Quantile Regression
Ruibin Xi




Average derivative estimation (1)

* |n mean regression, we focus on estimating
the conditional mean

pu(x) = E(Y x)

* |In linear regression, the partial derivatives
aux)/9x, are assumed to be constant.

* They are of primary interest because they
measure how much the mean response

change as the ith covariate perturb one unit.



Average derivative estimation (2)
Rich got richer, poor got poorer?
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Average derivative estimation (3)

* For quantile regression, we may consider the
average gradient

Ba = (Bars---s Baa) = E(V6,(X))

where 6,(X) is the conditional ath of Y given X



Average derivative estimation (4)

e Consider the model

Y =pX) +r[wX)]'e
¢ and X are independent
¢ has continuous distribution function F,

the mean of ¢ is zero

7 and A are real parameters



Average derivative estimation (5)

* Let ¢, be the ath quantile of F,

0,(x) = w(x) + 7[ w(x)] e,
V6.(x) = Vu(x) + mA[ w(x)]" Vu(x)e,
B = E(Vi(X)) + RE{[ w(X)]" 'Vu(X)le,
* Ifassuming F. =@
d=r=1=1
plx) =y, + yyx

then | |
B, =11+ (a)ly,

Bo1 = —0.282y,, Bos = V2 Boo = 2.282y,



Average derivative estimation (6)

* Taking derivative on both side of the above
equation and taking expectation, we get

E(w(X)VH,(X)) = [/y"(-j-f;lr);u{m)j'{;p}(fm o
= [



Average derivative estimation (7)

* We may estimate

Fw(X)Vl,(X)) = /VHQ(X)w(arjf(mjdm

by 8, =nt L{V(X)}w (X)),
where VX)) is a nonparametric estimator of the
gradient of the conditional quantile &)



Average derivative estimation (8)
* By integration by parts,

F(w( /Vﬁ x)dx
/ X )\Viw(x)f(x)}dz

* An alternative estimator is

. i YD) fXy) + wX)VX)
i f(X))

1 n

; ; 6(X ){VLL(X ) + w(X, )/(X )}

where /X, - vAX,)/fX,), f and Vf are
nonparametric estimator of the density and its
derivative



Average derivative estimation (9)

* Leave one out estimator

X —X.
dZI}V( j} I]:‘
1

n J’:,ei'. mn

&) = (n—1)h

Vf(xl) B (n — 1)heH!

ZW%&&L

e h,



Penalized univariate smoothing method (1)

Assume that
y = f(x)+e€

In case of the mean regression, we may consider
estimate the functlon f bv minimizing

RSS(f, ) = Z{tﬁ— f}2+;a/{f )}2dt,

A=10: f can be any functlon that interpolates the data.

A = oo : the simple least squares line fit, since no second derivative can
be tolerated.

It can be shown that for .= 0.~), there is a unique
minimizer, which is a natural cubic spline with knots

at Iy



Splines (1)

Suppose that we can to estimate a function f(.) with

a piecewise polynomial function

In the simplest case, we can just estimate f by a

piecewise constant function
We may write

F(X) = 3t Bhm (X)
h(X)=1(X <&),

Piecewise Constant
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Splines (2)

* We may also fit f by a piecewise linear function,
which requires 3 additional base function

hmys = hp (X)X, m=1,....3

Piecewise Linear
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Splines (3)

* If we require continuity on the knots, we put some
constraints (2 constraints in the above exmple) on
the coefficient of

M
f (*Y;] — Z -"':j)".rn h'm (*YJ:

m=1

* More conveniently, we may write the base functions
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Discontinuous
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Splines (4)

Continuous
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Splines (5)

 An order-M spline with knots ¢. i =1...K is a
piecewise-polynomial of order M (degree M-1), has
continuous derivative up to order M-2

* A cubic spline has order M=4
* The bases are

hi(X) = X77' j=1,....M,
huse(X) = (X—e)¥ ' r=1,..., K.



Natural cubic splines

* In addition to requiring the function to have
continuous derivatives on the knots, we require the
function is linear beyond the boundary points

* If the function is represented as

3 K
fX) =) BiX7+) 0n(X — &)1

j=0 k=1
it can be shown that

Br=0, T =0,



B-splines (1)

Let & < & and £k < Ex+1 be two boundary knots,

TT=Tp = <7y = &

T_’I"|‘ﬂ'f :£j1 .?211 JK

E+1 S TK+M+1 = TK+M+2 = - < TK+2M -

1 af T; < x < T;

= +1

Bi__l(fﬂ) = .

0 otherwise
fori=1,...,K +2M —1.

Ir —T; T1'_|_m — .
Bi,m(m) = Bi,m—l(-'lf') + Bitim—1(x)

Ti+m—1 — T Ti+m — Ti+1

fori=1...., K +2M — m.

y A
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B-splines (2)
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FIGURE 5.20. The sequencs of B-splines up fo order four with ten knots evendy
apaeed from O to 1. The B-splinee have local support; they are nonzers on an
interval spanned by M + 1 Enote.



Quantile regression-penalized
method (1)

* For quantile regression, we may consider

H
min » * p(yi — g(x;)) + A f (g (x))dx.
=1

¥
gey 4

* The solution is also a natural cubic spline



Quantile regression-penalized
method (2)

Koenker, Ng, and Portnoy (1994) consider other L, penalties
7 17, DA
J@#zmnpzafgﬁmWﬂﬂ

For p =1

H
min )~ pr(yi — g(x;)) + k[ 2”(x)|dx
=1



Quantile regression-penalized
method (3)

* Another way to penalize the objective function is
P(g) =V(g")

* The total variation is defined as

V) =sup D | f(Xip) = f)].
=1

where the sup is taken over all partitionsa < x| < --- < x, < b

 For absolute continuous function

b

Vi = [ 11 oldx

a



Quantile regression-penalized
method (4)

 The new penalized objective function is
MiNgeg Z P+ (Y g(xi)) +AV(g’)

* The solution is a piecewise linear function



Animal weight VS running speed
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