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Interior Point Method: an example (1)

* Given a polygon inscribed in a circle, find the
point on the polygon that maximizes the sum
of its coordinates

max{e u|X'd=u, ¢e'd=1, de R% }
where e is the vector of ones, and X has rows
representing the n vertices

e Eliminating u, setting s = Xe¢ , we can formulate
the problem as

. T T . n
max{s dle d =1, d € R}



Interior Point Method: an example (2)

* Simplex method goes around the outside of the polygon;
interior point method search from the inside, solving a
sequence of problems of the form

n
max {FSTH] + 1 Z log (.'!,-|€Td =1 }

i=1
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Interior Point Method: an example (3)

By letting 1 — 0 we get a sequence of smooth problems whose solutions
approach the solution of the LP:

max {.sTa’ + 1 Z log d,-|€Td =1 }
i=1
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Interior Point Method: an example (4)

* For the problem

max {s'd + 0 i log c'l,-|er =1
i=1
we can get the Newton direction
p = Ju_IDES + De — ﬁ;lezﬁ
where a = (e"D?) (e D*s + ,uE’TDE’)

Pursuing the iteration ¢ < 4 +ip yields the
central path 4(u)



Interior Point Method: an example (5)
* The dual of max{s'dle'd =1, d € R } 1S

min{alea — 7 =s, 7 > 0}
* This is simply equivalent to looking for the
maximal elements in s.

* The primal-dual formulation is
e'd =1
ed — 7 = 3§

Dz = e



Interior Point Method: an example (6)

* For any feasible pair (z.4) , we have
s'd=a—17"d
 So :'d is equal to the duality gap;

* At a solution, we have the complementary
condition z7d =0, thus implying a duality gap
of zero

 We may take =z"d/n as a direct measure of
progress toward a solution



Interior Point Method: an example (7)

* Newton’s Method gives

Z 0 D Pd e — Dz
el 0 0 Pa | = 0
0 e —I Dz 0

* Solve for this equation we have
pa=(e'Z'De)y e Z7H(Dz — pe)
pa = Z (e — Dz — Depy,)

Pz = €pa

* Affine-scaling Newton direction corresponds
to =0



Interior Point Method: an example (8)

* Newton’s Method gives

Z 0 D Pd pe — Dz
e 0 0 Pa | = 0
0 e —I ol 0

* Solve for this equation we have
b ¢e'Z'De) e Z7 V(D7 — [ne)

,Ua=(

pa = Z (e — Dz — Depy,)

Pz = €Pa



Interior Point Method: an example (9)

* We may update d withd + A, p, and zwith Z + Az p;
where

rg = argmax{i € [0, 1]|d + Aps = O}

A = argmax{i € [0, 1]|z + Ap. = O}

* |f updating these two values with a full affine-scaling
step, we have the new duality gap is

f=(d+ripa) (z+rpo)/n
* The original duality gap is
nw=d'z/n



Interior Point Method: an example (10)

* If /i is considerably smaller than i, this means that
the affine-scaling direction brought us considerably
closer to the optimal solution

* Otherwise, the affine-scaling is not effective or not
favorable

 Mehrotra proposed to update © by
o (/)



Interior Point Method: an example (10)

* To deal with the nonlinearity in the complementary
condition, Mehroha proposed to modify the
direction by solving

Z 0 D 3{-; e — Dz — d Pz
el 0 0 5, | = 0
0 e 1) \s. 0



Interior Point Method: an example (11)

e Modified direction
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QR: interior point method (1)

QR
min ipr (vi = x"b),
Its equivalent LP

min{re_u +(l—1)'v | v=Xb4+u—v,(u,v)e IF@’}

The dual
max{v'd | X'd=0, de[t—1,1]"}
Setting a =d +1-1, we get

max{y'a | X'a=(1-1)X"e, a<]0,1]"}



QR: interior point method (2)

* Adding slack variables s and the constraint
a—+8s=k¢e€
 The barrier function is
Ba,s,u)=y'a+pu Z{]ug a; +logs;)
with constraints
XTa=(1—-1)X"e

a—+5=¢e



QR: interior point method (3)

 The Lagrangian is
LHLSJLHJM==BHLSJH——51XTH—41—WHXTﬂ
—u'(a+s—e).

* Set the derivative of the Lagrangian as zero and v =A™
We have

X'a=(1-1)X"e

a+s=e
Xb4+u—v=y

USe = e

AVe = pe.



QR: interior point method (4)

* Applying Newton’s method, we get

(XT 0 0 0 0 \ (&) (U-0XTe—XTa)
! I 0 0 0 S e —da—s§
o o0 I —-I X 5, | = yv—Xb—u+v
0O U S 0 0 5y je — U Se

\V 0 0 A 0 ) \&) \ pe—AVe, )

* Solving for this,

Sy =(XTWX) "1 —1)XTe—XTa— XTWE(n))
8a = W(X8, 4+ &E(p))

ds = —dq

Sy = ,!'.LS_IE —Ue+ S'Us,

5, = uA e — Ve + A7'V§,,

Eu)=y—Xb+u(A™" =S e W=(S"'U+ATv)!



QR: interior point method (5)

* Applying Newton’s method, we get

(XT 0 0 0 0 \ (&) (U-0XTe—XTa)
! I 0 0 0 S e —da—s§
o o0 I —-I X 5, | = yv—Xb—u+v
0O U S 0 0 5y je — U Se

\V 0 0 A 0 ) \&) \ pe—AVe, )

* Solving for this,

Sy =(XTWX) "1 —1)XTe—XTa— XTWE(n))
8a = W(X8, 4+ &E(p))

ds = —dq

Sy = ,!'.LS_IE —Ue+ S'Us,

5, = uA e — Ve + A7'V§,,

Eu)=y—Xb+u(A™" =S e W=(S"'U+ATv)!



Mehrotra Primal-dual Predictor-corrector
Algorithm

* Better numerical stability and efficiency due to
better central path

* Easily generalized to exploit sparsity of the
design matrix

* Used in the package quantreg



QR: Interior VS exterior
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BR: Barrodale and Roberts algorithm
LS: Least Square
FN: Frisch-Newton



Globbing for median regression

* Consider the median regression

i
11}1112 lvi —x; b,
7
i=1

e |ts directional derivative is

"
7y — Tiocon® (v T CTo
gb,w) = E x; wsgn*(y; — x; b, x; w).
=i

=

. . sen(u) 1fuz£0
segn “(u, v) [ - 7

sen(v)  ifu = 0.



Globbing for median regression (1)

e Suppose that we “knew” that a certain subset
of J,, fall above the optimal median plane and
J, fall below the median plane.

* Consider the revised problem

min 2: |vi —x;" bl + |yL — x/ bl + |yy — x}b|,
belt ieN\(JpUTy)

(xL,yr) = () xi,—00), (xm,yn) =() xi, +o0)

e 1eJH



Globbing for median regression (2)

Preliminary estimation using random m = n?/3 subset,
Construct confidence band XTB + K|V 2xi|.

Find J; = {ily; below band }, and Jy = {iJy; above band },

Glob observations together to form pseudo observations:

(xLyL) = () xi,—00), (xH,yn)=() xi,+00)

te]L i€JH
Solve the problem (with m+2 observations)
min Y [yi — xib| + lyr —xr b+ yn — xub

Verify that globbed observations have the correct predicted signs.



The Laplacian Tortoise and the Gausian Hare

Taken from Portnoy and Koenker (1997)



Locally polynomial quantile regression (1)

e Suppose we have bivariate observations

e We would like to estimate therth conditional
guantile function of Y given X

g(x) = Qy(zx).



Locally polynomial quantile regression (2)

* Let K be a positive, symmetric, unimodal
kernal function

* \We may consider

min Zw (X)p:(yi — Po — p1(x; — X))

ﬁER“

wi(x) = K((x; —x)/h)/h

* More generally, we can consider

min Z”’ (t)pr(h — /81(3:5 — X) -ttt IBP(X-" N "r)ﬂ)

ﬁERP'H



Locally polynomial quantile regression (3)
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Locally polynomial quantile regression (3)

Q o]
(@]
o _|
w
—_— o
[=3]
E
e
©
o
m
— tau=0.1
— tau=0.25
S | — tau=0.5
T tau=0.75
tau=0.9

10 20 30 40 50

milliseconds



Locally polynomial quantile regression (4)
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Figure 7.2. Locally linear median regression. Four estimates of the derivative
of the acceleration curves for differing choices of the bandwidth parameter.



