Quantile Regression
Ruibin Xi




Inference about quantiles (1)

* For the tth quantile & ,we have shown that
under certain regularity conditions

Vn(é; — &)~ N0, o)
where ©* = (1 — 1)/f*(&;)
 More generally, for m different quantiles,
5;; — (él']? c ey _é:rm)
we have Vn(g, — &)~ N(0, )

where

(wi)) = (t; ATj — 1)/ (f(F (1) f(F (1))



Inference about quantiles (2)

* Consider the hypothesis testing problem
Hy : §(t) = &o(7)

* We may construct a test using the asymptotic
result, but this involves the unknown quantity

(&)



Inference about quantiles (3)

* By differentiating the identity

F(F (1) =t

* we get

d 1 _ -1 i_—l _
ET[T (t)) = f(F [tJJdtT (t) =1

and . .

—F1 —
i V=)




Inference about quantiles (4)

* Thus, we may estimate /') by

1

f(F=1(T))

F~ Y1+ hy) — F Y1 — hy)
2h,

Fn_1(r + h,) — Fn__l(’r — hy,)

2h,

f_l (é*rJ —

X2

2




Inference about quantiles (5)

e Alternatively, we may consider
Z, =Y I1(Y; — &(1))
i=1

which is binomial B(n, 1)

* We reject H, if 1, = n~'Z, — tistoo large in
absolute value



Inference about quantiles (6)

e Confidence interval

C, = 1{& : 1,(§) does not reject at level a}.

since T.(¢) is piecewise constant and
monotone non-decreasing

Co = 1Y), Yl

* |[n Large sample
(L,U} =nt £ cqp/nt(l — 1)

where cop =071 —a/2)



Quantile Regression Asymptotic (1)

* Inlinear regression vy =x,'p +u;

with iid error {4;} .

 Assume {4;} have the same distribution F

* Then, the joint asymptotic distribution of
G =BT, BT DT

IS V(G —¢) = (Wn(Bu(rj) — B ~N(0.2® Q')

n=' Y xix)! = Q, converges to Q,

(wij) = (t; ATj —77)/(f(F ') f(F N (z)))



Quantile Regression Asymptotic (2)

* If {u;} are noti.i.d.
J(B(r) — B(x)~ N (0, c(1 — o)H, ' J, H )

H
Jn(T) —n E .J:;.rfT
=1

HH{T) = lim H_] inljﬁ(st{r)}

=1
e At different quantiles, the covariance matrix
has the blocks

Acov(v/n(B(ti) — B(xi). Vn(B(t)) — B(1))))
= [ A Tj — TjI'J;]HH(Tf}_lJ”H”{‘L'J;}_I .



Quantile regression inference (1)

* Consider the two sample model
Y.; =] + o2 X; + U;

where x; =0 for n; observations from the 15t
sample, and x; = 1 for n2 observations from the
2"d sample



Quantile regression inference (2)

e Testing from equality of the slope parameter
across two quantiles 71 and = is equivalent to
test

a2(12) — ax(t1) = (Q2(12) — Q1(12)) — (Q2(71) — Qi(11))

= (Q2(1) — Qa(71)) — (Q1(12) — Q1(71))
= ().



Quantile regression inference (3)

 The aymptotic variance of
22(1p) — aa(7y)

IS given by

o2(1 T}_[m(l—n)_q 71(l — 1) +T2(1—TE}}[ & }
T e T fEnfE | A& L —n

where & = F~ ()

* A test for the null hypothesis can be given
based on the asymptotic normality of

I, = (&a2(1) — aa(11)) /6 (11, T2)



Quantile regression inference (4)

* A test for the null hypothesis can be given
based on the asymptotic normality of

I, = (&2(12) — aa(1y)) /0 (11, T2)

where 4(t1, ) is a consistent estimator of 2. »)



Quantile regression inference (5)

* General linear hypothesis on

of the form
Hy: R =
* The test statistic
T, =n(RE — )T [RV;7'R] ™ (RE — 1)
where V), is the mp x mp matrix with i;th block

Va(ti, ) = [1i Atj — 7T Hy (1)~ J(ti. 7)) Hy (1)



Quantile regression inference (6)

The statistic 7, 1s asymptotically X(? under H,

where ¢ 1s the rank of the matrix R.



Estimation of covariance matrices(1)

* Need to estimate the sparsity function

s(r) = [f(F~ ' (z)]™
which may be estlmated by
Su(t) = [ T + hy) — ,_l(f — hn)l/2hy,

* |n case of linear quantile regression

F

filo B(T)) = 2R /(6] (Bl + M) = BT — )

* To avoid negative values

-

fi(x;

Fat

B(T)) = max{0, fi(x{ B(7)))



Estimation of covariance matrices(2)

Bandwidth selection

e Bofinger (1975) showed that the optimal
bandwidth is

hy = n'P[4.55%(0)/(s" ()]

e For normal distribution

4, 564D\ (1)) }”5

hy, =n"'7° . -
2d1(1)> + 1)2



Estimation of covariance matrices(3)

Bandwidth selection

* Hall and Sheather (1988) suggested the
bandwidth

h, = n_w:iﬁ[l.5.5'(?)/5”(?)]”3

where 7, satisfies ®(zo) =1 — /2



Estimation of covariance matrices(4)
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Engel’s Food Expenditure Data (1)

* Food Expenditure VS Household Income
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Engel’s Food Expenditure Data (2)

* Food Expenditure VS Household Income (log

scale)
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By(3/4) — By(1/4) = 0.915 — 0.849 = 0.0661

§(1/4) = 0.543
§(3/4) = 0.330

p-value 0.03



Engel’s Food Expenditure Data (3)

This figure plots Q}r{rlf) = .?’B(r)



Bootstrap estimation (1)

Bootstrapping the residuals
Let B(r] = argmin Z 01 (jr,; — ,r,_-Th)
i, =y —x;B(r)
The empirical distribution of the errors
ﬁn(u) —_—— Z [(t; < u)
i=1
drawing bootstrap samples 7, . . ., u, trom F,(u)

set v = x; B(t) + u;

B, (tr) = argmin Z pr (v —x;'b)



Bootstrap estimation (1)

drawing bootstrap samples u7, . . . . u, from Fp,(u)

set v = x;B(t) + u;

Bi(r) = argmin ) pr (v — x,"b)
DeAngelis et al. showed that

G(2) = P(Wn(Bi(t) = Bj(t) < 2j. j=1.....plX)
converges to the limiting distribution of /n(B,(7) — B(1))



Bootstrap estimation (2)

Bootstrapping the observation
Draw 7.v/) with replacement from the n pairs

each with probability 1/n

[ = argminy E pr(y; — EJ*T-'F—';C)



Jackknife (1)

Suppose 4, is the median of the sample {X, ..., X,,}

6,;, denote the median with the ith observation deleted

the jacknife estimate of the variance of the median is

H

1 — 1 . A (2
Vn =— } Z (Q(f} _ Q{v}l)

no i

with é{,} = H_l Z é{j}



Jackknife (2)

n—1 4
™ ¥ — Y ] ! 2
forn = 2m Un = 1 (i-(m.—l—l) - i‘(:—'ﬂ:])

(%)
Vv, ~ —— —=
4f2(F-1(1/2) \ 2

2 AN\2 - . : | , |
(x72/2)" 1s a random variable with mean 2 and variance 20

the asymptotic variance of /n (9” — F~ 11 /2))
should equal 1/(2 F2(F~'(1/2)))



