∗

1 = {x∗

i : i ∈ I1}, and λ = {λi : i ≤ n} and consider the
joint density

p(yi, x∗

i , xi = j|wi, zi = l,β,ψj, λi)

≡ p(yji, x∗

i , xi = j|wi, zi = l,β,ψj, λi)

= p∗(yji, x∗

i |wi, zi = l,β,ψj, λi)[I{x∗

i < 0}1−j
+ I{x∗

i > 0}j]

where p∗(yji, x∗

i |wi, zi = l,β,ψj, λi) is the bivariate normal
density given in expression (3.3).We now focus on the distribution
π(ψ, x∗

1,λ|y, x) which is proportional to:

π(ψ)

n∏
i=1

G
(
λi|

υ

2
,
υ

2

)∏
i∈I00

N (yi|w′

iβ0, λ
−1
i , η2

0)

×

∏
i∈I10

N2(yi, x∗

i |X0,iβ, λ−1
i �0)I{x∗

i < 0}

×

∏
i∈I11

N2(yi, x∗

i |X1,iβ, λ−1
i �1)I{x∗

i > 0} (3.7)
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involving both the marginal density of the outcome (for subjects
with intake xi = 0) and the joint density of the outcome and the
intake (for subjects with intake xi = 1).

Given the generality ofMCMC samplingmethods, this posterior
density can be sampled in various ways. To do the sampling as
efficiently and conveniently as possible, we employ a blocking
scheme that is coarse, in the sense that it minimizes the number of
blocks. For instance, we sample the latent variables x∗

i , for i ∈ I10
and i ∈ I11, and the scale parameters λi, for i ≤ n in one block. We
also sample ω1 and β1 in one block because it can be difficult to
estimate the degree of confounding when x = 1 because subjects
in this case are only observed under one level of the assignment
(note that this problem does not occur forω0 and β0 since the data
in the set I00 supplies information about β0, independent of ω0).
Finally, we sample ζ0 = (σ 2

0 , ω0) in one block becausewe found by
experimentation that this leads to better mixing in the output. We
mention that the target density for the latter step is not in closed
form because of the fact that the density of the outcomes in the
control arm implicitly contains ω0 since, in our parameterization,
η2
0 = σ 2

0 + ω2
0 . We therefore make use of the Metropolis–Hastings

(M–H) algorithm to sample that density.
In particular, our MCMC sampling algorithm is composed of the

following five steps.

• In the first stepwe jointly sample the latent treatment variables
x∗

i , for i ∈ I10 and i ∈ I11, and the scale parameters λi, for i ≤ n,
sampling x∗

i marginalized over λi from

tv+1(x∗

i |mji, h2
jiφ

2
j )
{
I(x∗

i < 0)1−j
+ I(x∗

i > 0)j
}

followed by the update of λi for these subjects (i ∈ I1) from a
gamma density

G

(
λi|

ν1

2
,
d1
2

)
where ν1 = ν0 + 2 and d1 = ν0 + (y∗

i − X1iβ)′�−1
j (y∗

i − X1iβ).
In the final step of the first block we update λi for subjects
in the control group (i ∈ I00) from a gamma density, where
the parameters ν1 and d1 are now given by ν1 = ν0 + 1 and
d1 = ν0 + (yi − w′

iβ0)η
−2
0 (yi − w′

iβ0).
• In the second step we sample γ based on the observations in

the sets I10 and I11 from

π(γ|y, x,W, x∗

1,β0,β1, σ
2
0 , ω0, σ

2
1 , ω1,λ) = Np(γ|γ̂,G) (3.8)

with mean

γ̂ = G

{
G−1
0 γ0 +

∑
i∈I10

λiwi(1 − ω2
0η

−2
0 )x̄∗

i0

+

∑
i∈I11

λiwi(1 − ω2
1η

−2
1 )x̄∗

i1

}
where x̄∗

ij = (x∗

i −ωjη
−2
j (yi−w′

iβj)), and covarianceG = {G−1
0 +∑

i∈I10
λiwi(1 − ω2

0η
−2
0 )wi +

∑
i∈I11

λiwi(1 − ω2
1η

−2
1 )wi}

−1.
• Then in the third step we update β0,β1 and ω1 in one block,

sampling β0 from

π(β0|y, x,W, x∗

1, γ, σ
2
0 , ω0,λ) = Np(β0|β̂0, B0) (3.9)

with mean

β̂0 = B0

{
B−1
0,0β0,0 +

∑
i∈I00

λiwiη
−2
0 yi

+

∑
i∈I10

λiwiσ
−2
0 (yi − ω0x̂∗

i )

}

and covarianceB0 = {B−1
1,0+

∑
i∈I00

λiwiη
−2
0 w′

i+
∑

i∈I10
λiwiσ

−2
0

w′

i}
−1, and β̃1 = (β1, ω1) from

π(β̃1|y, x,W, x∗

1, γ, σ
2
1 ,λ)

= Np+1

β̃1|B̃1

{
B̃

−1
1,0β̃1,0 +

∑
i∈I11

λiw̃iσ
−2
1 yi

}
,

B̃1 =

{
B̃

−1
1,0 +

∑
i∈I11

λiw̃iσ
−2
1 w̃′

i

}−1
 (3.10)

where w̃i = wi|ui.
• In the fourth step we jointly update ζ0 = (σ 2

0 , ω0) with a M–H
step. This requires a M–H step due to the fact that the density
of the outcomes in the control arm involves ω0 implicitly in
the parameterization η2

0 = σ 2
0 + ω2

0 . To do this sampling
efficiently, we follow Chib and Greenberg (1998), and generate
the proposal values σ 2+

0 and ω+

0 from a tailored student-t
density tν(µ,V), where µ is the (approximate) mode of

ln

(∏
i∈I00

N (yi|w′

iβ0, λ
−1
i η2

0) ×

∏
i∈I10

N2(yi, x∗

i |X0,iβ, λ−1
i �0)

)
for the subjects in the sets I00 and I10, and V is the inverse
Hessian of this density evaluated at µ. We accept the proposal
values with probability of move αMH = αMH(ζ0, ζ

+

0 |y, x,W,β,

σ 2
1 , ω1, x∗,λ) where

αMH = min{1, r1r2}, (3.11)

where

r1 =
π(ζ+

0 )

π(ζ0)

∏
i∈I00

N (yi|w′

iβ0, λ
−1
i η2+

0 )
∏
i∈I10

N2(yi, x∗

i |X0,iβ, λ−1
i �+

0 )∏
i∈I00

N (yi|w′

iβ0, λ
−1
i η2

0)
∏
i∈I10

N2(yi, x∗

i |X0,iβ, λ−1
i �0)

,

r2 =
tν(ζ0|µ,V)

tν(ζ+

0 |µ,V)

and η2+

0 = σ 2+

0 + ω2+

0 .
• In the final step, we sample σ 2

1 conditional on ω1 and the
remaining parameters from

π(σ 2
1 |y, x,W, x∗

1,β,λ) = IG

×

σ 2
1 |

ν1,0 + n11

2
,

d1,0 +
∑
i∈I11

λi(yi − w′

iβ1 − ω1ui)
2

2


(3.12)

where n11 is the number of subjects in the set I11.

We run ourMCMC sampler forM iterations after an initial burn-
in period ofm0 iterations.

3.4. Inferring treatment effects

We calculate the treatment effects in a way that parallels the
approach outlined in Section 2.3. The relevant potential outcome
densities of interest are the predictive densities

p(yj,n+1|y, x,W, z), j = 0, 1

where the subscript n+1 refers to a subject randomly drawn from
the entire population. As is usual in the Bayesian context, these
predictive densities are sampled by the method of composition
by appending the following steps to each iteration g ≤ M of the
algorithm.



S. Chib, L. Jacobi / Journal of Econometrics 144 (2008) 465–478 471
• First, we randomly samplew(g)
n+1 from the full set of covariates.

• We then draw y(g)
j,n+1 from tν(y

(g)
j,n+1|w

(g)′
n+1β

(g)
j , η2(g)

j ), where

(β
(g)
j , η2(g)

j ) are the values of the parameters at the gth iteration
of the chain.

We use the simulated samples (y(1)
0,n+1, . . . , y

(M)
0,n+1) and (y(1)

1,n+1,

. . . , y(M)
1,n+1) to compute various effects of interest, including the

predictive average causal effect. The average predictive treatment
effect can be interpreted as the expected causal treatment gain of
a random subject from the population.

An interesting point to note is that the general confounder
model can also be used to deliver a treatment effect for compliers.
The idea, introduced in Chib (2007), is to compute the potential
treatments, x0 and x1, under the two possible assignments to
identify if a subject would comply with the treatment. In the
eligibility design assignment into the control state implies that
x0 = 0. A complier is then a person who would be induced to
take the treatment if assigned into the treatment arm.We generate
the predictive marginal distributions of the potential outcomes for
compliers by calculating x(g)

1,n+1 = I[v(g)
i γ

(g)
+ u(g)

1,n+1 > 0] at each
iteration, where u(g)

1,n+1 ∼ tν(0, 1). If x
(g)
1,n+1 = 1 we compute y(g)

0,n+1

and y(g)
1,n+1 as described above. If x(g)

1,n+1 = 0 we move to the next
step in the MCMC chain.

4. Estimation of the marginal likelihood

The developments in the previous sections open up the
possibility of fitting eligibility design data under each framework,
with the aim of appraising which model and assumptions are
better supported by the data. We calculate this support through
the marginal likelihood of each model. As has been discussed
elsewhere, the marginal likelihood can be calculated easily by
the method of Chib (1995). This method exploits the fact that on
the log-scale the marginal likelihood of a model (say) M can be
expressed in terms of its likelihood function, the prior and the
posterior as

lnm(y, x|M) = ln f (y, x|z,W,ψ∗,M) + lnπ(ψ∗
|M)

− lnπ(ψ∗
|y, x,W,M) (4.1)

each evaluated at ψ∗ (the posterior mean of the parameter vector
ψ). The first two terms in this expression can be found directly in
each of our two models. For instance, the likelihood ordinate of
the type confounder model comes from (2.5) whereas that of the
general confounder model from expressions (3.4) and (3.5). What
remains is the calculation of the posterior ordinate which we get
as follows.

Consider first the case of the type confounder model where the
parameter vector is ψ = (α, η2,β, ), with β = (β0c,β0n,β1c)
and η2 = (η2

0c, η
2
0n, η

2
1c). Dropping the model indexM , to estimate

π(ψ∗
|y, x,W) we utilize the decomposition

π(ψ∗
|y, x,W) = π(η2

∗

|y, x,W)π(α∗
|y, x,W, η2

∗

)

× π(β∗
|y, x,W, η2

∗

).

The first of these ordinates can be obtained by Rao-
Blackwellization as

π̂(η2
∗

|y, x,W)

= M−1
M∑

g=1

∏
j=0,1

∏
k∈Kj

π(η2∗
jk |yjk, xjk,Wjk,β

(g)
jk ,λ

(g)
jk )


where K0 = {c, n}, K1 = {c} and (β

(g)
jk ,λ

(g)
jk , qc

(g)
) is the gth draw

from the MCMC run.
The next ordinate comes from applying a result of Chib and
Jeliazkov (2001) which shows that

π(α∗
|y, x,W, η2

∗

)

=
E1
(
α(α,α∗

|y, x,W, η2
∗

, θ) q(α∗
|y, x,W, η2

∗

, θ)
)

E2α(α∗,α|y, x,W, η2
∗
, θ)

(4.2)

where θ = (β,λ), E1 denotes the expectation with respect to the
posterior distribution

π(α, θ|y, x,W, η2
∗

)

and E2 the expectation with respect to

π(θ|y, x,W, η2
∗

,α∗) q(α|y, x,W, η2
∗

, θ).

These can be estimated conveniently by the method of reduced
MCMC runs by averaging the product in the numerator over
the draws from a reduced MCMC run where η2 is fixed at
η2

∗

, and by averaging α(α∗,α|y, x,W, η2
∗

, θ) in the denominator
over draws of θ drawn from π(θ|y, x,W, η2

∗

,α∗) and α from
q(α|y, x,W, η2

∗

, θ).
The output from either of the latter two reduced runs can also

be used to obtain the reduced ordinate of β as

π̂(β∗
|y, x,W, η2

∗

) = M−1
M∑

g=1

π(β∗
|y, x,W, η2

∗

,λ(g))

where the summand is the density given in (2.8).
In the case of the general confounder model the parameter

is ψ = (γ,ψ0,ψ1), where as before ψj = (βj, σ
2
j , ωj). We

decompose the posterior ordinate π(ψ∗
|y, x,W) into a product of

marginal and reduced posterior ordinates as

π(ζ∗

0|y, x,W)π(γ∗
|y, x,W, ζ∗

0)π(σ 2∗

1 |y, x,W, ζ∗

0, γ
∗)

× π(β∗

0,β
∗

1, ω
∗

1|y, x,W, ζ∗

0, γ
∗, σ 2∗

1 )

where ζ∗

0 = (σ 2∗

0 , ω∗

0).
The first of these ordinates is estimated by the Chib and Jeli-

azkov (2001) approach described in connection with the ordi-
nate of α in (4.2). A similar ratio of expectations is involved
with α replaced by ξ,α∗ by ζ∗

0 , and θ by (β, σ 2
1 , ω1, x∗

1,λ).
Then, E1 is estimated by averaging the product in the numer-
ator over the draws from the full MCMC run, and E2 by aver-
aging α(ζ∗

0, ζ0|y, x,W,β, σ 2
1 , ω1, x∗

1,λ), where ζ0 is drawn from
q(ζ0|y, x,W,β, σ 2

1 , ω1, x∗

1,λ) and the remaining parameters from
a reduced run with ζ0 fixed at ζ∗

0 .
Notice that the output from the latter reduced run can also be

used to obtain the reduced ordinate of γ as

π̂(γ∗
|y, x,W, ζ∗

0)

= M−1
M∑

g=1

π(γ∗
|y, x,W, ζ∗

0, x
∗
(g)

1 ,β
(g)
0 ,β

(g)
1 , σ 2(g)

1 , ω
(g)
1 ,λ(g))

where the summand is the density given in (3.8).
Next, to estimate π(σ 2∗

1 |y, x,W, ζ∗

0, γ
∗) we fix (ζ0, γ) at

(ζ∗

0, γ
∗) and continue the MCMC iterations. The draws from this

reduced run produce the estimate

M−1
M∑

g=1

π(σ 2∗

1 |y, x,W, ζ∗

0, γ
∗,β

(g)
0 ,β

(g)
1 , σ 2(g)

1 , ω
(g)
1 , x∗

(g)

1 ,λ(g))

where the conditional density of σ 2
1 is given by expression (3.12).
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Table 2
Type confounder model: Simulation study with β0c = (1, 2),β0n = (−0.5, 1),β1c = (2, 3)

Posterior means and standard deviations

qc n β′

0c β′

0n β′

1c α φ(α)

.5 250 1.41(.65) 1.93(.20) −0.58(.29) 1.01(.10) 2.05(.32) 3.01(.11) 0.00(.12) 0.50(.05)
500 1.01(.51) 1.97(.16) −0.46(.21) 0.98(.07) 1.97(.23) 3.00(.08) 0.01(.09) 0.50(.03)

1000 1.10(.40) 1.99(.12) −0.49(.16) 1.01(.05) 1.98(.16) 3.00(.06) 0.00(.06) 0.50(.02)

.8 250 1.04(.46) 1.99(.15) −0.55(.52) 1.02(.18) 1.94(.25) 3.02(.09) 0.89(.14) 0.81(.04)
500 1.01(.32) 2.03(.10) −0.55(.33) 1.03(.12) 1.92(.18) 3.01(.06) 0.81(.10) 0.79(.03)

1000 1.00(.24) 2.02(.08) −0.47(.25) 1.01(.09) 2.01(.13) 3.01(.05) 0.83(.07) 0.80(.02)

Reported are the average of the posterior means and standard deviations from the 20 replications of each design.

Table 3
Type confounder model: Inefficiency factors from the sampled MCMC output for the case q̄c = 0.5

Inefficiency factors

Sample size β′

0c β′

0n β′

1c η2
0c η2

0n η2
1c α

250 5.99 3.90 2.13 1.99 1.24 1.24 5.14 1.90 1.40 11.67
500 5.03 3.75 2.25 2.02 1.25 1.23 4.00 1.80 1.36 11.88

1000 5.55 4.02 2.52 2.27 1.27 1.23 3.91 1.79 1.35 13.50

The results are averaged over 20 replications.
Last, we compute the reduced ordinate of (β∗

0,β
∗

1, ω
∗

1) from the
output of the another reduced run, now with (ζ0, γ, σ

2
1 ) fixed at

(ζ∗

0, γ
∗, σ 2∗

1 ), to yield

M−1
M∑

g=1

π(β∗

0|y, x,W, ζ∗

0, γ
∗, σ 2∗

1 , x∗
(g)

1 ,λ(g))

× π(β∗

1, ω
∗

1|y, x,W, ζ∗

0, γ
∗, σ 2∗

1 , x∗
(g)

1 ,λ(g))

where the first conditional density is given in Eq. (3.9) and the
second in Eq. (3.10).

5. Simulation studies

We conducted some simulation studies to examine the
performance of the fitting approaches.

5.1. Type confounder model

We consider a general design with one continuous covarariate
wi in the outcome model that we generate from a N (2, 4)
distribution. The coefficient vectors in the outcome model are
taken to be β0c = (1, 2),β0n = (−0.5, 1) and β1c = (2, 3),
and the variances are fixed at η2 = (4.00, 4.00, 4.00). For the
simulation exercise we define the covariate vector in the type
probability qci in terms of a constant and set the coefficient vector
α in turn to φ−1(.5) and φ−1(.8) to capture different average
compliance rates of 50% and 80% in the data. We consider sample
sizes of 250, 500 and 1000 for each design, with 20 replications for
each sample size. In each experiment, our prior-posterior analysis
is conducted under the prior assumption that βjk ∼ N2(0, 25× I2)
and α ∼ N (0, 25) while the hyperparameters of the inverse
gamma distribution for η2

jk are set to have a prior mean of 2 and
standard deviation of 6.

In Table 2 we report the posterior means and standard de-
viations of β0c,β0n,β1c, α and the implied compliance probabil-
ity φ(α) averaged over the 20 replications. The results indicate
that the algorithm is able to recover the true parameters rea-
sonably well under both compliance probabilities and different
sample sizes. Naturally, the precision of the parameter estimates
measured by the posterior standard deviations improves as the
sample size increases. The average inefficiency factors (a measure
of the mixing of the MCMC chain) when q̄c = 0.5 are given in Ta-
ble 3. As expected, we observe the highest inefficiency factors for
the parameter α which is updated by a Metropolis Hastings algo-
rithm with a tailored proposal density as described in Section 2.2.
In these particular simulation exercises the acceptance rate is just
below 80%.

While the results in Tables 2 and 3 show that the MCMC
algorithm performs well, they reveal some aspects of the type
approach that can impede inference. For example, since the
compliance status of the subjects in the control arm is not
observed, estimation of β0c can be difficult, especially when the
number of compliers in the control arm is small. This is reflected in
the higher posterior standard errors of β0c compared to β0n and, of
course, β1c . This difficulty also shows up in the higher inefficiency
factors of β0c relative to those of β0n and β1c . A crucial step in the
estimation of β0c is the correct identification of the subject type
variables in the control arm. In Fig. 1 we provide more information
on the success of this inference by reporting the posterior means
of the compliance type probability for each subject in the control
arm. The results refer to one particular replication of the simulation
when qc = 0.5 and n = 500with 140 control arm subjects. The left
graph shows that, with a few exceptions, the posterior compliance
probability is above 0.5 for the 66 compliers. The right graph shows
that the posterior compliance probabilities is below 0.5 for the
majority of the 74 never takers in the sample.

5.2. General confounder model

We suppose as above that we have one continuous covariate
wi ∼ N (2, 4), and let β0 = (1.00, 2.00), β1 = (2.00, 3.00)
and γ = (−1.00, 1.00). In addition, we let η2 = (4.00, 4.00).
To examine the role of the confounding parameters on inference,
we set the value of ωj between −1.6 and 1.6. Under our choices of
η2
j this implies that the correlation coefficient ρj ranges between

−0.8 and 0.8. For each setting of these parameters, we generate
20 replications of sample size 250, 500 and 1000. In our fitting we
assume that γ ∼ N2(0, 25 × I2),βj ∼ N2(0, 25 × I2) and ωj ∼

N (0, 16), for j = 0, 1. In addition, we specify the hyperparameters
ν0,j and d0,j of the inverse gamma prior on η2

j in such away that the
prior mean and standard deviation are 2 and

√
20 respectively.

Table 4 contains results for β0,β1, ρ0 and ρ1 from the fitting
to the different simulated data sets. The first column of the table
refers to the specific combination of ρ0 and ρ1 and the second
column to the sample size. The remaining columns provide the
posterior means and standard deviations averaged over the 20
replications.We find that the parameters arewell estimated for the
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Fig. 1. Posterior means of subjects’ estimated compliance probabilities by true type from one replication when qc = 0.5 and n = 500. The left graph gives the results for
the 66 compliers and the right graph for the 74 never takers in the control arm.

Table 4
General confounder model: Posterior means and standard deviations, averaged over 20 replications to data simulated for different values of ρ and n

ρ n β′

0 β′

1 ρ ′

0 ρ ′

1

(.5,.5) 250 1.00(0.23) 2.00(0.08) 2.00(0.87) 2.99(0.23) 0.47(0.20) 0.40(0.35)
500 0.97(0.15) 1.98(0.06) 2.16(0.61) 2.98(0.16) 0.45(0.14) 0.38(0.27)

1000 1.00(0.11) 2.01(0.04) 1.93(0.37) 3.01(0.10) 0.49(1.00) 0.55(0.15)

(−.5,−.5) 250 0.95(0.22) 2.00(0.08) 1.67(0.88) 3.09(0.23) −0.60(0.16) −0.42(0.37)
500 1.00(0.15) 1.97(0.06) 1.86(0.63) 3.03(0.17) −0.48(0.14) −0.44(0.27)

1000 0.99(0.11) 2.01(0.04) 1.99(0.42) 2.99(0.11) −0.51(0.10) −0.46(0.19)

(.8,.8) 250 0.98(0.22) 2.00(0.08) 2.16(0.70) 2.95(0.19) 0.76(0.12) 0.68(0.25)
500 0.96(0.15) 1.98(0.06) 2.18(0.47) 2.97(0.13) 0.75(0.09) 0.69(0.17)

1000 1.00(0.10) 2.01(0.04) 2.04(0.29) 2.99(0.08) 0.79(0.06) 0.79(0.08)

(−.8,−.8) 250 0.99(0.21) 2.00(0.08) 1.56(0.67) 3.12(0.19) −0.81(0.09) −0.71(0.23)
500 1.01(0.15) 1.97(0.06) 1.86(0.44) 3.03(0.12) −0.78(0.08) −0.76(0.14)

1000 1.00(0.11) 2.01(0.04) 2.03(0.29) 2.99(0.09) −0.79(0.06) −0.80(0.08)

Table 5
General confounder model: Inefficiency factors for designs with ρ = (0.5, 0.5) and ρ = (0.8, 0.8) (second line), averaged over 20 replications

Inefficiency factors

Sample size β′

0 β′

1 γ ′ σ 2
0 σ 2

1 ω0 ω1

250 3.26 1.80 34.66 28.82 31.28 63.17 9.59 26.88 10.06 48.28
3.28 2.19 20.78 16.83 20.31 35.76 8.96 32.92 7.62 32.70

500 2.49 1.42 31.12 26.09 29.51 57.23 6.90 28.31 7.89 44.68
2.51 1.88 27.39 23.46 20.81 36.54 10.91 24.01 9.97 34.18

1000 2.28 1.43 20.32 15.96 25.68 54.95 7.25 28.99 8.07 31.03
3.03 1.82 28.54 17.73 34.53 72.83 20.12 52.46 20.20 50.59
different degrees of confounding and sample sizes. As expected, the
parameters are better estimated across all designs as the sample
size is increased. Note, however, that the posterior distribution of
β1 is more dispersed than that of β0. Also, the posterior mean of
ρ1, and to a smaller extent β1, are less well estimated than ρ0 and
β0, especially when the sample size is small (n ≤ 500).

These findings reflect the point made earlier in our discussion,
that the particular structure of the eligibility design makes it more
difficult to separate the effect of β1 from the effect ofω1. Naturally,
the dependence in the joint distribution of β1 and ω1 manifests
itself in higher inefficiency factors for these parameters, as shown
in Table 5.

6. Job training and depression

We now illustrate the two approaches for dealing with
unobserved confounders in eligibility designs on a real data set
from the 1991 JOBS II Intervention Project at the University
of Michigan (see Vinokur et al. (1995)). Under the project an
eligibility experiment was implemented to test the effectiveness
of a job search seminar for the recently unemployed that was
specifically designed to prevent the deterioration in mental health
associatedwith job loss (Clark andOswald, 1994). Trial participants
were recruited from four offices of the Michigan Employment
Commission, based on a pretest screening questionnaire. Using
baseline information on depression symptoms, financial strain and
social assertiveness, the trial identified whether a subject was at
low or high risk for experiencing depression in the future. Those
classified as clinically depressed were excluded.

We focus on the sample of 715 high risk respondents, of which
229 subjects were randomized into the control arm and 486 into
the treatment arm. All subjects, regardless of the assignment,
received a booklet on job search. The treatment arm subjects were
assigned to a one week job training program that incorporated
specific components to promote self-esteem and sense of control,
job search skills and inoculation against setbacks. However, out
of the 486 subjects randomized into the treatment arm, only 264
decided to participate in the training program. To evaluate the
program, information on all sample subjects was gathered through
questionnaires at different stages of the experiment. The key



474 S. Chib, L. Jacobi / Journal of Econometrics 144 (2008) 465–478
Table 6
Sample summary statistics of the study data from the JOBS II Intervention Project

Variable Explanation All Control arm Treatment arm
z = 0 z = 1
x = 0 x = 0 x = 1

Depress Change in depression score −0.44 (0.77) −0.39 −0.51
Age Age in years 36.41 (9.96) 36.05 33.25 39.29
Educ School grade completed 13.35 (2.02) 13.33 12.91 13.72
Married Dummy 0.62 0.59 0.62 0.64
Nonwhite Dummy 0.19 0.18 0.24 0.16
Econ Economic hardship 3.60 (0.87) 3.47 3.77 3.58
Motivate Motivation to attend 5.32 (0.81) 5.3 5.13 5.47
Assert Assertiveness 3.06 (0.91) 3.04 3.23 2.95
Basedep Baseline depression score 2.45 (0.30) 2.49 2.43 2.41
Baserisk Baseline risk score 1.68 (0.21) 1.69 1.68 1.67
variable for the assessment of the training program is a depression
score based on an 18-item index of various stress symptoms (each
on a scale from 1 to 5) that was computed for all subjects before
and six months after the intervention.

In Table 6 we present the sample means and standard
deviations of the variables used in the subsequent analysis.
The variable Depress refers to the outcome variable, the change
in the depression score from the baseline to 6 months after
the intervention. The next four variables refer to standard
demographic characteristics age, gender, marital status and race,
while the remaining variables provide information on the subject’s
economic situation, attitude towards participation and mental
health at baseline. The variable Econ reflects the financial strain
as measured by a 3-item index on a scale from 1 to 5 while the
variable Motivate provides information about a subject’s attitude
towards participation in training programs. The latter variable is
based on a two-item index, each on a scale from 1 to 7, with one
representing the most positive and 7 the most negative attitude.
The final three variables relate to various relevant aspects of the
subject’s mental health at baseline. For example, Assert measures
a subject’s assertiveness based on a short 4-item index for social
reticence and shyness and assertiveness, each on a scale from 1
(low) to 5 (high). In addition to the depression score at baseline,
the variable Baserisk provides a more general measure for the risk
of depression based onweighted averaged of the depression score,
the financial strain score and the assertiveness score.

In the last three columns, we report the sample means of the
demographic andmental health related control variables stratified
by assignment and intake. The last two columns in the table show
somedifferences in the distribution of the covariates between non-
participants and participants in the treatment arm. For example,
program participants were older, more educated, less assertive
and more likely white. From the first row we see that the mean
decline in the depression score is −0.51 for treatment participants
and −0.38 for non-participants, which points to (but of course
does not establish) an improvement in mental health due to
the training. Corrected for confounding within the subject-type
framework with normally distributed errors, Yau and Little (2001)
and Skrondahl and Rabe-Hesketh (2004), report a value of the
complier average treatment of a negative 0.30 points.

We now investigate whether the different assumptions about
the unobserved confounders affect the estimates of the treatment
effects and the model fit (evaluated in terms of the marginal
likelihood). To make the candidate approaches as similar as
possible, we specify comparable marginal models for the change
in depression score, for five different values of the student-t
degrees of freedom parameter. We also employ closely related
models for the complier-type probability and intake probability.
In addition we formulate the prior distribution in each model to
be as comparable as possible. In particular, we employ two sets
of priors, the neutral and the optimistic priors. The former prior
implies no change in depression score while the latter implies a
decrease in the depression score. In all, we consider thirty different
model specifications (20 for the restricted and unrestricted type
confounder model and 10 for the general confounder model) for a
robust comparative empirical analysis.

6.1. Model specifications

We begin with the specification of the subject type model.
Motivated by Yau and Little (2001) and Skrondahl and Rabe-
Hesketh (2004), we model the change in depression score (y =

depress) for a subject in intake state j of type k as

pj(yi|wi, si = k) = tν(yi|w′

iβjk, η
2
jk), k = {n, c}

where j = 0 if k = n and j = {0, 1} if k = c , as a function of the
covariate vector

wi = [1, basedep, baserisk].

The probability of being a complier, here modeled as qci =

φ(v′

iα), is specified in terms of the demographic and remaining
mental health related variables from Table 6:

vi = [1, age-20,motivate, educ, assert, single, econ, nonwhite].

We also consider a restricted version of this type confounder
model where the compliance type probability does not depend on
any covariate. This specification corresponds to the type model as
for example discussed in Sommer and Zeger (1991).

Next, we specify our general confounder model for the analysis
of the JOBSII trial data in a way that is comparable to the subject
type model. We formulate the marginal models for the change in
depression score under the two possible program intake states,
j = 0, 1, as

pj(yi|wi,βj, η
2
j ) = tν(yi|w′

iβj, η
2
j )

where, as above, wi = [1, basedep, baserisk]. Under the general
confounder model the program participation decision is modeled
directly through the marginal model of the binary intake variable
xi = 0, 1 as

xi = I{v′

iγ + ui > 0}, ui ∼ tν(0, 1),

that is assumed to depend on the same vector of covariates as
the compliance type probability, vi = [1, age-20,motivate, educ,
assert, single, econ, nonwhite].

6.2. Prior specifications

We complete the model specifications by choosing prior
distributions of the model parameters that imply certain beliefs
about the treatment effect. Because these effects are complicated
functions of the parameters, we utilize a simulation based
approach to isolate the implication of the prior on the treatment
effect. The general approach is as follows. We specify a prior
distribution with a certain set of hyperparameters. We then
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Table 7
Mean and quantiles of the empirical distribution for the change in depression score implied by the two different priors for each model

Simulated depression outcomes

Quantiles
Model Prior Mean 5% 25% 50% 75% 95%

TCM Unrestricted Neutral 0.00 −4.96 −3.14 −0.04 3.16 5.02
Optimistic −0.45 −5.47 −3.55 −0.58 2.80 4.62

TCM Restricted Neutral 0.02 −4.34 −2.93 −0.05 3.04 4.46
Optimistic −0.43 −4.82 −3.34 −0.60 2.68 4.09

GCM Neutral 0.01 −6.35 −3.48 −0.02 3.54 6.39
Optimistic −0.45 −6.85 −3.91 −0.53 3.13 5.95

Results are for ν = 10.
draw the model parameters from the prior distribution. Given
the parameter values and the covariates and random assignment
of each sample subject we then generate the subject type or
the intake and the corresponding potential outcome for each
subject. We repeat this process many times (say 10,000 times)
and compute the distribution of the potential outcomes in terms
of the means and quantiles. If these implied distributions embody
the beliefs we require we accept the prior; otherwise we change
the hyperparameters and re-do the simulation exercise. We utilize
this approach to determine two different prior distributions. The
first prior, the neutral prior, embodies the belief that the treatment
effect is zero or close to zero. The second prior, the optimistic
prior, embodies the belief that the treatment effect is negative. In
addition, we enforce the requirement that each of these priors is
similar in its implications across the two models.

Reasoning in the precedingmanner, the prior in the typemodel

π(ψ) = N8(α|α0,A0)
∏
j=0,1

∏
k∈Kj

N3(βjk|βjk,0, Bjk,0)

× IG

(
η2
jk

∣∣∣∣njk,0

2
,
djk,0
2

)
in the neutral case has hyperparameters

α0 = (0, 0, 0, 0, 0, 0, 0, 0), A0 = 9I8
β0c,0 = (0, 0, 0), β0n,0 = (0, 0, 0),
β1c,0 = (0, 0, 0), Bjk,0 = 9I3
njk,0 = 4.13, djk,0 = 1.06

whereas in the optimistic case it has hyperparameters

α0 = (−5.0, .03, .5, .1, 0, 0, 0, 0), A0 = 9I8
β0c,0 = (2.0, −1.5, 1.0), β0n,0 = (1.75, −1.5, 1.0),
β1c,0 = (1.0, −1.5, 1.0), Bjk,0 = 9I3
njk,0 = 4.13, djk,0 = 1.06.

The latter choices are loosely based on the estimation
results obtained by Yau and Little (2001) from a different but
related sample. We slightly adjust these hyperparameters for the
restricted version of the type model. In that case, the prior mean
of β1c in the neutral case is set to β1c,0 = (−0.5, 0, 0) and in
the optimistic case to β1c,0 = (0.5, −1.5, 1.0). The remaining
hyperparameters are as above except for the scalar coefficient in
the compliance model α0 which is now set at 0.5. To show what
these assumptions imply for the outcomes, we provide in Table 7
themean and quantiles of the simulated distribution of the change
in depression score from the neutral and the optimistic priors,
averaged over 10,000 outcome distributions that were simulated
from the prior. As intended, the neutral prior implies on average no
change in the depression score while the optimistic prior implies
a decrease in the depression score of about 0.45. Both priors imply
a mean of 0.34 for the simulated binary intake variable. The table
also provides the results for the simulated outcome distributions
from the restricted version of the type confounder model.
We proceed in a similar fashion to set the prior

π(ψ) = N8(γ|γ0,G0)

1∏
j=0

IG

(
σ 2
j

∣∣∣∣nj,0

2
,
dj,0
2

)
× N3(βj|βj,o, Bj,0)N (ωj|mj,0,Mj,0)

in the general confounder model. The neutral prior in this case is
given by the hyperparameter choices

γ0 = 0, G0 = 9I8
ν0,j = 4.13, d0,j = 1.06
β0,0 = (−.1, 0, 0), β1,0 = (−.2, 0, 0), Bj,0 = 9I3
mj,0 = 0, Mj,0 = 4.

Under the optimistic prior the choices are identical except that
now

β0,0 = (1.7, −1.5, 1.0), β1,0 = (.6, −1.5, 1.0).

As shown in Table 7 these prior assumptions imply a
distribution for the change in depression score that is comparable
to that from the type model. As above, the mean of the simulated
binary intake variable is 0.34 under each prior specification.

6.3. Results

In Table 8we report the logmarginal likelihoods from the fitting
of the type and general confounder models, for each prior and for
each of five different values of the degree of freedom parameter.
These and subsequent results are based on 10,000 MCMC draws
beyond a burn-in of a 1000 iterations. A number of interesting
patterns emerge. First, for each value of ν, themodel specifications
with the optimistic prior are preferred to those with the neutral
prior. Second, the restricted type confounder model is dominated
by the unrestricted type model. This finding is in line with the
recent work on the type model (Hirano et al., 2000; Jo, 2002;
Frangakis et al., 2004) and reinforces the point that modeling
the compliance probability through covariates is vital. Finally, the
ν = 5 models with the optimistic prior have the highest marginal
likelihood. Note that while the general confoundermodel seems to
be preferred by these data, it has only a slightly larger logmarginal
likelihood than the type model. Given these results we focus our
subsequent detailed analysis on the best supported ν = 5 and
optimistic prior models.

To begin, we report the parameter estimates in Table 9.
Columns (2)–(4) summarize the results from the fitting of the
type confounder model, while columns (5)–(6) contain the results
for the general confounder model. Information in the table is
separated by the outcome, type and intake models. The first eight
rows of the table deal with the compliance type and intakemodels.
We notice that, except for the intercept, the posterior means of
α and γ are almost identical. This suggests that the marginal
modeling of type is similar in some respects to the marginal
modeling of the intake. This correspondence could not hold, of
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Table 8
Log marginal likelihoods of the type and general confounder models for the neutral and optimistic priors and different values of the degree of freedom parameter

Log marginal likelihoods for model comparison

TCM GCM
Unrestricted Restricted

ν Neutral Optimistic Neutral Optimistic Neutral Optimistic

5 −805.57 −804.15 −827.78 −827.15 −804.05 −802.92
10 −805.77 −804.32 −823.47 −822.70 −804.15 −803.12
15 −807.43 −805.94 −824.96 −824.80 −805.63 −804.65
20 −808.50 −807.00 −826.53 −825.70 −806.50 −805.51
25 −809.35 −807.86 −831.06 −830.53 −807.03 −806.17

Table 9
Estimation results from the type and the general confounder models with the optimistic prior and ν = 5, based on 10,000 runs of the MCMC algorithms (1000 burn-in
cycles)

Type confounder model General confounder model

α γ
Intercept −4.13(0.80) −4.01(0.88)
Age-20 0.05(0.01) 0.04(0.01)
Motivate 0.35(0.09) 0.37(0.09)
Educ 0.16(0.04) 0.16(0.04)
Assert −0.26(0.08) −0.25(0.09)
Married −0.33(0.15) −0.36(0.15)
Econ −0.11(0.09) −0.11(0.10)
Nonwhite −0.20(0.18) −0.17(0.18)

β0c β0n β1c β0 β1
Intercept 0.40(0.93) 2.19(0.45) 0.55(0.42) 1.72(0.34) 0.38(0.36)
Basedep −1.35(0.54) −1.54(0.27) −1.08(0.28) −1.47(0.21) −1.03(0.26)
Baserisk 1.53(0.73) 0.65(0.40) 0.86(0.40) 0.87(0.31) 0.73(0.38)

η2
0c η2

0n η2
1c η2

0 η2
1

0.29(0.22) 0.35(0.17) 0.27(0.18) 0.37(0.04) 0.37(0.07)

ρ0 ρ1
Confounding 0.13(0.13) 0.68(0.16)

Table entries are the posterior means (standard deviation in parentheses).

Table 10
Inefficiency factors from the fitting of the type and general confounder models with the optimistic prior and ν = 5

Inefficiency factors

TCM β′

0c 6.10 5.79 4.27
β′

0n 3.70 2.63 2.85
β′

1c 2.28 1.76 1.75
α′ 2.73 2.65 3.45 2.32 2.17 2.54 4.17 2.21

GCM β′

0 1.61 1.77 1.77
β′

1 4.33 2.95 3.11
γ ′ 12.69 16.97 10.70 14.73 6.35 4.45 9.08 5.95
course, in settings where the intake takes more levels, for example
when the intake is an ordinal variable. Furthermore, this also
suggests that it is rather vital in this context to model subject type
probability with the help of covariates if the subject type model
is to compete with the general confounder model. As the results
from themodel comparison in Table 8 show the subject typemodel
in which the type probability is independent of covariates is least
preferred.

The next five rows are concerned with the outcome models. In
parallel with our findings in the simulation study, the parameter
β0c is estimated less precisely than β0n and β1c whereas in the
general confounder model, the elements in β1 are estimated less
precisely than β0, as shown in Table 10.

In the final row of Table 9, that relate to the general confounder
model, we give estimates of the posterior means and standard
deviations of the correlation coefficients ρj = ωj/ηj. These
estimates indicate that individuals with unobserved factors that
are associated with higher depression scores are more likely to
participate in the program. Just as in the simulation study, ρ1 has
a higher posterior standard deviation than ρ0.
Next, we present the posterior mean of the compliance
probability for subjects in the control arm in Fig. 2. As above,
probabilities between 0 and 0.5 (which can be taken to indicate
a never taker) are plotted below the horizontal axis and those
above 0.5 (and suggest a complier) are plotted above the horizontal
axis. In the type approach, the treatment effect is calculated by
stratifying on compliance type. We see that compliers are subjects
that appear to have similar levels of the observed covariates with
the exception of themarriage indicator (Fig. 3). Never takers, on the
other hand, seem to be quite different from the always takers. They
are younger, less motivated and less educated. We also observe
that compliers and never takers have similar average values of the
baseline depression and risk scores covariates that appear in the
outcome model.

We now compare the estimates of the predictive treatment
effects from each approach. In Figs. 4 and 5we graph the estimated
predictive marginal densities of the potential outcomes within the
subject type and the general confounder approaches, respectively.
In each case, the predictive density of the potential outcome from
programparticipation (dotted line) is to the left of the density from
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Table 11
Estimates of predictive average and quantile causal effects for type and general confounder models with the optimistic priors and ν = 5

Estimated predictive treatment effects

Average Quantile
Model Treatment effect .05 .25 .50 .75 .95

TCM Complier treatment effects −0.29 −0.23 0.25 −0.29 −0.33 −0.38
GCM Population treatment effects −0.50 −0.50 −0.48 −0.50 −0.53 −0.55

Complier treatment effects −0.54 −0.48 −0.50 0.52 −0.56 −0.66
Fig. 2. Posterior compliance probabilities.

Fig. 3. Sample means by intake and type.

Fig. 4. Predictivemarginal densities of the potential outcomes (for compliers) from
the type confounder approach.

non-program participation (solid line). This implies that program
participation is beneficial. The magnitude of the improvement is,
however, larger from the general confounder model.

The precise numerical improvements from each model are
reported in the first two rows of Table 11. We give the predictive
Fig. 5. Predictive marginal densities of the potential outcomes from the general
confounder approach.

average causal effect and various quantile effects. As implied by the
graphs, the various predictive quantile andmean treatment effects
are negative, but different across the two models. Specifically,
the average predictive treatment effect for compliers from the
type confounder model is a negative .30 points, while the average
treatment effect from the general confounder model is a negative
−.50 points. We also note that the average predictive effect from
the type model is similar in magnitude to the complier average
causal effect found previously by Skrondahl and Rabe-Hesketh
(2004). Both average effects are substantially larger than the
−0.12 points improvement suggested by the naive association
(or regression) calculation. We note that in the case of the type
confounder model the sign of the confounding bias is not clearly
visible from the coefficient estimates of β0c and β1c . In addition,
the quantile treatment effects vary between −0.23 and −0.38 for
the complier effects in the type model, and between −0.48 and
−0.55 for the general confounder model. Also noteworthy is the
predicted outcome gain for the subpopulations of compliers from
the general confounder model. As we see from the estimates given
in the last row in Table 11, these effects are larger than those for a
random subject from the population, except at the lower quantiles
of the predictive distribution.

In general, these results show that competing assumptions
about the unobserved confounders can produce different evalua-
tions of the treatment. Our marginal likelihood estimates suggest
that the two models are roughly equivalent for these data with a
small preference for the general confounder model.

7. Conclusion

There are many problems in practice, with unobserved
confounders,which share the structure of the eligibility design that
we have studied in this paper. Our methods provide the means to
study such problems in two competingways, and to examinewhat
effect, if any, those competing ways have for the estimates of the
various treatment effects.

We emphasize again that our modeling and inferential
techniques did not require the unknowable joint distribution of
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the potential outcomes. Our fitting methods are also efficient. We
noted that, in the type model, estimation of the model can be a
bit difficult if the proportion of compliers is small. In the general
confounder model, the main problem can be the estimation of
confounding parameter in the intake state. Neither problem arose,
however, in our empirical analysis.

We conclude by mentioning that the analysis described in
this paper extends readily to other settings. These extensions, for
example involving clustered outcomes and binary responses, are
ongoing and will be reported elsewhere.
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