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ASYMPTOTICS FOR LEAST
ABSOLUTE DEVIATION
REGRESSION ESTIMATORS

DAviD POLLARD
Yale University

The LAD estimator of the vector parameter in a linear regression is defined by
minimizing the sum of the absolute values of the residuals. This paper provides
a direct proof of asymptotic normality for the LAD estimator. The main the-
orem assumes deterministic carriers. The extension to random carriers includes
the case of autoregressions whose error terms have finite second moments. For
a first-order autoregression with Cauchy errors the LAD estimator is shown
to converge at a 1/n rate.

1. THE PROBLEM

Suppose random variables y,, y,,... are generated by a linear regression,
¥i = xi{Bo + u;, for observed {x;}, unknown 8, in R?, and unknown errors
{u;}. The least absolute deviations (LAD) estimator $3, is chosen to mini-
mize the random criterion function

Z | yi ~ x/B].
i=<n
In view of its ancient lineage, it is surprising that the asymptotic theory of
LAD estimation has only recently been developed.

Bassett and Koenker [5] established a central limit theorem for va (83, —
Bo), assuming the {#;} to be independent and identically distributed (i.i.d.)
random variables and {x;} to be a deterministic sequence for which

1 %X~ Q,

N i<n

with Q a positive definite matrix. They checked pointwise convergence of the
density functions. Bloomfield and Steiger ([7], pp. 44-49), using a smoothing
technique similar to that of Amemiya [1], extended the central limit theorem
to cover stationary, ergodic, martingale differences {x;,»;}. The smoothing
allowed them to locate a minimum by equating partial derivatives of zero.
Ruppert and Carroll {20] proved central limit theorems for various estima-
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tors related to LAD, relying on a stochastic equicontinuity result of Bickel
[6] to develop uniform approximations to a subgradient vector, then apply-
ing an argument due to Jure¢kova [10]. Van de Geer [22] applied empirical
process methods to the case of i.i.d. {(x;,¥;)} in order to establish the uni-
form bounds needed to deduce asymptotic normality directly from the min-
imizing property of 3,. Sanz [21] also applied empirical process theory to
establish an unusual rate of convergence for the LAD estimator generated
by a particular long-tailed error distribution. More recently, Knight [11,12]
and Davis, Knight, and Liu [8] have applied methods similar to the ones to
be presented in this paper. (Their work has developed independently from
mine.)

Most of these proofs were built around some sort of stochastic equicon-
tinuity argument. That is, they required uniform smallness for the changes
in some sequence of stochastic processes {X,,} due to small perturbations of
the parameters; they required something like

6—0 n-—»oo

lim lim sup P{ sup | X,(s)| > ¢} =0  for each e > 0.
|s]<é

Moreover, they usually involved some sort of preliminary consistency argu-
ment. In the Jureckova paper [10] monotonicity properties of the criterion
function greatly simplified this task; the behavior of a process outside a com-
pact region was controlled by the behavior on the boundary of that region.

As I have argued many times (for example, in Pollard [14-18] and in Pakes
and Pollard [13]), stochastic equicontinuity often does capture precisely the
key technical difficulty in an asymptotic proof. Unfortunately it also tends
to make the arguments less accessible to many potential users. By contrast,
in this paper I introduce a simpler technique, which depends crucially on the
convexity property of the criterion function, in order to derive the necessary
uniformity of approximation.

CONVEXITY LEMMA. Let {\,(0):0 € O} be a sequence of random
convex functions defined on a convex, open subset © of R?. Suppose \(-)
is a real-valued function on © for which \,(0) — N(6) in probability, for
each 0§ in ©. Then for each compact subset K of O,

sup|N\,(8) — N(8)} -0 in probability.
9K

The function \(+) is necessarily convex on ©. [ |

Andersen and Gill [4] have already proved this result, reducing its proof
by means of a subsequencing argument to an application of its well-known
nonstochastic analogue (Rockafellar [19], Theorem 10.8). But, for complete-
ness’ sake, a simple direct proof will be given in Section 6. The lemma will
allow us to derive the limit distribution directly, without preliminary consis-
tency arguments, using a technique analogous to the method of proof for
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Lemma 5.2 of Jureckova [10]. The lemma could also be adapted to simplify
the asymptotic theory for other estimators defined by minimization of a con-
vex criterion function, but I will not pursue that in the present paper. (See
Section 14 of Pollard [18] for one possibility. Heiler and Willers [9] have also
applied an analogue of the CONVEXITY LEMMA to establish central limit the-
orems for R-estimators.)

Throughout the paper I use linear functional notation, writing IPZ instead
of the more traditional EZ for the expectation of a random variable Z. Also
I identify sets with their indicator functions. For example, Pu,;{né < u; < n}
will replace what might be written [Eu,x{né < u;, < n}, with x{ - - - } denot-
ing an indicator function. The symbol ~~ will denote convergence in distri-
bution.

Section 2 contains three limit theorems for LAD estimators, correspond-
ing to increasingly complex behavior of the {x;}. For the first theorem,
whose proof occupies Section 3, they are assumed deterministic. I believe the
analysis there comes as close to being elementary as any central limit theo-
rem for an LAD estimator can. The second theorem, whose proof occupies
Section 4, allows random {x;}; its proof involves only small martingale-type
modifications to the first proof. It covers the case of simple autoregressions
with errors {u,} having finite second moments. For longer-tailed error dis-
tributions a much more delicate argument is needed. As an illustration the
third theorem, whose proof occupies Section 5, deals with a first-order au-
toregression with Cauchy distributed errors. This special case has already re-
ceived some attention in the literature (An and Chen [3], Bloomfield and
Steiger [71). It is notable for the rapid O,(1/n) rate of convergence of its
LAD estimator.

Remark on History

I first presented the convexity method in lectures at the University of Iowa
in July 1988. In the published notes for these lectures (Pollard [18]) I replaced
the analysis of the LAD example by a more complicated analysis, which de-
pends on stochastic equicontinuity arguments, for the more complicated
problem of LAD fitting to a censored regression. After reading the August
1988 version of the present paper, Peter Bloomfield asked about possible ex-
tensions to autoregressions. Peter Phillips then helped me understand the un-
usual asymptotics for the case with Cauchy errors; I worked out the details
for a Yale graduate course in the spring of 1989. A referee pointed out the
relevance of the papers by Ruppert and Carroll [20] and Jure¢kova [10].
While preparing the revised manuscript I received a preprint by Knight [11],
which presented similar convexity arguments to mine for the case of deter-
ministic {x;}, together with extensions to other problems involving convex
criterion functions. Knight [12] and Davis, Knight, and Liu [8] have devel-
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oped the arguments further. Clearly the convexity argument is an idea whose
time has come.

2. THREE LIMIT THEOREMS

Throughout the section we make the following assumption about the {u;}.

ERROR ASSUMPTION. The regression errors {u;} are independent. They are
identically distributed, with median 0 and a continuous, positive density f¢)
in a neighborhood of 0.

The assumption ensures that the function

M) =P(u; — t| — |u;])

has a unique minimum at zero, and

M(t) = t2£(0) + o(2?) near zero. o))

Also, if we define U(¢) as P{|u;| <t} then U(¢) » 0 as £ — 0. As will be
pointed out later, the assumption could be weakened slightly, but that might
distract attention from the more interesting problems connected with the be-
havior of the {x;} sequence.

THEOREM 1. Suppose the {u;} satisfy the ERROR ASSUMPTION and that
{x;} is a deterministic sequence for which the matrix Dli<n XiX] eventually
has a pos{tive definite square root V,. If maX;<, |V, x;| > 0 as n > o, then
2f(0)V, (B — Bo) ~ N(O,1). L

The conditions on the {x;} are satisfied if there exists a positive definite
matrix V for which

1
- ZX,‘X,{ - V2,

nj<p
For if such a V exists, then V,/va — V and |x,|%/n — 0. Consequently,

max |V, 'x;| = O(max|x;|/vn) - 0.
isn i<n

Similar behavior can be expected of random {x;} under mild conditions.
For example, if {x;] were a stationary, ergodic sequence with Px;x/ finite
and nonsingular, then almost all realizations would have these limiting prop-
erties.

THEOREM 2. Suppose the {u;} satisfy the ERROR ASSUMPTION. Let {‘F;}
be an increasing sequence of o-fields and V, be a sequence of ( possibly
random) positive definite matrices such that:




190 DAVID POLLARD

(i) u; is independent of ¥,_, for every i;
(i) V, 'x; is F,_, measurable for every i
(i) max,, |V, 'x;| - 0 in probability;
(V) Zicn Vi'xox{ V71 > I in probability.

Then 2f(0)V, (B, — Bo) ~ N(0,1,). n

The conditions imposed on the {x;} anticipate two slightly different appli-
cations.

Example 1

Suppose that {x;} are random vectors independent of the {u;}. Let each
‘F; be the same, equal to the o-field generated by all the {x;}. Suppose
max;, | x;| = 0,(vn) and also that there exists a positive definite, determin-
istic matrix V for which

1
- 2 xx > V? in probability,

isn
or even just that [(1/n)X;., x;x{] " is of order O,(1). Then the theorem
applies with either V), equal to V7 or the positive definite square root of the
matrix X<, Xix;j. [ ]

Example 2

Suppose x; = y;_;. That is, the {y;} are a first-order autoregressive se-
quence. (Extension to higher-order autoregressions is not hard.) Suppose
|Bo| < 1 and the u; have zero means and finite variance o2 > 0. Let F, be
the o-field generated by the random variables yg,u,,. . .,u;. Let us check the
conditions of Theorem 2.

It is a standard time series result (see Example VIII.4 of Pollard [15]) that

! 2, _
ni<p 1 - Bg
Write 72 for the limit. Take V, equal to 7v7.

For the condition regarding the maximum, first use finiteness of second
moments to control the errors:

in probability.

1
P{max|u;| > evai} < — D Puf{|u;| > evn)
i=n €

isn

1
= é—zlPuf[lul| > eri)

-0 by dominated convergence.
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Then observe that

max| y;| = Op(| yo| + max|u) = 0, (7).

The standardized LAD estimator vAi(B8, — Bo) has an asymptotic
N(O, (27/(0))~2) distribution. ]

The case of an autoregression whose errors have infinite second moment
is much more interesting. An and Chen [3] analyzed the prototypical case of
Cauchy errors. They showed that for each 6 > 0, the LAD estimator B, lies
within O, (n~'*°) of the true 8,. A slightly better result is possible.

THEOREM 3. Suppose y; = Boyi-1 + Ui where |Bo| < 1 and the {u;} are
independent Cauchy errors. Then 3, = 3y + 0p(n“). [ ]

It is worthwhile to determine the limiting distribution for z( B, — Bo)-
Knight [12] has applied the same method to the case 8o = 1 for various
long-tailed error distributions, establishing existence of a limit distribution
expressible as a stochastic integral. More interestingly, for the same case he
has also established existence of a limiting normal distribution under random
norming. In a recent preprint, Davis, Knight, and Liu [8] have solved the
general problem.

3. PROOF OF THEOREM 1

Write z; , for V7 'x;. By definition, 2, Zi,»2/» = Is and max;<, | ;.| = 0.
Also

>3 |zin|? = trace D) 2,21, = d.

i<n i=n

For 6 in R, define
G,,(O) = 2 (lui - zil,nel - |ui|)-

i=n
This is a convex function of @ that is minimized by
8, = Vi (Bn — Bo)-

The idea behind the proof is to approximate G, by a quadratic function
whose minimizing value has an asymptotic normal distribution, and then to
show that 8, lies close enough to that minimizing value to share its asymp-
totic behaviour.

Two terms contribute to the approximation. One is a deterministic qua-
dratic function obtained via a Taylor expansion of the expected value
I,(8) = PG,(0) using (1):

T,(0) = 2, M(z/,0) = f(0)]6]* + o(1).

isn
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The other term is random and linear in 6. It comes from a sort of Taylor ex-
pansion of G,(6) around 6 = 0. The usual style of argument —a pointwise
expansion of each summand to quadratic terms, followed by appeals to stan-
dard limit theory for the sums of coefficients — fails, because |u; — ¢| is not
everywhere differentiable. Amemiya ([2], Section 4.6) has explained the dif-
ficulty. (Peter Phillips has developed an interesting heuristic method using
generalized functions, which suggests another way around this difficulty.)
However we do benefit from a linear approximation to |u; — ¢| obtained by
treating the difference of indicator functions,

D; = {u; <0} — {u; = 0},

as if it were a first derivative at ¢ = 0. Notice that PD; = 0 because u; has a
zero median. Define

Rin(0) = |u; — 2/ ,0| — |u;)| —D:z{,0

and

W, = ZDizi,n-

Then

G,(0) =T,(8) + W0 + 2] (R, ,(8) — PR; ,(0)).

The properties of the {z;,} and the multivariate central limit theorem en-
sure that W, has an asymptotic N(0, I,;) distribution. It will turn out that 6,
lies close to —1 W, /f(0).

For fixed 6, the sum of centered terms §; , = R; ,(6) — PR, ,(8) will con-
tribute only a 0,(1) to G,(8). It is easy to show this by means of a second
moment bound based on the inequality

| Rin(0)] < 2[z;n0 [{|wi] < |2;,401}.

Because of cancellation of cross-product terms, we get

Zgi,n

isn

2
< D> PR, ,(0)

isn

=43 |z/,017U(z/,0]) where U(?) = P{lu;| <)

i=n

< 41012U(10] max|z,,1) 3 |2, ]?

i=sn

P

- 0.
Thus, for each fixed 0,
G,.(8) =f(0)|0|*> + o(1) + W8 + 0,(1).
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The coNvEXITY LEMMA from Section 1, applied to A\, (6) = G,(8) — W0,
strengthens the pointwise result to uniform convergence on compact subsets
of R9. With n,, = —] W, /f(0), we may write the resulting convergence asser-
tion in the suggestive form

G, (6) = f(0)|0 — 1,|> = f(O)ma| + 1, (8),
where, for each compact set K in R?,

sup|r,(8)] =0 in probability.
ek

The argument will be complete if we can show for each 6 > 0 that
P{|6, — 7, > 8) = 0.

This convergence will be a consequence of the convexity of G, and the be-
haviour of r, on the closed ball B(n) with center », and radius 6. (The ar-
gument is similar to the proof of Jureckovd’s [10], Lemma 5.2.) Because 1,
converges in distribution, it is stochastically bounded. The compact set K can
be chosen to contain B(n) with probability arbitrarily close to one, thereby
implying that

A, = sup |r,(8) -0 in probability.

6€eB(n)

Now consider the behavior of G, outside B(n). Suppose § = 3, + Bv,
with 8 > & and v a unit vector. Define §* as the boundary point of B(n)
that lies on the line segment from 7, to 6, that is, 8* = 5, + év. Convexity
of G, and the definition of A, imply

%Gn((?) + (1 - %)Gn(nn) = G,(0%)
2 f(0)8 — f(0)|n.)* — A,
= f(0)8* + Gu(n,) — 24,.
The last expression does not depend on 6. It follows that
L0l Ga(8) = Gy(n) + 5 LAOF - 24,1,

When 24, < f(0)8*, which happens with probability tending to one, the
minimum of G, cannot occur at any 6 with |# —y,| > 6; with probability
tending to one, |6, — u,| < 8, as required. [ |

The reader will observe that independence of the {u;} was required only
to ensure asymptotic normality of W,. Identical distribution of the {u;}
gave the limiting quadratic form for the sum of expectations,

EIP(Wi -z} ,0| - |u;| — Dz} ,0).
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The proof would also go through under any assumption on the {u;} that
took care of these two points.

4. PROOF OF THEOREM 2

Most of the argument will follow the lines established in the previous sec-
tion. We need concentrate only on the differences caused by randomness of
the {x;}.

As before define z;, = V,'x;. This time ¥,.,2;,2/, — I, and
max;., |z, ,| — 0 in probability, and

25 |zinl|? = trace 32,52/, = O, (1).
i<n isn
As before W, = 3,., D;z; , has an asymptotic N(0, I,) distribution, but this
time by virtue of a martingale central limit theorem (see Theorem VIII.1 of
Pollard [15], for example).

Write IP;(-) for the conditional expectation operator P( - |"F ;). The qua-
dratic part of the approximation to G,(6) is now also random. It comes
from the process

T.(0) = 2P (lu; — 2/ 0] ~ |u;])

isn

= 2 M(z/,6)

=f(0)|8]* + 0,(1).

Now ¢, , stands for the variable R; ,(8) — IP,_,R; ,(8), which has been
centered at zero conditional expectation. Much as before,
2P £, =43 12:,%10|1*U(2},6]) >0  in probability.
i<n i=sn
Denote by S(n) the sum of conditional variances that appears on the left-
hand side. A simple martingale argument will show that the sum of martin-
gale differences 23, £; , converges to 0 in probability. For some sequence
of real numbers ¢, converging to zero, there exist stopping times 7, for
which S(7,) <€, and P{r, # n} — 0. The second property of the stopping
times ensures that

P{zsi," + Y lis rnlsi,n} 0.

The zero conditional expectations account for the vanishing of cross-prod-
uct terms, leaving

2
P(Z {IS Tn}gi,n> = P(Z {IS Tn}lpi—lszz,n> = en—>0'

isn i<n
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Once again we have, for each fixed 6,
G,(0) =f(0)0|> + o(1) + W,0 + o0,(1).
The rest of the proof now proceeds as for Theorem 1. [ ]

The ERROR ASSUMPTION on the {u;} could be weakened. The proof of the
theorem would also work for stationary, ergodic {(x;,u;)}, provided W,
had a limiting distribution. That would follow from an assumption that the
{(Xi+1,{u; < 0} — {u; = 0})} are martingale differences, as was presumably
intended in the last paragraph on page 49 of Bloomfield and Steiger [7].

5. PROOF OF THEOREM 3

The proof will be based on ideas from An and Chen [3], as modified by
Bloomfield and Steiger ([7], Chapter 3).

To avoid unimportant details let us assume that y, = 0. Of course that
makes { y;} nonstationary. Nevertheless, we will still be able to appeal to the
ergodic theorem in the course of the proof.

Anticipating the 1/x rate of convergence, let us define

Gn0) = % (| = 2 31| - ).

Ui — — Via
isn n
It will suffice if we show for each ¢ > 0 that, for 7T large enough,

P{G,(+T) >0} >1—¢ eventually. Q)

That will force 8, = n(8, — 8o) into the interval [—T, 7] with probability
greater than 1 — e eventually, because G,(8,) < G,(0) = 0 and G, is
convex.

With the 1/n standardization the remainder function becomes

0
R ,(0) = = |u;| = ;Di)’iq-

¢
Uiy — — JVia
n

This time it will be the remainder that makes G, large.

The proof has two parts. First, as a special case of the argument on pages
342-343 of An and Chen [3], or from the result cited on page 97 of Bloom-
field and Steiger [7], we have

1
w,= _ZDiyivIZOp(l)- 3

isn

For the other part we show, for each ¢ > 0 and each constant C, that
IP{ DR (£T) > C|T[} >1—c¢ eventually, for |T| large enough.

=n (4)
Assertion (2) follows easily from (3) and (4).
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In order to apply the ergodic theorem we will need to augment the se-
quence {u;} by new independent observations uy,u_,u_5, ... from the er-
ror distribution. Define for each integer n,

An = Z ,B(;’_H-luil-

i<n

The sum now runs over all integers i, both positive and negative, less than
n. As in the proof of Lemma 3.1 of Bloomfield and Steiger [7], the series for
A, converges almost surely by virtue of the Borel-Cantelli lemma, because

SP{lu] >N = SIN <o if A> 1.

i=n isn

The {A, ] sequence is both stationary and ergodic. In particular, there exists
a constant K for which

P{A, =K} =P{A;, =K}>0.

Choose and hold fixed such a X.
Now we can establish (4). For simplicity suppose T is positive, and con-
sider only the behavior at +7. If £ > 0,

lu,'_tl - 'uil -tD,=(2!—2u,){0Su,St}
=t{0<u,<t/2}.

Let 6 be a small positive constant. Apply the inequality with ¢ equal to
Ty;_/n on the set where

O<uy <K,
A2 =K,
né < u;,_, <n.
Together with the inequality y; | = u; | — A,_,, these constraints imply
T T
—Vianz (Ui —K)z —u_ = 2u;
n n 2n
whenever n = 2K/6 and T = 4K/5. Consequently, for these n and T,
T
R,‘,n(T) = ——u,-_l{Osu,-sK,A,-_st,nésu,~_| Sn}. (5)

2n

Write X, , for the coefficient of 7 on the right-hand side.
The constraints have been chosen so that X; , has a large conditional ex-
pectation given TF,_, (note the choice of o-field) if & is small enough:

1
IP,‘_zX,",, = ﬂ {A;ir =< KiP{O=uy < K}Pu;_{né < U, < nj.
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The factor P{0 < u; < K} is a fixed positive constant C,. The other expec-
tation is large when & is small:

2 n
]Pu,-_l{nésui_lsn}=—f a dnglog(£)=ca.

T Jas b+ X2 T nd
Thus
1 1
Z P, > X, = 5 CiCs— 2, (A, = K]}
i=n isn
1 .
- 5 C,C;P{A,; = K} by the ergodic theorem. ©6)

For the second moments the choice of 6 does not matter:

1 1
PX?, = —Pul (né<u_=n}<-—.
’ 4n n
This bound lets us keep X;<, X, » relatively close to the sum of conditional
expectations, by means of a second moment calculation in which most of the
cross-product terms vanish. Write Z; , for X; , — P;_».Xj ». Then

2
< P2}, +22,PZ, ,Zisyn

isn i=n
=2 (PX2, + 2VPX2,PX7 1 )

=<3. ¢)

P

z Zi,n

isn

From (5), and (6) for a small enough &, and (7) we deduce (4) by an appli-
cation of Tchebychev’s inequality. |

6. PROOF OF THE CONVEXITY LEMMA

The inequalities that establish convexity of A(-) are obtained by a passage
to the limit from the corresponding inequalities for the N, ().

For the uniformity of the convergence it is enough to consider the case
where K is a cube with edges parallel to the coordinate directions e, . .., €.
Every compact subset of © can be covered by finitely many such cubes.

Fix ¢ > 0. Since convexity implies continuity, there is a > 0 such that A
varies by less than e over each cube of side 26 that intersects K. For conve-
nience we may assume that the edge length of K is an integer multiple of 6.
Partition K into a union of cubes with side 8, then expand K to a larger cube
K® by adding an extra layer of these 6-cubes around each face. We may as-
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sume that 6 is small enough to ensure that K? lies within ©. Write V for the
finite set of all vertices of all the §-cubes that make up K®. The convergence
in probability is uniform over ©V:

M, = max|\, (1) — N(£)] -0 in probability.
tev

Each 0 in KX lies within a d-cube with vertices {6,} in V; it can be written
as a convex combination 2; «;0; of those vertices. Convexity of A, gives

A (0) = DTN, (6))
= M, + max|X\(0;) — N(8)| + N (8).
The contribution from the maximum over the {6,} is less than ¢, by con-
struction. Thus
P{sup N\, (8) — \(8) > 2¢} - 0.
K

The companion lower bound is slightly harder to establish. Each ¢ in X lies
within a é-cube with a vertex 6, in K N V:
0=90+ Zé,-ei with |6,| < 6.
Without loss of generality suppose 0 < §; < 6 for each i. Define 6, to be the

vertex 0y — de; in V. Then 6, can be written as a convex combination of 8
and the 6;:
8 d;

fp= ——— 0 + S
YT ;Hzaj
J J

Denote these convex weights by 8 and {3;}. Notice that

& 1
S+dé 1+d

From convexity of A,

BN (6) = Ny(80) — 25 8:Na(6))

8=

= A(f) — ZBI)\(@:’) —2M,
> N() — e~ ZB,»[)\(B) +e€] —2M,

= BAN(0) — 2¢ — 2M,,.
Thus
]P[iréf M(6) — N(6) < =3(d + l)e] - 0.

The asserted uniform convergence follows. »
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NOTE ADDED IN PROOF

Dr. Z.D. Bai has brought to my attention his paper, “Asymptotic normality of min-
imum L; norm estimates in linear models” (with Chen, Wu, and Zhao), where sim-
ilar central limit theorems are proved by direct calculations with directional
derivatives. Bai’s article appeared in Chinese Sciences A 33 (1990): 449-463.
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