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a b s t r a c t

The convexity arguments developed by Pollard [D. Pollard, Asymptotics for least absolute
deviation regression estimators, Econometric Theory 7 (1991) 186–199], Hjort and Pollard
[N.L. Hjort, D. Pollard, Asymptotics for minimizers of convex processes, 1993 (unpublished
manuscript)], and Geyer [C.J. Geyer, On the asymptotics of convex stochastic optimization,
1996 (unpublished manuscript)] are now basic tools for investigating the asymptotic
behavior of M-estimators with non-differentiable convex objective functions. This paper
extends the scope of convexity arguments to the case where estimators are obtained as
stochastic processes. Our convexity arguments provide a simple proof for the asymptotic
distribution of regression quantile processes. In addition to quantile regression, we apply
our technique to LAD (least absolute deviation) inference for threshold regression.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we extend the scope of so-called ‘‘convexity arguments’’ to the case where estimators are obtained as
stochastic processes. Suppose we have random functions fn(x, τ ) and f∞(x, τ ) defined on Rd × T that are convex in x. Here,
τ ∈ T is a parameter and T ⊂ Rq is a compact set.We call these functions parametrized convex objective functions. Suppose
fn(·, τ ) and f∞(·, τ ) take minimum values at xn(τ ) and x∞(τ ) for each τ , respectively. The problem to be addressed is, if fn
converges to f∞ in some sense, under what conditions does xn(·) converge weakly to x∞(·) as a process?
A canonical example appears in quantile regression [1],where the coefficient estimator is indexed by a quantile and called

the regression quantile process. Another example appears in threshold regression with an unknown threshold parameter
[2,3]. Consider testing the null hypothesis of no threshold under which the threshold parameter is not identified. In such a
situation, we typically construct test statistics whichmay depend on the threshold parameter and reject the null hypothesis
if the supremum of the test statistics is larger than a pre-specified value [4,5]. When we construct the Wald-type test
statistics, we need to derive the asymptotic null distribution of the coefficient estimator as a stochastic process indexed
by the threshold parameter, in order to calculate approximate critical values of the supremum of the test statistics.
The asymptotics of convex optimization has been studied by several authors including Pollard [6], Hjort and Pollard [7]

and Geyer [8], whose convexity arguments appear attractive due to their simplicity. Let us explain a version of the convexity
arguments briefly. Let gn(x) and g∞(x) be random convex functions taking minimum values at xn and x∞, respectively.
If all finite dimensional distributions of gn converge weakly to those of g∞ and x∞ is the unique minimum point of g∞
with probability one, then xn converges weakly to x∞. It seems now that the convexity arguments are basic tools for
investigating asymptotic behavior ofM-estimators with non-differentiable convex objective functions. For example, based
on Geyer’s [8] result, Knight [9] investigated the asymptotic behavior of the least absolute deviation (LAD) estimator under
fairly general conditions; Knight and Fu [10] investigated the asymptotic properties of the Lasso [11]. However, to the
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author’s best knowledge, existing literature on convexity arguments only deals with the case where objective functions
are not parametrized and estimators are random vectors. It is thus a challenge to construct an asymptotic theory for argmin
processes of parametrized convex objective functions.
One of the main theorems (Theorem 1) goes as follows. The notations will be explained later. Suppose (i) fn(x, τ )(n ≥ 1)

and f∞(x, τ ) are convex in x for each τ and continuous in τ for each x; (ii) x∞(τ ) is the unique minimum point of
f∞(·, τ ) for each τ ∈ T ; (iii) xn(·) ∈ (`∞(T ))d and x∞(·) ∈ (C(T ))d. Then, x∞(·) is a random element of (C(T ))d and if
(fn(x1, ·), fn(x2, ·), . . . , fn(xk, ·)) converges weakly to (f∞(x1, ·), f∞(x2, ·), . . . , f∞(xk, ·)) in (C(T ))k for each k ≥ 1 where
{x1, x2, . . .} is a countable dense subset of Rd, xn(·) converges weakly to x∞(·) in (`∞(T ))d.
This theorem makes no assumption on the preliminary asymptotic behavior of xn(·). Showing the weak convergence

of (fn(x1, ·), fn(x2, ·), . . . , fn(xk, ·)) for k ≥ 1 is the only substantially difficult point to check the conditions of Theorem 1.
Moreover, it does not require that the limit process x∞(·) is Gaussian. If f∞(x, τ ) is not quadratic in x, x∞(·) may be non-
Gaussian.
In usual, when we show the weak convergence of a sequence of stochastic processes, we have to show the convergence

of finite dimensional distributions and the asymptotic tightness of the sequence. However, when we do not know explicit
forms of these stochastic processes, it is difficult to implement this procedure, especially to show the asymptotic tightness.
By the usual convexity argument stated above, the convergence of finite dimensional distributions of {xn(·)} is deduced from
the convergence of finite dimensional distributions of {(fn(x1, ·), fn(x2, ·), . . . , fn(xk, ·))} for k ≥ 1. So roughly speaking, the
essential implication of Theorem 1 is ‘‘the asymptotic tightness of {(fn(x1, ·), fn(x2, ·), . . . , fn(xk, ·))} for k ≥ 1 implies the
asymptotic tightness of {xn(·)}’’. In addition to the above result, Theorem 2 shows that if fn(x, τ ) is asymptotically quadratic
in x, we can derive an asymptotic representation of xn(·). Theorem 2 is valid even when fn(x, τ ) is discontinuous in τ . So it
is rather useful in some cases.
The organization of this paper is as follows. In Section 2, we present a general asymptotic theory for argmin processes

of parametrized convex objective functions. In Section 3, we apply our techniques to some examples. Section 3.2 deals with
the case where the limit process is non-Gaussian.
Here we explain some notations used in the present paper. Let (Ω,F , P) be the underlying probability space, P∗ be the

outer probability and E∗ be the outer expectation. For details of outer probability and outer expectation, consult Pollard [12]
or van der Vaart and Wellner [13]. Let  denote ‘‘weak convergence’’ and

p
→ denote ‘‘convergence in probability’’ with

respect to the outer probability. For any compact set T ⊂ Rq, C(T ) denotes the space of real-valued continuous functions
on T endowed with the uniform topology; `∞(T ) is the space of real-valued bounded functions on T endowed with the
uniform topology; C(Rd × T ) is the space of real-valued continuous functions on Rd × T endowed with the topology of
locally uniform convergence. For any a < b, let D[a, b] denote the space of càdlàg functions endowed with the Skorohod
topology [14]. The spaces C(T ), C(Rd × T ) and D[a, b] endowed with the above topologies are Polish. For any topological
space S, Sk denotes the k-fold product space endowed with the product topology. Let Sd−1 denote the set of d-dimensional
unit vectors: Sd−1 = {x ∈ Rd : ‖x‖ = 1}.

2. Asymptotics for argmin processes

2.1. Continuous mapping theorem for argmin processes

Let fn(x, τ , ω) : Rd × T ×Ω → R (n ≥ 1) and f∞(x, τ , ω) : Rd × T ×Ω → R be random functions, i.e., fn(x, τ , ·) and
f∞(x, τ , ·) are random variables for each (x, τ ) ∈ Rd × T . For each (τ , ω), we define xn(τ , ω) and x∞(τ , ω) by

xn(τ , ω) ∈ argmin
x∈Rd

fn(x, τ , ω), x∞(τ , ω) ∈ argmin
x∈Rd

f∞(x, τ , ω).

For simplicity, we assume that each argmin set is nonempty. We do not assume the measurability of the mapω 7→ xn(τ , ω)
for each τ . Usually, we omit the argument ω.
We present the first main theorem, which may be considered as a suitably modified form of the continuous mapping

theorem. The proof of this theoremuses the notion of a ‘‘perfectmap’’. Take an arbitrary probability space (Ω̃, F̃ , P̃)different
from (Ω,F , P). A measurable map φ : Ω̃ → Ω is called perfect if

E∗[H] = Ẽ∗[H ◦ φ]
for every bounded function H onΩ .

Theorem 1. Suppose(i) fn(x, τ ) (n ≥ 1) and f∞(x, τ ) are convex in x for each τ and continuous in τ for each x;(ii) x∞(τ ) is the
unique minimum point of f∞(·, τ ) for each τ ∈ T ;(iii) xn(·) ∈ (`∞(T ))d (n ≥ 1) and x∞(·) ∈ (C(T ))d. Then, x∞(·) is a random
element of (C(T ))d and if

(fn(x1, ·), fn(x2, ·), . . . , fn(xk, ·))  (f∞(x1, ·), f∞(x2, ·), . . . , f∞(xk, ·)) in (C(T ))k (1)

for each k ≥ 1 where {x1, x2, . . .} is a countable dense subset of Rd, we have

xn(·)  x∞(·) in (`∞(T ))d. (2)
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Before proving the theorem, we add some remarks.

Remark 1. If a function g(x, τ ) : Rd× T → R is convex in x and continuous in τ , then g(x, τ ) is jointly continuous in (x, τ )
([15], Theorem 10.7). Thus, the condition (i) implies that fn and f∞ are random elements of C(Rd × T ).

Remark 2. Since x∞(τ ) is the unique minimum point of f∞(·, τ ) for each τ , Corollary 1 of Niemiro [16] shows that the map
ω 7→ x∞(τ , ω) is measurable for each τ . Combined with (ii), it is shown that x∞(·) is a random element of (C(T ))d.

Remark 3. Let (C(T ))∞ be the countable product of C(T ) endowed with the product topology. The space (C(T ))∞ is Polish
([14], Appendix M6). Let πk : (C(T ))∞ → (C(T ))k be the natural projection. Then, by Theorem 2.4 of Billingsley [14], it is
shown that the collection of every set of the form π−1k (A) for Borel measurable A ⊂ (C(T ))k and k ≥ 1 is a convergence-
determining class in (C(T ))∞; see also Problem 3.7 in the 1st edition of Billingsley [14]. Therefore, the weak convergence
(1) for every k ≥ 1 is equivalent to

(fn(x1, ·), fn(x2, ·), . . .)  (f∞(x1, ·), f∞(x2, ·), . . .) in (C(T ))∞. (3)

We are now in position to prove Theorem 1.

Proof of Theorem 1. Applying Dudley’s [17] form of representation theorem to (3), there exist another probability space
(Ω̃, F̃ , P̃), perfect maps φn : Ω̃ → Ω and φ∞ : Ω̃ → Ω such that

sup
τ∈T
|f̃n(xi, τ )− f̃∞(xi, τ )| → 0 (4)

almost surely for each i, where f̃n and f̃∞ are defined as f̃n(·, ·, ω̃) = fn(·, ·, φn(ω̃)) and f̃∞(·, ·, ω̃) = f∞(·, ·, φ∞(ω̃)) for each
ω̃ ∈ Ω̃ . By the definition of a perfect map, f̃n and f̃ are random elements of C(Rd× T )whose distributions are same as those
of fn and f∞, respectively. Moreover, Lemma 3 in Appendix A.1 strengthens the almost sure convergence (4) for each i to the
almost convergence of f̃n to f̃∞ in C(Rd × T ).
Define x̃n(·, ω̃) = xn(·, φn(ω̃)) and x̃∞(·, ω̃) = x∞(·, φ∞(ω̃)). It is straightforward to see that

x̃n(τ ) ∈ argmin
x∈Rd

f̃n(x, τ ), x̃∞(τ ) ∈ argmin
x∈Rd

f̃∞(x, τ )

for each τ . To show the weak convergence (2), it suffices to show

lim
n→∞

P̃∗
(
sup
τ∈T
‖x̃n(τ )− x̃∞(τ )‖ > δ

)
= 0

for every δ > 0.
Fix any δ > 0. Define

η̃ = inf
τ∈T

inf
u∈Sd−1

{f̃∞(x̃∞(τ )+ δu, τ )− f̃∞(x̃∞(τ ), τ )}.

Since (x, τ ) 7→ f̃∞(x, τ ) is continuous, so is the map Rd × T 3 (u, τ ) 7→ f̃∞(x̃∞(τ )+ δu, τ )− f̃∞(x̃∞(τ ), τ ). Because of the
compactness of the set Sd−1 × T and (ii), η̃ is a positive random variable on (Ω̃, F̃ , P̃).
Since f̃n(x, τ ) is convex in x, for every u ∈ Sd−1 and every l > δ,(

1−
δ

l

)
f̃n(x̃∞(τ ), τ )+

δ

l
f̃n(x̃∞(τ )+ lu, τ ) ≥ f̃n(x̃∞(τ )+ δu, τ ).

Let ∆̃n(x, τ ) = f̃n(x, τ )− f̃∞(x, τ ). Then

δ

l

{
f̃n(x̃∞(τ )+ lu, τ )− f̃n(x̃∞(τ ), τ )

}
≥ f̃n(x̃∞(τ )+ δu, τ )− f̃n(x̃∞(τ ), τ )

=

{
f̃∞(x̃∞(τ )+ δu, τ )− f̃∞(x̃∞(τ ), τ )

}
+
{
∆̃n(x̃∞(τ )+ δu, τ )− ∆̃n(x̃∞(τ ), τ )

}
. (5)

Therefore, for every u ∈ Sd−1, l > δ and τ ∈ T ,

δ

l

{
f̃n(x̃∞(τ )+ lu, τ )− f̃n(x̃∞(τ ), τ )

}
≥ η̃ − 2∆̃n, (6)

where ∆̃n = supτ∈T supx:‖x−x̃∞(τ )‖≤δ |∆̃n(x, τ )|. If x̃n(τ ) lies outside the set {x : ‖x− x̃∞(τ )‖ ≤ δ} for some τ , the right-hand
side (henceforth, rhs) of (6) must be non-positive since x̃n(τ ) is a minimum point of f̃n(·, τ ). This implies

P̃∗
(
sup
τ∈T
‖x̃n(τ )− x̃∞(τ )‖ > δ

)
≤ P̃(∆̃n ≥ η̃/2).
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Since η̃ is a positive random variable, it suffices to show ∆̃n
p
→ 0.

For any ε > 0, takeM > 0 such that

P̃
(
sup
τ∈T
‖x̃∞(τ )‖ > M

)
≤ ε.

The existence of suchM is guaranteed since x̃∞(·) is a random element of (C(T ))d on (Ω̃, F̃ , P̃). Define K = {x : ‖x− y‖ ≤
δ, ‖y‖ ≤ M} = {x : ‖x‖ ≤ δ +M}. Clearly, K is a compact set in Rd. Then for any ξ > 0,

P̃(∆̃n > ξ) = P̃(∆̃n > ξ, sup
τ∈T
‖x̃∞(τ )‖ ≤ M)+ P̃(∆̃n > ξ, sup

τ∈T
‖x̃∞(τ )‖ > M)

≤ P̃
(
sup
τ∈T
sup
x∈K
|f̃n(x, τ )− f̃∞(x, τ )| > ξ

)
+ ε. (7)

Since the first term of the rhs of (7) converges to 0, we obtain

lim sup
n→∞

P̃(∆̃n > ξ) ≤ ε.

Because ε > 0 is arbitrary, the proof ends. �

The key probabilistic tool in the above proof is the representation theorem. Applications of the representation theorem to
the asymptotics ofM-estimators are found in Kim and Pollard [18], Davis et al. [19], Geyer [8]. For an exposition of Dudley’s
form of representation theorem, see also Pollard [20] or van der Vaart and Wellner [13].
It should be noted that there is a notable difference between Theorem 1 of the present paper and the argmax theorem in

[13]. Theorem 3.2.2 of van der Vaart and Wellner [13] allows the case that the estimator is a stochastic process; however,
this theorem states the weak convergence of the stochastic process that maximizes the objective function. Under our
formulation, xn(·)does notminimize any objective function as a stochastic process; xn(τ )doesminimize fn(x, τ )with respect
to x for each τ .
In Theorem 1, we assume the existence of a process xn(·) such that xn(τ ) is a minimum point of fn(·, τ ) for each τ and

τ 7→ xn(τ ) is bounded. In examples below (see Sections 3.1–3.3), it is possible to show explicitly the existence of such a
process. In general, this condition can be checked in the course of proving consistency: Assume f∞ is non-stochastic and the
conditions (i)–(iii) of Theorem 1 except for the condition on xn(·) are satisfied. If fn(x, ·)

p
→ f∞(x, ·) in C(T ) for each x, then

it can be shown that there exists a sequence of bounded stochastic processes xn(·) uniformly converging in probability to
x∞(·) such that with probability approaching one, xn(τ ) is a minimum point of fn(·, τ ) for each τ . This result can be deduced
from the proof of Theorem 1. Then, Theorem 1 is typically applied to the local objective function

gn(x, τ ) = rn{fn(x∞(τ )+ a−1n x, τ )− fn(x∞(τ ), τ )}

to obtain the asymptotic distribution of the normalized process an(xn(·) − x∞(·)), where an is the convergence rate of the
process and rn is determined according to an.
Finally, we remark that the conditions of Theorem 1 are high-level and more primitive conditions could be derived in

concrete examples.

2.2. Asymptotic representation of argmin processes

In many applications, fn(x, τ ) is asymptotically quadratic in x. In this situation, we can derive an asymptotic
representation of xn(·) under suitable regularity conditions. We follow the notations used in the previous section. The next
lemma is a slight generalization of the famous ‘‘CONVEXITY LEMMA’’ in Pollard [6].

Lemma 1. Suppose fn(x, τ ) and f∞(x, τ ) are convex in x for each τ and bounded in τ for each x. Furthermore, we assume that
f∞(x, τ ) is a non-stochastic function. If

sup
τ∈T
|fn(x, τ )− f∞(x, τ )|

p
→ 0 (8)

for each x, then

sup
τ∈T
sup
x∈K
|fn(x, τ )− f∞(x, τ )|

p
→ 0 (9)

for every compact set K in Rd.

Proof. From the proof of Lemma 3 in Appendix A.1, there exists a constant α > 0 such that

|f∞(y, τ )− f∞(x, τ )| ≤ α‖y− x‖, ∀x, y ∈ K ,∀τ ∈ T .

Using this property, a slight modification of the proof of CONVEXITY LEMMA in Pollard [6] yields the desired result. �
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Remark 4. Under a suitable measurability assumption, the assertion of Lemma 1 is true for a stochastic limit function. This
can be shown by combining the diagonal argument and Lemma 3 in Appendix A.1.

The second main theorem goes as follows.

Theorem 2. Suppose fn(x, τ ) (n ≥ 1) are convex in x for each τ and bounded in τ for each x. Let gn(x, τ ) = −x′Wn(τ ) +
1
2x
′Q (τ )x, where {Wn(·)} is a sequence of bounded stochastic processes and Q (τ ) is a d × d non-stochastic symmetric positive

definite matrix for each τ . Furthermore, we assume that the maximum eigenvalue of Q (τ ) is bounded from above and the
minimum eigenvalue of Q (τ ) is bounded away from 0 over τ ∈ T . If

sup
τ∈T
|fn(x, τ )− gn(x, τ )|

p
→ 0 (10)

for each x and if for every η > 0, there exists a constant M > 0 such that

lim sup
n→∞

P∗(sup
τ∈T
‖Wn(τ )‖ > M) ≤ η, (11)

then

xn(τ ) = {Q (τ )}−1Wn(τ )+ rn(τ ),

where supτ∈T ‖rn(τ )‖ = op(1).

Proof. Let yn(τ ) = {Q (τ )}−1Wn(τ ), which is the unique minimum point of gn(·, τ ) for each τ . Then a simple calculation
shows that

gn(x, τ )− gn(yn(τ ), τ ) =
1
2
(x− yn(τ ))′Q (τ )(x− yn(τ ))

≥ c‖x− yn(τ )‖2 (12)

for some constant c > 0.
Let δ > 0 be an arbitrary positive constant. Taking f̃n(x, τ ) = fn(x, τ ), f̃∞(x, τ ) = gn(x, τ ) and x̃∞(τ ) = yn(τ ) in (5) and

applying (12) to the first term of the rhs of (5), we have for every u ∈ Sd−1, l > δ and τ ∈ T ,

δ

l
{fn(yn(τ )+ lu, τ )− fn(yn(τ ), τ )} ≥ cδ2 − 2∆n,

where∆n = supτ∈T supx:‖x−yn(τ )‖≤δ |fn(x, τ )− gn(x, τ )|. Therefore letting rn(τ ) = xn(τ )− yn(τ ), we have

P∗(sup
τ∈T
‖rn(τ )‖ > δ) ≤ P∗(∆n ≥ (cδ2)/2).

So it suffices to show∆n
p
→ 0.

Let η > 0 be an arbitrary positive constant. TakeM > 0 such that

lim sup
n→∞

P∗(sup
τ∈T
‖yn(τ )‖ > M) ≤ η.

Define K = {x : ‖x− y‖ ≤ δ, ‖y‖ ≤ M} = {x : ‖x‖ ≤ δ +M}. Then for every ε > 0,

P∗(∆n > ε) ≤ P∗(sup
τ∈T
sup
x∈K
|fn(x, τ )− gn(x, τ )| > ε)+ P∗(sup

τ∈T
‖yn(τ )‖ > M).

Since, by Lemma 1,

sup
τ∈T
sup
x∈K
|fn(x, τ )− gn(x, τ )| = sup

τ∈T
sup
x∈K
|{fn(x, τ )+ x′Wn(τ )} −

1
2
x′Q (τ )x|

p
→ 0,

we conclude that

lim sup
n→∞

P∗(∆n > ε) ≤ η.

Since η > 0 is arbitrary, the proof ends. �

IfWn(·)  W (·) in (`∞(T ))d for some tight random elementW (·) of (`∞(T ))d, then (11) is satisfied by the continuous
mapping theorem. In this case, we have x̂n(·)  {Q (·)}−1W (·) in (`∞(T ))d, where x̂n(·, ω) = xn(·, ω) if xn(·, ω) ∈ (`∞(T ))d
and 0 otherwise.
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3. Examples

3.1. Quantile regression

We first consider the asymptotic distribution of regression quantile processes. Quantile regression was originally
proposed in Koenker and Bassett [1] and has been used inmany areas. For a comprehensive treatment of quantile regression,
see Koenker [21].
We here consider the following linear location-scale model as in Gutenbrunner and Jurec̆ková [22]:

yin = x′inβ + (x
′

inγ )εi, i = 1, 2, . . . , n,

where xin are non-stochastic covariates with xin1 = 1, β ∈ Rp and γ ∈ Rp are unknown coefficient vectors and εi are i.i.d.
random variables with a common distribution function F . Let Xn = [x1n · · · xnn]′ be the design matrix. The term x′inγ (> 0)
corresponds to the scale function of yin. A regression quantile process {β̂(τ ), τ ∈ (0, 1)} is defined by

β̂(τ ) ∈ argmin
b∈Rp

1
n

n∑
i=1

ρτ (yin − x′inb),

for each τ , where ρτ (r) = τ(r)+ + (1− τ)(−r)+ and (t)+ = max{0, t}. As indicated in Gutenbrunner and Jurec̆ková [22],
it is possible to select β̂(·) such that the path τ 7→ β̂(τ ) is càdlàg.
Letβ(τ) = β+F−1(τ )γ . Since P(yin ≤ x′inβ(τ)) = P(εi ≤ F

−1(τ )) = τ ,β(τ) is actually the ‘‘true’’ value of the regression
τ -quantile. Observe that

yin − x′inb = x
′

inβ + (x
′

inγ )εi − x
′

inb

= x′in(β(τ )− F
−1(τ )γ )+ (x′inγ )εi − x

′

inb

= x′in(β(τ )− b)+ (x
′

inγ )(εi − F
−1(τ )).

Then, the local objective function may be defined as

Zn(u, τ ) =
n∑
i=1

{
ρτ
(
(x′inγ )(εi − F

−1(τ ))− n−1/2x′inu
)
− ρτ

(
(x′inγ )(εi − F

−1(τ ))
)}
, (13)

for u ∈ Rp and τ ∈ (0, 1). The normalized estimator n1/2(β̂(τ )− β(τ)) satisfies

n1/2(β̂(τ )− β(τ)) ∈ argmin
u∈Rp

Zn(u, τ )

for each τ . It is not difficult to show that u 7→ Zn(u, τ ) is convex for each τ and τ 7→ Zn(u, τ ) is continuous for each u under
the condition (i) stated below. Hence, we can apply both Theorems 1 and 2 to this example.
We impose the following conditions, which seem to be standard in quantile regression. Put σin = x′inγ and Σn =

diag{σ1n, . . . , σnn}.

Assumption 1. (i) F has continuous Lebesgue density f , which is positive on {t : 0 < F(t) < 1}.
(ii) max1≤i≤n ‖xin‖ = o(n1/2).
(iii) There exists a symmetric positive definite matrix Q such that n−1X ′nXn → Q .
(iv) There exists a symmetric positive definite matrix D such that n−1X ′nΣ

−1
n Xn → D.

(v) There exist positive constants σL ≤ σU such that σL ≤ σin ≤ σU for all 1 ≤ i ≤ n and n ≥ 1.

The next theorem is concerned with the asymptotic behavior of Zn(u, τ ). As a corollary to the theorem, we obtain the
asymptotic distribution of the regression quantile process. Gutenbrunner and Jurec̆ková [22] originally established the
asymptotic distribution of the regression quantile process under the same setting. The proof below is actually another proof
of their result. They showed in advance that β̂(τ )−β(τ) = Op(n−1/2) uniformly in τ ∈ [α, 1−α] for anyα ∈ (0, 1/2). Then,
they used the computational property of regression quantile processes to derive the uniform asymptotic representation
of n1/2(β̂(·) − β(·)). The asymptotic theory of regression quantile processes has been an important subject and studied
by several authors including Koenker and Portnoy [23], Portnoy [24], Gutenbrunner et al. [25], Koul and Saleh [26] and
Koltchinskii [27]. More recently, based on the empirical process theory, Angrist et al. [28] developed a novel proof to this
subject for a quantile regression model with stochastic covariates. They first showed the uniform consistency of regression
quantile processes. Then, they used the computational property of regression quantile processes and the fact that the
functional class {g(y, x) = (τ − I(y ≤ x′β))xj, β ∈ B, τ ∈ [α, 1 − α], 1 ≤ j ≤ p} for any compact B ⊂ Rp is P-Donsker to
derive the asymptotic distribution of regression quantile processes.
The contribution of this paper is to bridge the gap between the proof for the vector case and the proof for the process

case. The proof below shows that the asymptotic distribution of the regression quantile process can be obtained by merely
showing the asymptotic tightness of the objective function as a stochastic process with index τ in addition to Knight’s [9]
proof for the vector case. This proof does not use, for example, the uniform consistency of β̂(τ ). For reference, we make the
proof as self-contained as possible.
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Theorem 3. Under Assumption 1, for any α ∈ (0, 1/2),

Zn(u, τ ) = −n−1/2
n∑
i=1

x′inu{τ − I(εi ≤ F
−1(τ ))} + f (F−1(τ ))

u′Du
2
+∆n(u, τ ),

where supτ∈[α,1−α] |∆n(u, τ )| = op(1) for each u and

n−1/2
n∑
i=1

xin{τ − I(εi ≤ F−1(·))}  Q 1/2W ∗(·) in (`∞[α, 1− α])p. (14)

Here W ∗ is a vector of p independent Brownian bridges in C[0, 1].

Proof. Using Knight’s [9] identity

ρτ (x− y)− ρτ (x) = −y{τ − I(x ≤ 0)} + y
∫ 1

0
{I(x ≤ ys)− I(x ≤ 0)}ds, (15)

we decompose Zn(u, τ ) as

Zn(u, τ ) = Z (1)n (u, τ )+ Z
(2)
n (u, τ ),

where

Z (1)n (u, τ ) = −n
−1/2

n∑
i=1

x′inu{τ − I(εi ≤ F
−1(τ ))},

Z (2)n (u, τ ) = n
−1

n∑
i=1

x′inu
∫ 1

0
n1/2{I(εi ≤ F−1(τ )+ n−1/2σ−1in x

′

inus)− I(εi ≤ F
−1(τ ))}ds.

We further decompose Z (2)n (u, τ ) as

Z (2)n (u, τ ) = E[Z (2)n (u, τ )] + {Z
(2)
n (u, τ )− E[Z

(2)
n (u, τ )]},

=: Z (21)n (u, τ )+ Z (22)n (u, τ ).

First, we show theweak convergence (14). Koul [29] establishes theweak convergence ofweighted empirical distribution
functions under more general conditions. In this case, (14) can be shown as follows: Use the Lindeberg–Feller central limit
theorem to show the finite dimensional convergence. Then, check the condition of Theorem 13.5 in Billingsley [14] to show
the asymptotic tightness in (D[α, 1− α])p. In fact, it can be shown that E[{Zn(u, τ )− Zn(u, τ1)}2{Zn(u, τ2)− Zn(u, τ )}2] ≤
3{n−1

∑n
i=1(x

′

inu)
2
}
2(τ2 − τ1)

2 for any τ1 ≤ τ ≤ τ2 and u ∈ Rp (see Billingsley [14], p. 150). This proves the asymptotic
tightness in (D[α, 1− α])p. Since the limit process is continuous, we obtain the weak convergence in (`∞[α, 1− α])p.
Next, consider the asymptotic behavior of Z (21)n (u, τ ). Let G(t, τ ) = n1/2{F(F−1(τ )+ n−1/2σ−1in x

′

int)− τ }. Since

d
ds
G(ts, τ ) = σ−1in x

′

intf (F
−1(τ )+ n−1/2σ−1in x

′

ints)

and G(0, τ ) = 0, we have

G(t, τ ) = σ−1in x
′

int
∫ 1

0
f (F−1(τ )+ n−1/2σ−1in x

′

ints)ds,

which implies

|G(t, τ )− σ−1in x
′

intf (F
−1(τ ))| ≤ |σ−1in x

′

int|
∫ 1

0
|f (F−1(τ )+ n−1/2σ−1in x

′

ints)− f (F
−1(τ ))|ds.

We note |n−1/2σ−1in x
′

int| ≤ n
−1/2σ−1L ‖t‖max1≤i≤n ‖xin‖ and n

−1/2max1≤i≤n ‖xin‖ = o(1). Since f is uniformly continuous on
each bounded interval,

max
1≤i≤n

sup
τ∈[α,1−α]

sup
t:‖t‖≤M

∫ 1

0
|f (F−1(τ )+ n−1/2σ−1in x

′

ints)− f (F
−1(τ ))|ds→ 0,

for eachM > 0. Therefore we have

sup
τ∈[α,1−α]

∣∣∣∣Z (21)n (u, τ )− f (F−1(τ ))
u′Du
2

∣∣∣∣→ 0,

for each u.
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Finally, we show supτ∈[α,1−α] |Z
(22)
n (u, τ )| = op(1) for each u. Suppose for a moment that u is arbitrarily fixed. Define

Wn(t, τ ) = n−1/2
n∑
i=1

x′inu{I(εi ≤ F
−1(τ )+ n−1/2σ−1in x

′

int)− F(F
−1(τ )+ n−1/2σ−1in x

′

int)}

for t ∈ Rp and τ ∈ (0, 1). Then,

Z (22)n (u, τ ) =
∫ 1

0
{Wn(us, τ )−Wn(0, τ )}ds.

Therefore it is enough to show that

sup
τ∈[α,1−α]

sup
t:‖t‖≤M

|Wn(t, τ )−Wn(0, τ )|
p
→ 0, (16)

for each M > 0. A proof of (16) is found in Appendix of Koul [30] (see also [31], Theorem 1.2). For reference, we derive its
direct proof in Appendix A.2. �

Combining Theorems 2 and 3, we obtain the next corollary.

Corollary 1. Under Assumption 1, for any α ∈ (0, 1/2),

n1/2(β̂(τ )− β(τ)) = {f (F−1(τ ))}−1D−1n−1/2
n∑
i=1

xin{τ − I(εi ≤ F−1(τ ))} + rn(τ ),

where supτ∈[α,1−α] ‖rn(τ )‖ = op(1). Especially,

n1/2(β̂(·)− β(·))  {f (F−1(·))}−1D−1Q 1/2W ∗(·) in (`∞[α, 1− α])p,

where W ∗ is a vector of p independent Brownian bridges in C[0, 1].

It is worthwhile to see how the conditions of this example relate to the conditions of Theorem 2. The conditions (i)–(iii)
of Assumption 1 guarantee the weak convergence (14), which satisfies the condition (11). The condition (i) and the positive
definiteness ofD are used to satisfy the condition on Q (τ ) in Theorem 2, where in this case Q (τ ) corresponds to f (F−1(τ ))D.
To guarantee the condition (10), all the conditions of Assumption 1 are used.

3.2. Quantile regression with `1 penalization

Since the Lasso was proposed by Tibshirani [11], the `1 penalization has attracted much attention as it enables us to
implement simultaneous estimation and variable selection. Asymptotic properties of the Lasso are studied in Knight and
Fu [10] based on Geyer’s [8] convexity argument. In this subsection we investigate asymptotic properties of `1 penalized
regression quantile processes.
For simplicity, consider the following linear model:

yi = x′iβ + εi, i = 1, 2, . . . , n,

where xi are non-stochastic covariates, β ∈ Rp is an unknown coefficient vector and εi are i.i.d. random variables with a
common distribution function F . Without loss of generality, we assume that the covariates are centered and the intercept
term is not included in the above linear model. For each τ ∈ (0, 1), we consider the estimator (â(τ ), β̂(τ )) that minimizes
the `1 penalized objective function:

(â(τ ), β̂(τ )) ∈ argmin
a∈R,b∈Rp

1
n

n∑
i=1

ρτ (yi − a− x′ib)+
λn

n

p∑
j=1

|bj|.

Aswell as regression quantile processes, it is possible to select (â(τ ), β̂(τ )) such that it has càdlàg paths. Supposeλn/n1/2 →
λ0 ∈ [0,∞). Under the conditions (i) and (iii) of Assumption 1 with xin = xi, combining Theorems 1 and 3 of the present
paper and Theorem 2 of Knight and Fu [10], it can be shown that n1/2(a(·) − F−1(·)) converges weakly in `∞[α, 1 − α] to
a {f (F−1(·))}−1 multiple of a Brownian bridge on [0, 1] and n1/2(β̂(·) − β) converges weakly in (`∞[α, 1 − α])p to U(·),
where U(τ ) uniquely minimizes

Z∞(u, τ ) = −u′Q 1/2W ∗(τ )+ f (F−1(τ ))
u′Qu
2
+ λ0

p∑
j=1

{uj sgn(βj)I(βj 6= 0)+ |uj|I(βj = 0)},

with respect to u ∈ Rp for each τ ∈ [α, 1−α] [note: n1/2(a(·)−F−1(·)) and n1/2(β̂(·)−β) are asymptotically independent].
Here α ∈ (0, 1/2) is arbitrary, sgn(·) is the sign function andW ∗ is a vector of p independent Brownian bridges on [0, 1].
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The continuity of the map τ 7→ U(τ ) can be shown by combining the fact that infτ∈[α,1−α] Z∞(u, τ ) → ∞ as ‖u‖ → ∞
and Berge’s [32] maximum theorem. In the simplest case where Q = Ip,

Uj(τ ) =
{
{f (F−1(τ ))}−1(W ∗j (τ )− λ0 sgn(βj)), if βj 6= 0,
{f (F−1(τ ))}−1 sgn(W ∗j (τ ))(|W

∗

j (τ )| − λ0)+, if βj = 0.

It is seen that when βj = 0, the sample path of Uj tends to be degenerate at 0.

3.3. LAD inference for threshold regression

In this subsection, we consider the following threshold regression model as in Hansen [2,3]:

yi = x′iθ
(1)
+ εi, if qi ≤ γ0,

= x′iθ
(2)
+ εi, if qi > γ0, (17)

for i = 1, 2, . . . , n, where xi are stochastic covariates, θ (1), θ (2) ∈ Rp are unknown coefficient vectors and γ0 is an unknown
threshold parameter. We assume the parameter space of γ0 is a bounded closed interval [γL, γU ]. If we put β(1) = θ (2) and
β(2) = θ (1) − θ (2), the above threshold regression model (17) can be rewritten as

yi = x′iβ
(1)
+ I(qi ≤ γ0)x′iβ

(2)
+ εi,

= zi(γ0)′β + εi,

where zi(γ0) = (x′i, I(qi ≤ γ0)x
′

i)
′ and β = (β(1)

′

, β(2)
′

)′.
We consider the statistical inference based on quantile regression, which is natural when themain purpose is to estimate

the conditional quantile instead of the conditional mean. For simplicity, we deal here with LAD estimation. Specifically, we
consider testing the null hypothesis β(2) = 0 (no threshold) and derive the asymptotic null distribution of the sup-Wald
test statistic specified below. To do this, we derive the asymptotic null distribution of the process β̂(·) defined by (18). Chan
[33] and Hansen [2] considered testing the null of no-threshold but they used the least square estimation. We remark that
Caner [34] considered LAD estimation of the threshold parameter but did not study the testing problem considered in this
subsection.
Let β̂(γ ) be the LAD estimator of β for each given γ ∈ [γL, γU ]:

β̂(γ ) ∈ argmin
b∈R2p

n∑
i=1

|yi − zi(γ )′b|. (18)

First, we verify that β̂(·) can be chosen such that it has bounded sample paths, i.e., β̂(·) ∈ (`∞[γL, γU ])2p. Actually, β̂(·) can
be chosen such that it has càdlàg sample paths.

Lemma 2. There exists an optimal solution β̂(γ ) of (18) for each γ ∈ [γL, γU ] such that β̂(·) ∈ (D[γL, γU ])2p.

Proof. It suffices to show the lemma when qi (1 ≤ i ≤ n) have no tie. Let q(1) < q(2) < · · · < q(n) be order statistics of
qi (1 ≤ i ≤ n) and ij (1 ≤ j ≤ n) be indices such that qij = q(j) for 1 ≤ j ≤ n. Define b̂(r) (0 ≤ r ≤ n) by

b̂(r) ∈ argmin
b∈R2p

{
r∑
j=1

|yij − x
′

ij(b
(1)
+ b(2))| +

n∑
j=r+1

|yij − x
′

ijb
(1)
|

}
.

Then,

β̂(γ ) =


b̂(0), if γ < q(1),
b̂(r), if q(r) ≤ γ < q(r+1) (1 ≤ r ≤ n− 1),
b̂(n), if γ ≥ q(n)

is an optimal solution of (18) for each γ and γ 7→ β̂(γ ) is càdlàg. �

Consider testing the null hypothesis H0 : β(2) = 0 against the alternative H1 : β(2) 6= 0. We consider the Wald-type test
statistic

Tn(γ ) = nβ̂(2)(γ )′[Avar{β̂(2)(γ )}]−1β̂(2)(γ )

for each γ where Avar{β̂(2)(γ )} is the asymptotic covariance matrix of n1/2β̂(2)(γ ) under H0. Then we reject the null
hypothesis if supγ∈[γL,γU ] Tn(γ ) > c0 for some constant c0 > 0, as suggested by Davies [4,5].
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In order to derive the asymptotic null distribution of the test statistic supγ∈[γL,γU ] Tn(γ ), we derive the asymptotic
distribution of n1/2(β̂(·)−β) underH0. As in Section 3.1, we consider the asymptotic behavior of the local objective function

Zn(u, γ ) =
1
2

n∑
i=1

{|εi − n−1/2zi(γ )′u| − |εi|}, u ∈ R2p, γ ∈ [γL, γU ].

UnderH0, the normalized estimator n1/2(β̂(γ )−β)minimizes Zn(u, γ )with respect to u for each γ . Moreover, u 7→ Zn(u, τ )
is convex for each τ . Since Zn(u, γ ) is not continuous in γ , Theorem 1 does not apply to this case. However, we can use
Theorem 2.
We state some regularity conditions. LetM(γ ) = E[I(qi ≤ γ )xix′i] and

K(γ1, γ2) = E[zi(γ1)zi(γ2)′] =
(
E[xix′i] M(γ2)
M(γ1) M(γ1 ∧ γ2)

)
.

Assumption 2. (i) (xi, qi, εi) are independent and identically distributed. Furthermore, (xi, qi) and εi are independent for
each i.

(ii) The common distribution function F of εi satisfies F(0) = 1/2. Furthermore, F has positive and continuous Lebesgue
density f in a neighborhood of 0.

(iii) E[‖xi‖4] <∞.
(iv) qi has continuous distribution.
(v) K(γ , γ ) is positive definite for each γ ∈ [γL, γU ].

One could weaken the condition (i), for instance, allow time series data or allow that (xi, qi) and εi are dependent.
However, we do not pursue this since the primal object of this section is the application of the convexity arguments. The
condition (ii) is standard in LAD estimation. Note that we do not assume εi has anymoment. The conditions (i) and (iii) imply
max1≤i≤n ‖xi‖ = op(n1/2) and hence max1≤i≤n supγ∈[γL,γU ] ‖zi(γ )‖ = op(n

1/2). We note that under the conditions (iii) and
(iv), the map γ 7→ M(γ ) is continuous.

Theorem 4. Under the condition (i)–(iv) of Assumption 2,

Zn(u, γ ) = −n−1/2
n∑
i=1

zi(γ )′u
{
1
2
− I(εi ≤ 0)

}
+ f (0)

u′K(γ , γ )u
2

+∆n(u, γ ),

where supγ∈[γL,γU ] |∆n(u, γ )| = op(1) for each u and

n−1/2
n∑
i=1

zi(·)
{
1
2
− I(εi ≤ 0)

}
 G(·) in (`∞[γL, γU ])2p. (19)

Here G(·) is a zero-mean, continuous Gaussian process with covariance kernel E[G(γ1)G(γ2)′] = K(γ1, γ2)/4.

Proof. Most of the argument will follow the lines in the proof of Theorem 3. Using Knight’s [9] identity (15) again, we obtain

Zn(u, γ ) = −n−1/2
n∑
i=1

zi(γ )′u
{
1
2
− I(εi ≤ 0)

}
+ n−1

n∑
i=1

zi(γ )′u
∫ 1

0
n1/2{I(εi ≤ n−1/2zi(γ )′us)− I(εi ≤ 0)}ds

=: Z (1)n (u, γ )+ Z
(2)
n (u, γ )

= Z (1)n (u, γ )+ E[Z
(2)
n (u, γ )|xi, qi, 1 ≤ i ≤ n] + {Z

(2)
n (u, γ )− E[Z

(2)
n (u, γ )|xi, qi, 1 ≤ i ≤ n]}

=: Z (1)n (u, γ )+ Z
(21)
n (u, γ )+ Z (22)n (u, γ ).

First, the weak convergence (19) is proved in Appendix of Hansen [2] under the additional condition that qi has bounded
density function (see also Hansen [3], Lemma A4). Under the conditions (i)–(iv) of Assumption 2, it is possible to show (19)
without the density of qi. Since the proof is a simple modification of the proof of Theorem 2 in Koul [29], we omit it.
Next, consider the asymptotic behavior of Z (21)n (u, γ ). Since max1≤i≤n supγ∈[γL,γU ] ‖zi(γ )‖ = op(n

1/2),

sup
γ∈[γL,γU ]

∣∣∣∣∣Z (21)n (u, γ )−
f (0)
2
u′
{
n−1

n∑
i=1

zi(γ )zi(γ )′
}
u

∣∣∣∣∣ p
→ 0.

Then, Lemma 1 of Hansen [2] implies that Z (21)n (u, γ ) converges in probability to {f (0)u′K(γ , γ )u}/2 uniformly in γ ∈
[γL, γU ] for each u.
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The remaining task is to show supγ∈[γL,γU ] |Z
(22)
n (u, γ )| = op(1) for each u ∈ R2p. To show this, it suffices to show that

sup
γ∈[γL,γU ]

∣∣∣∣∣n−1/2 n∑
i=1

x′ivI(qi ≤ γ )
∫ 1

0
[{I(εi ≤ n−1/2x′ivs)− I(εi ≤ 0)} − {F(n

−1/2x′ivs)− F(0)}]ds

∣∣∣∣∣ p
→ 0

and

n−1/2
n∑
i=1

x′iv
∫ 1

0
[{I(εi ≤ n−1/2x′ivs)− I(εi ≤ 0)} − {F(n

−1/2x′ivs)− F(0)}]ds
p
→ 0

for each v ∈ Rp. Suppose for a moment that v is fixed. Define

ein =
∫ 1

0
[{I(εi ≤ n−1/2x′ivs)− I(εi ≤ 0)} − {F(n

−1/2x′ivs)− F(0)}]ds.

We have to showWn(γ ) = n−1/2
∑n
i=1 x

′

iveinI(qi ≤ γ )
p
→ 0 uniformly in γ ∈ [γL, γU ]. Since

E[e2in|xi, qi] ≤
∫ 1

0
|F(n−1/2x′ivs)− F(0)|ds,

we have

E[Wn(γ )2] ≤ E
[
(x′iv)

2
∫ 1

0
|F(n−1/2x′ivs)− F(0)|ds

]
.

Then, the continuity of F at 0 and the dominated convergence theorem implies thatWn(γ ) converges in probability to 0 for
each γ . Furthermore, a simple calculation shows that for any γ1 ≤ γ ≤ γ2,

E[{Wn(γ )−Wn(γ1)}2{Wn(γ2)−Wn(γ )}2] ≤ 4[v′{M(γ2)−M(γ1)}v]2,

where we have used E[e2in|xi, qi] ≤ 2. Therefore, by Theorem 13.5 of Billingsley [14], we conclude thatWn(γ ) converges in
probability to 0 uniformly in γ ∈ [γL, γL]. It is also seen that n−1/2

∑n
i=1 x

′

ivein
p
→ 0. Therefore we complete the proof. �

Combining Theorems 2 and 4, we obtain the next corollary.

Corollary 2. Suppose Assumption 2 is satisfied. Then under H0,

n1/2(β̂(·)− β)  {f (0)}−1{K(·, ·)}−1G(·) in (`∞[γL, γU ])2p,

where G(·) is a zero-mean, continuous Gaussian process with covariance kernel K(γ1, γ2)/4.

Again, let us see the relationship between the conditions of this example and Theorem 2. The conditions (i)–(iv) of
Assumption 2 guarantee the weak convergence (19), which satisfies the condition (11) of Theorem 2. The condition (ii)
and (v) are used to satisfy the condition on Q (τ ) in Theorem 2, where in this case Q (τ ) corresponds to f (0)K(γ , γ ). To
guarantee the condition (10), the conditions (i)–(iv) of Assumption 2 are used.
By Corollary 2, Avar{β̂(2)(γ )} is 1

4{f (0)}2
R{K(γ , γ )}−1R′ where R = [0 Ip]. The asymptotic null distribution of the test

statistic supγ∈[γL,γU ] Tn(γ ) is

sup
γ∈[γL,γU ]

S(γ )′[R{K(γ , γ )}−1R′]−1S(γ ),

where S(·) is a zero-mean, continuous Gaussian process with covariance kernel E[S(γ1)S(γ2)′] = R{K(γ1, γ1)}−1K(γ1, γ2)
{K(γ2, γ2)}−1R′.
In usual, f (0) and K(γ1, γ2) are unknown and so they are replaced by their consistent estimators. It is natural to adopt

K̂(γ1, γ2) = n−1
∑n
i=1 zi(γ1)zi(γ2)

′ as an estimator of K(γ1, γ2). For estimation of f (0), consult Section 3.4 of Koenker [21].
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Appendix

A.1. Technical appendix for Section 2

In this subsection, we derive a technical lemmawhich is used in the proof of Theorem 1. In Lemma 3 below, all functions
are assumed to be non-stochastic. Lemma 3 is a slight generalization of Theorem 10.8 in Rockafellar [15], which is roughly
stated as follows: If a sequence of convex functions {gn(x)} converges to some function g∞(x) for each x in a dense subset of
Rd, then gn converges to g∞ uniformly on each compact set in Rd.

Lemma 3. Suppose fn(x, τ ) (n ≥ 1) and f∞(x, τ ) are convex in x for each τ and bounded in τ for each x. If

sup
τ∈T
|fn(x, τ )− f∞(x, τ )| → 0

as n→∞ for each x ∈ D where D is a dense subset of Rd, then,

sup
τ∈T
sup
x∈K
|fn(x, τ )− f (x, τ )| → 0,

as n→∞ for every compact set K ⊂ Rd.

Proof. Take an arbitrary compact set K in Rd. Since {fn(x, τ ) : τ ∈ T , n ≥ 1} is bounded for each fixed x ∈ D, applying
Theorem 10.6 of Rockafellar [15] to the collection of convex functions {fn(·, τ ) : τ ∈ T , n ≥ 1} implies that there exists a
constant α1 > 0 such that

|fn(y, τ )− fn(x, τ )| ≤ α1‖y− x‖, ∀x, y ∈ K ,∀τ ∈ T ,∀n ≥ 1.

Similarly, there exists a constant α2 > 0 such that

|f∞(y, τ )− f∞(x, τ )| ≤ α2‖y− x‖, ∀x, y ∈ K ,∀τ ∈ T .

The rest of the proof is a simple modification of the proof of Theorem 10.8 of Rockafellar [15]. However, since this lemma
is a key result for the proof of Theorem 1, we provide the whole proof. Define α0 = max{α1, α2}. Fix any ε > 0. Since D is
dense in Rd, there exists a finite set D0 ⊂ D ∩ K such that each point of K lies within the distance ε/(3α0) of at least one
point of D0. Since D0 is finite and fn(x, τ ) converge to f∞(x, τ ) uniformly in τ for each x ∈ D0, there exists a positive integer
n0 such that

|fn(y, τ )− f∞(y, τ )| ≤ ε/3, ∀τ ∈ T ,∀n ≥ n0,∀y ∈ D0.

Given any x ∈ K , let y be a point of D0 such that ‖x− y‖ ≤ ε/(3α0). Then, for every n ≥ n0 and every τ ∈ T ,

|fn(x, τ )− f∞(x, τ )| ≤ |fn(x, τ )− fn(y, τ )| + |fn(y, τ )− f∞(y, τ )| + |f∞(y, τ )− f∞(x, τ )|
≤ α1‖x− y‖ + (ε/3)+ α2‖y− x‖ ≤ ε.

This proves that for every n ≥ n0,

sup
τ∈T
sup
x∈K
|fn(x, τ )− f∞(x, τ )| ≤ ε.

Therefore we complete the proof. �

A.2. Proof of (16)

Because of the compactness of the set {t : ‖t‖ ≤ M}, it suffices to show (a) for every ε > 0, there exists a constant δ > 0
such that for each fixed t0 ∈ {t : ‖t‖ ≤ M},

lim
n→∞

P

(
sup

τ∈[α,1−α]
sup

t:‖t−t0‖≤δ
|Wn(t, τ )−Wn(t0, τ )| > ε

)
= 0;

(b) for every ε > 0 and each fixed t0 ∈ {t : ‖t‖ ≤ M},

lim
n→∞

P
(
sup

τ∈[α,1−α]
|Wn(t0, τ )−Wn(0, τ )| > ε

)
= 0.

We first show (a). Let

Jn(t, τ ) = n−1/2
n∑
i=1

x′inuI(εi ≤ F
−1(τ )+ n−1/2σ−1in x

′

int).
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Then, observe that

Wn(t, τ )−Wn(t0, τ ) = {Jn(t, τ )− Jn(t0, τ )} − {E[Jn(t, τ )] − E[Jn(t0, τ )]}. (20)

The absolute value of the second termof rhs of (20) is boundedby a constantmultiple of δ uniformly in t such that‖t−t0‖ ≤ δ
and in τ ∈ [α, 1−α] for large n, wherewehave usedmax1≤i≤n ‖xin‖ = o(n1/2), the Lipschitz continuity of F on each bounded
interval and n−1

∑n
i=1 ‖xin‖

2
= O(1).

It remains to bound the first term of the rhs of (20). Assume first x′inu ≥ 0 for 1 ≤ i ≤ n. Then,

Jn(t, τ )− Jn(t0, τ ) ≤ n−1/2
n∑
i=1

x′inuI(n
−1/2σ−1in x

′

int0 < εi − F−1(τ ) ≤ n−1/2σ−1in (x
′

int0 + ‖xin‖δ))

=: J̄n(τ , δ)

for any t such that ‖t − t0‖ ≤ δ. Decompose J̄n(τ , δ) as

J̄n(τ , δ) = E[J̄n(τ , δ)] + {J̄n(τ , δ)− E[J̄n(τ , δ)]}. (21)

The first term of the rhs of (21) is bounded from above by a constant multiple of δ uniformly in τ ∈ [α, 1 − α] for large n.
Moreover, we show that supτ∈[α,1−α] |J̄n(τ , δ) − E[J̄n(τ , δ)]|

p
→ 0 for any δ > 0. First, the pointwise convergence follows

from the fact that the variance of J̄(τ , δ) converges to zero for each fixed τ . To show the uniform convergence, it suffices to
show the asymptotic equicontinuity of {J̃n(τ ), τ ∈ [α, 1− α]}where J̃n(τ ) is given by

J̃n(τ ) = n−1/2
n∑
i=1

x′inu{I(εi ≤ F
−1(τ )+ n−1/2‖xin‖hin)− F(F−1(τ )+ n−1/2‖xin‖hin)} (22)

and {hin} is any bounded triangular sequence of constants. We establish this fact in Lemma 4 below. Hence, Jn(t, τ ) −
Jn(t0, τ ) ≤ Cδ + op(1) for some constant C > 0 uniformly in t such that ‖t − t0‖ ≤ δ and in τ ∈ [α, 1 − α]. The
lower bound can be handled similarly. Therefore, we have proved (a) when x′inu ≥ 0, 1 ≤ i ≤ n. For {x

′

inu} with variable
sign, use the decomposition into positive and negative parts. Then, (a) follows because of linearity of Jn(t, τ ) in {x′inu}.
Next, we show (b). The variance ofWn(t0, τ )−Wn(0, τ ) converges to 0. Furthermore, observe that

Wn(t0, τ )−Wn(0, τ ) = {Jn(t0, τ )− E[Jn(t0, τ )]} + {Jn(0, τ )− E[Jn(0, τ )]}. (23)

Because of Lemma 4 below, each term of the rhs of (23) is asymptotically equicontinuous in probability as a stochastic
process with index τ ∈ [α, 1− α]. Therefore, (b) is established. �

Lemma 4. A sequence of stochastic processes {J̃n(τ ), τ ∈ [α, 1 − α]} is asymptotically equicontinuous in probability, where
J̃n(τ ) is given by (22) and {hin} is any bounded triangular sequence of constants.

Remark 5. We do not assume x′inu ≥ 0, 1 ≤ i ≤ n in this lemma.

Proof of Lemma 4. Weshow that J̃n(·) convergesweakly to a (u′Qu)1/2multiple of a Brownian bridge on [0, 1] inD[α, 1−α].
Since the limit process is continuous, the assertion of the lemma will follow from this result.
The finite dimensional convergence is verified by the Lindeberg–Feller central limit theorem. Furthermore, a direct

calculation (see Billingsley [14], p. 150) shows that for any τ1 ≤ τ ≤ τ2,

E[{J̃n(τ )− J̃n(τ1)}2{J̃n(τ2)− J̃n(τ )}2]

≤ 3

[
n−1

n∑
i=1

(x′inu)
2
{F(F−1(τ2)+ n−1/2‖xin‖hin)− F(F−1(τ1)+ n−1/2‖xin‖hin)}

]2
.

Using max1≤i≤n ‖xin‖ = o(n1/2), the Lipschitz continuity of F on each bounded interval and n−1
∑n
i=1 ‖xin‖

2
= O(1), we

obtain the desired result by Theorem 13.5 of Billingsley [14]. �
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