Quantile Regression

 Ruibin Xi

Average derivative estimation (1)

- In mean regression, we focus on estimating the conditional mean

$$
\mu(\mathbf{x})=E(Y \mid \mathbf{x})
$$

- In linear regression, the partial derivatives $\partial \mu(\dot{\mathbf{x}}) / \partial x_{i}$ are assumed to be constant.
- They are of primary interest because they measure how much the mean response change as the ith covariate perturb one unit.

Average derivative estimation (2) Rich got richer, poor got poorer?

Share of capital income earned by top 1\% and bottom 80\%, 1979-2003 (Shapiro and Friedman 2006)

Average derivative estimation (3)

- For quantile regression, we may consider the average gradient

$$
\beta_{\alpha}=\left(\beta_{\alpha 1}, \ldots, \beta_{\alpha d}\right)=E\left(\nabla \theta_{\alpha}(\mathbf{X})\right)
$$

where $\theta_{\alpha}(\mathbf{X})$ is the conditional α th of Y given \mathbf{X}

Average derivative estimation (4)

- Consider the model
$Y=\mu(\mathbf{X})+\tau[\mu(\mathbf{X})]^{\lambda} \varepsilon$
ε and \mathbf{X} are independent
ε has continuous distribution function F_{ε}
the mean of ε is zero
τ and λ are real parameters

Average derivative estimation (5)

- Let e_{α} be the α th quantile of F_{ε}

$$
\begin{aligned}
\theta_{\alpha}(\mathbf{x}) & =\mu(\mathbf{x})+\tau[\mu(\mathbf{x})]^{\lambda} e_{\alpha} \\
\nabla \theta_{\alpha}(\mathbf{x}) & =\nabla \mu(\mathbf{x})+\tau \lambda[\mu(\mathbf{x})]^{\lambda-1} \nabla_{\mu}(\mathbf{x}) e_{\alpha} \\
\beta_{\alpha} & =E(\nabla \mu(\mathbf{X}))+\tau \lambda E\left\{[\mu(\mathbf{X})]^{\lambda-1} \nabla \mu(\mathbf{X})\right\} e_{\alpha}
\end{aligned}
$$

- If assuming $F_{\varepsilon}=\Phi$

$$
\begin{aligned}
& d=\tau=\lambda=1 \\
& \mu(x)=\gamma_{1}+\gamma_{2} x
\end{aligned}
$$

then

$$
\beta_{\alpha}=\left[1+\Phi^{-1}(\alpha)\right] \gamma_{2}
$$

$$
\beta_{0.1}=-0.282 \gamma_{2}, \quad \beta_{0.5}=\gamma_{2}, \quad \beta_{0.9}=2.282 \gamma_{2}
$$

Average derivative estimation (6)

- Taking derivative on both side of the above equation and taking expectation, we get

$$
\begin{aligned}
E\left(\omega(\boldsymbol{X}) \nabla \theta_{\alpha}(\boldsymbol{X})\right) & =\left[\int g^{\prime}\left(\gamma^{t} \boldsymbol{x}\right) \omega(\boldsymbol{x}) f(\boldsymbol{x}) d \boldsymbol{x}\right] \gamma \\
& =\beta \gamma
\end{aligned}
$$

Average derivative estimation (7)

- We may estimate

$$
E\left(\omega(\boldsymbol{X}) \nabla \theta_{\alpha}(\boldsymbol{X})\right)=\int \nabla \theta_{\alpha}(\boldsymbol{X}) \omega(\boldsymbol{x}) f(\boldsymbol{x}) d \boldsymbol{x}
$$

by $\hat{\beta}_{1}=n^{-1} \sum\left\{\nabla \hat{\theta}\left(\mathbf{X}_{i}\right)\right\} w\left(\mathbf{X}_{i}\right)$,
where $\nabla \hat{\theta}\left(\mathbf{X}_{i}\right)$ is a nonparametric estimator of the gradient of the conditional quantile $\theta(\mathbf{x})$

Average derivative estimation (8)

- By integration by parts,

$$
\begin{aligned}
E\left(\omega(\boldsymbol{X}) \nabla \theta_{\alpha}(\boldsymbol{X})\right) & =\int \nabla \theta_{\alpha}(\boldsymbol{X}) \omega(\boldsymbol{x}) f(\boldsymbol{x}) d \boldsymbol{x} \\
& =-\int \theta_{\alpha}(\boldsymbol{X}) \nabla\{\omega(\boldsymbol{x}) f(\boldsymbol{x})\} d \boldsymbol{x}
\end{aligned}
$$

- An alternative estimator is

$$
\begin{aligned}
\hat{\beta}_{2} & =-\frac{1}{n} \sum_{i=1}^{n} \hat{\theta}\left(\mathbf{X}_{i}\right) \frac{\nabla w\left(\mathbf{X}_{i}\right) \hat{f}\left(\mathbf{X}_{i}\right)+w\left(\mathbf{X}_{i}\right) \nabla \hat{f}\left(\mathbf{X}_{i}\right)}{\hat{f}\left(\mathbf{X}_{i}\right)} \\
& =-\frac{1}{n} \sum_{i=1}^{n} \hat{\theta}\left(\mathbf{X}_{i}\right)\left\{\nabla w\left(\mathbf{X}_{i}\right)+w\left(\mathbf{X}_{i}\right) \hat{\ell}\left(\mathbf{X}_{i}\right)\right\},
\end{aligned}
$$

where $\hat{\ell}\left(\mathbf{X}_{i}\right)=\nabla \hat{f}\left(\mathbf{X}_{i}\right) / \hat{f}\left(\mathbf{X}_{i}\right), \hat{f}$ and $\nabla \hat{f}$ are nonparametric estimator of the density and its derivative

Average derivative estimation (9)

- Leave one out estimator

$$
\begin{aligned}
\hat{f}\left(\mathbf{X}_{i}\right) & =\frac{1}{(n-1) h_{n}^{d}} \sum_{j \neq i} W\left(\frac{\mathbf{X}_{j}-\mathbf{X}_{i}}{h_{n}}\right), \\
\nabla \hat{f}\left(\mathbf{X}_{i}\right) & =\frac{1}{(n-1) h_{n}^{d+1}} \sum_{j \neq i} W^{(1)}\left(\frac{\mathbf{X}_{j}-\mathbf{X}_{i}}{h_{n}}\right),
\end{aligned}
$$

Penalized univariate smoothing method (1)

- Assume that

$$
y=f(x)+\epsilon
$$

- In case of the mean regression, we may consider estimate the function fbv minimizing

$$
\operatorname{RSS}(f, \lambda)=\sum_{i=1}^{N}\left\{y_{i}-f\left(x_{i}\right)\right\}^{2}+\lambda \int\left\{f^{\prime \prime}(t)\right\}^{2} d t,
$$

$\lambda=0: f$ can be any function that interpolates the data.
$\lambda=\infty$: the simple least squares line fit, since no second derivative can be tolerated.

- It can be shown that for $\lambda \in(0, \infty)$, there is a unique minimizer, which is a natural cubic spline with knots at x_{i}

Splines (1)

- Suppose that we can to estimate a function f(.) with a piecewise polynomial function
- In the simplest case, we can just estimate f by a piecewise constant function
- We may write

$$
\begin{aligned}
& f(X)=\sum_{m=1}^{3} \beta_{m} h_{m}(X) \\
& h_{1}(X)=I\left(X<\xi_{1}\right) \\
& h_{2}(X)=I\left(\xi_{1} \leq X<\xi_{2}\right) \\
& h_{3}(X)=I\left(\xi_{2} \leq X\right)
\end{aligned}
$$

Splines (2)

- We may also fit f by a piecewise linear function, which requires 3 additional base function

$$
h_{m+3}=h_{m}(X) X, m=1, \ldots, 3
$$

Piecewise Linear

Splines (3)

- If we require continuity on the knots, we put some constraints (2 constraints in the above exmple) on the coefficient of

$$
f(X)=\sum_{m=1}^{M} \beta_{m} h_{m}(X),
$$

- More conveniently, we may write the base functions

Splines (4)

Continuous First Derivative

Continuous

Continuous Second Derivative

Piecewise
cubic polynomial fit
$h_{1}(X)=1$,
$h_{2}(X)=X$,
$h_{3}(X)=X^{2}$
$h_{4}(X)=X^{3}$
$h_{5}(X)=\left(X-\xi_{1}\right)_{+}^{3}$,
$h_{6}(X)=\left(X-\xi_{2}\right)_{+}^{3}$.

Splines (5)

- An order-M spline with knots $\xi_{j}, j=1, \ldots, K$ is a piecewise-polynomial of order M (degree M-1), has continuous derivative up to order M-2
- A cubic spline has order $\mathrm{M}=4$
- The bases are

$$
\begin{aligned}
h_{j}(X) & =X^{j-1}, j=1, \ldots, M, \\
h_{M+\ell}(X) & =\left(X-\xi_{\ell}\right)_{+}^{M-1}, \ell=1, \ldots, K .
\end{aligned}
$$

Natural cubic splines

- In addition to requiring the function to have continuous derivatives on the knots, we require the function is linear beyond the boundary points
- If the function is represented as

$$
f(X)=\sum_{j=0}^{3} \beta_{j} X^{j}+\sum_{k=1}^{K} \theta_{k}\left(X-\xi_{k}\right)_{+}^{3} .
$$

it can be shown that

$$
\begin{array}{lc}
\beta_{2}=0, & \sum_{k=1}^{K} \theta_{k}=0 \\
\beta_{3}=0, & \sum_{k=1}^{K} \xi_{k} \theta_{k}=0
\end{array}
$$

B-splines (1)

Let $\xi_{0}<\xi_{1}$ and $\xi_{K}<\xi_{K+1}$ be two boundary knots.

$$
\begin{aligned}
& \tau_{1} \leq \tau_{2} \leq \cdots \leq \tau_{M} \leq \xi_{0} \\
& \tau_{j+M}=\xi_{j}, j=1, \cdots, K \\
& \xi_{K+1} \leq \tau_{K+M+1} \leq \tau_{K+M+2} \leq \cdots \leq \tau_{K+2 M}
\end{aligned}
$$

$$
B_{i, 1}(x)= \begin{cases}1 & \text { if } \tau_{i} \leq x<\tau_{i+1} \\ 0 & \text { otherwise }\end{cases}
$$

$$
\text { for } i=1, \ldots, K+2 M-1
$$

$$
B_{i, m}(x)=\frac{x-\tau_{i}}{\tau_{i+m-1}-\tau_{i}} B_{i, m-1}(x)+\frac{\tau_{i+m}-x}{\tau_{i+m}-\tau_{i+1}} B_{i+1, m-1}(x)
$$

for $i=1, \ldots, K+2 M-m$.

B-splines (2)

FIGURE 5.20. The sequence of B-splines up to order four with ten knots evenly spaced from 0 to 1 . The B-splines have local support; they are nonzero on an interval spanned by $M+1$ knots.

Quantile regression-penalized method (1)

- For quantile regression, we may consider

$$
\min _{g \in \mathcal{G}} \sum_{i=1}^{n} \rho_{\tau}\left(y_{i}-g\left(x_{i}\right)\right)+\lambda \int\left(g^{\prime \prime}(x)\right)^{2} d x
$$

- The solution is also a natural cubic spline

Quantile regression-penalized method (2)

Koenker, Ng, and Portnoy (1994) consider other L_{p} penalties

$$
J(g)=\left\|g^{\prime \prime}\right\|_{p}=\left(\int\left(g^{\prime \prime}(x)\right)^{p}\right)^{1 / p}
$$

For $p=1$
$\min \sum_{i=1}^{n} \rho_{\tau}\left(y_{i}-g\left(x_{i}\right)\right)+\lambda \int\left|g^{\prime \prime}(x)\right| d x$

Quantile regression-penalized method (3)

- Another way to penalize the objective function is

$$
P(g)=V\left(g^{\prime}\right)
$$

- The total variation is defined as

$$
V(f)=\sup \sum_{i=1}^{n}\left|f\left(x_{i+1}\right)-f\left(x_{i}\right)\right|,
$$

where the sup is taken over all partitions $a \leq x_{1}<\cdots<x_{n}<b$

- For absolute continuous function

$$
V(f)=\int_{a}^{b}\left|f^{\prime}(x)\right| d x
$$

Quantile regression-penalized method (4)

- The new penalized objective function is

$$
\min _{\mathfrak{g} \in \mathcal{G}} \sum_{i=1}^{n} \rho_{\tau}\left(y_{i}-\mathfrak{g}\left(x_{i}\right)\right)+\lambda V\left(g^{\prime}\right)
$$

- The solution is a piecewise linear function

Animal weight VS running speed

h: hoppers
s: specials including sloth, porcupine, hippopotamus

