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Motivating examplel

* |Interested in factors related to the life
expectancy (50 US states,1969-71 )

— Per capita income (1974)

— llliteracy (1970,percent of population)
— Murder rate per 100,000 population
— Percent high-school graduates

— Mean number of days with min temperature < 30
degree

— Land area in square mile



Motivating Example2

* The role of microRNA on regulating gene
expression

— Response: standard deviation of a gene expression
— Covariates:

2014-12-29

mean gene expression

length of the 3’-UTRs

number of microRNA targets in the 3’-UTRs
mean target score of the microRNA targets
number of common SNPs in the 3’-UTR

mean of minor allele frequencies of common SNPs in 3’-
UTRs
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Motivating Example2

Expression

SD

Expression

Mean

Gene

Length

Length of 3’

UTR

Number of
miRNA
targets
Mean target

score

Number of

SNPs

Mean MAF

2014-12-29

0.952031

0.084030

0.068084

0.146080

0.135781

0.035820

0.033893

0.952031

1

0.157620

0.120004

0.165147

0.156963

0.055338

0.051066

0.084030

0.157620

1

0.471435

0.406605

0.311641

0.216913

0.173899
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0.068084

0.120004

0.471435

0.246593

0.206723

0.227899

0.197424

0.146080

0.165147

0.406605

0.246593

0.849602

0.185446

0.142214

0.135781

0.156963

0.311641

0.206723

0.849602

0.151916

0.128167

0.035820

0.055338

0.216913

0.227899

0.185446

0.151916

1

0.947236

0.033893

0.051066

0.173899

0.197424

0.142214

0.128167

0.947236

1



Motivating Example3

* Communities and Crime
— Response: total number of violent crimes per 100K population

— Covariates (128):
* population for community
* percentage of population that is caucasian
* percentage of population that is african american
* median household income
* per capita income for african americans
* percentage of kids born to never married
* number of vacant households
* number of sworn full time police officers

— http://archive.ics.uci.edu/ml/datasets/Communities+and+Crime
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Motivating Exampled

* Motif finding

‘é*occAC?AAAT_AQA?Jﬁ

wAn »
T 7,760,000 iz

'MtOI' TR R
CG13185

* Response : univariate response measuring
binding intensity (ChlP-seq or ChlP-chip data)

* Covariates (~200): abundant score of
candidate motifs
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otivating example 5

e Genome-wide association studies

* Response: disease or not

* Covariates (~10°): single nucleotide
polymorphisms (SNPs)

2014-:
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Motivating example 6

* Expression quantitative trait loci (eQTL)
studies

— Response (~ 20,000): gene expression
— Covariates(~10°): SNPs
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Motivating example 6
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Figure 17: Figure adopted from Cheung et al. Figure 1
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General framework

general framework:

for example:
Zi= (X, Yi), Xie X CRP,Y; € Y Ce R: regression with p > n
Zi = (X, Yi), Xie X Ce RP,Y; € {0,1}: classification for p > n

2014-12-29 Haizim Sl 10



General framework

p
Y, = Z.,;B’J,QXIU] +eii=1,..., n
i—1
p>n

in short: Y = X3 + ¢

goals:
» prediction, e.g. w.r.t. squared prediction error

» estimation of 3%, e.g. w.r.t. |3 — 3°||q (g = 1.2)

» variable selection
l.e. estimating the active set with the effective variables

(having corresponding coefficient # 0)

2014-12-29 Haizim Sl 11



Stepwise selection

e Backward Elimination

1. Start with all the predictors in the model
2. Remove the predictor with highest p-value greater than o
3. Refit the model and goto 2

4. Stop when all p-values are less than ¢ _,;.



Stepwise selection

* Forward Selection

1. Start with no variables 1n the model.

2. For all predictors not in the model. check their p-value if they are added to the model. Choose the one
with lowest p-value less than 0.

3. Continue until no new predictors can be added.



Drawbacks of stepwise selection

* One-at-a-time: may miss optimal

* P-values of the remaining predictors tends to
be overstated
— Multiple testing

* Model tends to be smaller than desirable for
prediction purpose

* Variable not in the model may still be
correlated with the response



Stepwise selection—An example

* |Interested in factors related to the life
expectancy (50 US states,1969-71 )

— Per capita income (1974)

— llliteracy (1970,percent of population)
— Murder rate per 100,000 population
— Percent high-school graduates

— Mean number of days with min temperature < 30
degree

— Land area in square mile



Bias, Variance, and Model Complexity

eBias-Variance trade-off
again

§ High ];%izllf _ L*.J‘f-" B__i“'“l‘,_ _ o .
= | s R eGeneralization: test
g . sample vs. training sample
~ performance
'l"rn{lin.u; Sarnple o »
— Training data usually
Low High . . .
Model Complexity monotonical |y increasing

Figure 7.1: Behavior of test sample and training sam- pe rforma nce Wlth mOdel
ple error as the model complexity is varied. com pIeXIty



Measuring Performance

e target variable Y
* Vector of inputs X

o

* Prediction model f(X)

* Typical Choices of Loss function




Generalization Error

e Test error. Generalization error

* Note: This expectation averages anything that is random, including the
randomness in the training sample that it produced

* Training error

— average loss over training sample
— not a good estimate of test error (next slide)



Training Error

*Training error - Overfitting

. § High Bias Low Bias
— not a good estimate of test | Lo Mowianee i
error %
. . ?g Test Samp
— consistently decreases with &
mOdeI CompIeXity 'l"rn{l'ing Sarnple
_ drOpS to zero Wlth hlgh b Model Complexity e

enough complexity

Figure 7.1: Behavior of test sample and training sam-

ple error as the model complexity is varied.



Two separate goals

e Model selection:

— Estimating the performance of different models in order to choose the
(approximate) best one

* Model assessment:

— Having chosen a final model, estimating its prediction error (generalization
error) on new data

* |deal situation: split data into the 3 parts for training, validation (est.
prediction error+select model), and testing (assess model)

e Typical split: 50% /25% / 25%



Bias-Variance Decomposition

Y=f(X)+e E(e)=0, Var(e)=o;

* Then for an input point X = X, using unit-square loss
and regression fit:

Err(zg) = E[(Y - f(l‘-ﬂ)ﬂX = 2]
= 02+ [Ef(zo) - f(x0)]? + E[f(z0) - Ef (xo)]*

= 0’4+ Bi&ag(f{f[;)} + Var(f(zo))

= Irreducible Error + Bias® 4+ Variance.

Irreducible Bias”2 Variance
Error
variance of the Amount by which average Expected deviation of
target around estimate differs from the true fA around its mean
the true mean mean




Bias-Variance Decomposition

Linear Model Fit: (X) =" X

Err(x) =f +[ 1 (%) -Ef, (%) +[h(x)[ o7
h(;{f{]) — X(XTX)_I;L'D

average over sample values X. :

N

LS Err(x) =0+ 23T (x)=Ef (x) [ +Po? .| |
W-le rr(xi)_gg+NZ[ (%) - (xi)] +WJ€ ... in-sample error

=1

Model complexity is directly related to the number of
parameters p



Bias-Variance Decomposition

Closest fit in population

Realization
b
AN Closest fit
F LY /
! Y
F \‘
4
Truth / S MODEL
SPACE
Model bias —" \
Estimation Bias _____ » Shrunken fit
Estimation .~
Variance

RESTRICTED
MODEL SPACE



Bias-Variance Decomposition -

Example

20
* 50 observations. 20 predictors. Uniform in [0,1]

k-MM - Regression Linear Madel - Regression

Left panels:

:ﬁ f\\: Y isOilegé and 1 ile>%, and we apply KNN

T T T T
2] 40 0 20 10 o 3 10 15 @

Hurmber af Neghtars k Sibsal Sk p

k-MM - Classification Linear Model - Classification

\’J 1N Right panels
5 10
| j ’,\_\\r_‘ Yislif ZXJ. > 5 and 0 otherwise, and we use the

=1

i i R best subset linear regression of size p



Example, continued

k-MM - Reqgression Linear Model - Regression Prediction error
s ch Squared bias
Regression with | - = .
Variance
squared error . .
= e

oz
0z

T

o1
K|
1
s

\ g _: T | T 1 L] g L | T T L]
i & [1] a0 20 10 [} E 10 15 o
Mumber af Melghbars k Subsal Sie p
/ k-MM - Classification Linear Model - Classification
= = Bias-Variance
S 3 z different for
Classification
. < . . 0-1 loss
with 0-1 loss = =
N y than for
Estimation errors | = = \\g ‘| squared error
on the right side 5 S A | loss
of the boundary = | e
\ d L] T n T 1 L] d L] T T T
don’t hurt! B0 w3 20 10 (] E 10 15 m

Mumber af Melghtars K Subsal Sia p



Optimism of the Training Error Rate

e Typically: training error rate < true error

* (same data is being used to fit the method
and assess its error)

13 =% :1 L(yi’ fA(Xi)) < Bmr= E[L(Y’ f(X))J

~— e
=S

overly optimistic



Optimism of the Training Error Rate

Err ... kind of extra-sample error: test features don’t need to coincide with
training feature vectors

Focus on in-sample error:

new .
Y . observe N new response values at each of training points X, =1, 2, ....N

for squared error 0-1 and other loss functions: 2 & A
op == > Cov(3,,¥,)
i=1



Optimism of the Training Error Rate

The harder we fit the data, the greater
Cov(¥;,y;) will be, thereby increasing the
optimism.

* For linear fit with d indep covariates:
2

Err, =E, (&7T)+—do’
N
— optimism 4 linearly with # d of covariates

— Optimism¥ as training sample size 4



Optimism of the Training Error Rate

* Ways to estimate prediction error:
— Estimate optimism and then add it to training error rate

* AIC, BIC, and others work this way, for a special class of estimates
that are linear in their parameters

— Direct estimates of the sample error
* Cross-validation, bootstrap

e Can be used with any loss function, and with nonlinear, adaptive
fitting techniques



Estimates of In-Sample Prediction

* General form of the in-sample estimate:

_ with estimate of optimism
2 . 2

* For linear fit and withErr, =E (efr )+Wda'

67 ... estimate of noise variance, from mean-squared error of low-bias model

d... # of basis functions
N... training sample size



Estimates of In-Sample Prediction

Error

e Similarly: Akaike Information Criterion (AIC)

— More applicable estimate of Err, , when log-
likelihood function is used

Pr, (Y )... family density for Y (containing the true density)

A

6... ML estimate of &

estimate of theta

N
|0g||kzz |Og Pré (Y. ) Maximized log-likelihood due to ML
i=1



AlC

FOrN —» oo —ZE[Iog Pr, (Y)] z—% E[Iog Iik]+2%

For example, for logistic regression model, using binomial log-likelihood:

To use AIC for model selection: choose the model giving smallest AIC over the set of
models considered.

f, (x)... set of models, e... tuning parameter

err (c)... training error, d (a)... # parameters



Effective Number of Parameters

Y1

y= ¥2 Vector of Outcomes, similarly for predicitons

Yn
)7 = Sy Linear fit (e.g. linear regression, quadratic shrinkage — ridge, splines)

S... Nx N matrix, depends on input vector x; but notony;,

EECIERIPORTEREISIEEE) < 0.y

d(s) is the correct d for C, -




Bayesian Approach and BIC

Like AIC used in when fitting by max log-likelihood

Bayesian Information Criterion (BIC):

Assuming Gaussian model : 6 known,

—2-loglik = > (y;— f(x))*/ % =N-err/ o
N
o

g

then BIC = [ﬁ+(log|\|)%a§]

BIC proportional to AIC except for log(N) rather than factor of
2. For N>e? (approx 7.4), BIC penalizes complex models more
heavily.



BIC Motivation

* Given a set of candidate models M_,m=1...M and model parameters 6,
* Posterior probability of a given model: Pr(M_|Z) < Pr(M_)-Pr(Z|M_)

* Where Z representsthe training data{x, y, };

 To compare two models, form the posterior odds:

Pr(M,, [ Z) _Pr(M,,) Pr(Z|M,,)
Pr(M, [Z2)  Pr(M,) Pr(Z|M,)
 |fodds>1, then choose model m. Prior over models (left half) considered

constant. Right half, contribution of data (Z) to posterior odds, is called
the Bayes factor BF(Z).

* Need to approximate Pr(Z|M,).
e (Can est. posterior from BIC and compare relative merits of models.




General framework

p
Y, = Z.,;B’J,QXIU] +eii=1,..., n
i—1
p>n

in short: Y = X3 + ¢

goals:
» prediction, e.g. w.r.t. squared prediction error

» estimation of 3%, e.g. w.r.t. |3 — 3°||q (g = 1.2)

» variable selection
l.e. estimating the active set with the effective variables

(having corresponding coefficient # 0)
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Penalty based methods

if true 39 is sparse w.r.t.

>

2014-12-29

15°]19 = number of non-zero coefficients
~ regularize with the || - ||p-penalty:
argming(n~'|Y — X3||2 + A||3]]3), e.g. AIC, BIC
~+ computationally infeasible if p is large (2° sub-models)

8%l = 321 1671

~» penalize with the || - ||1-norm, i.e. Lasso:
argming(n=||Y — X312 + \||8||1)

~> convex optimization:
computationally feasible and very fast for large p

ACIE RS IR 2o 37



The Lasso

[ asso for linear models

B(A) = argming(n'||Y — X5

2 )
/\ 3

+ A B )

=0 5% 1

~» convex optimization problem

» Lasso does variable selection
some of the 3;(\) =0
(because of “/1-geometry”)

» 3()\) is a shrunken LS-estimate

2014-12-29 B2 88 S5HL88 22 2] 38



The Lasso

equivalence to primal problem

with a correspondence between A and R which depends on the
data (X, Yq),.... (Xn, Yn)

since

» ||Y — X3|/5/nis convex in 3
» convex constraint ||| < R

2014-12-29 B2 88 S5HL88 22 2] 39



The Lasso and the Ridge Regression

p=2

left: 74-“world”

residual sum of squares reaches a minimal value (for certain
constellations of the data) if its contour lines hit the ¢4-ball in its
corner

~ 31 =0

2014-12-29 Haizim Sl 40



The Lasso and the Ridge Regression

Ridge regression,
Prise(4) = avgming (¥ = Xa[3/n+ |33 ).

equivalent primal equivalent solution

ORidge;primal () = argming. g, <gllY — X,ﬁH%/n.
with a one-to-one correspondence between A and R

&

2014-12-29 Haizim Sl 41



Relationship with Bayesian methods

model:

B1,....0p Lid. ~ p(3)d5,
given 3: Y ~ Np(X3.021,) with density f(y|o?. 3)

posterior density:

__H(Y[3,0%)p(3)
p(3|Y.0?) = THVI.22p(7)d5 ™ F(Y|3,0°)p(3)

and hence for the MAP (Maximum A-Posteriori) estimator:

Omap = argmaxzp(3|Y. o) = argming — log (f(Y|,,-3. 02)p(5))

p
55— Iog(p(ﬁj)))

J=1

. 1
= argming (22Y — Xp
' o

2014-12-29 B2 88 S5HL88 22 2] 42



Relationship with Bayesian methods

examples:
1. Double-Exponential prior DExp(¢):

p(,ﬁ) = s exp(—75)
~ [map equals the Lasso with penalty parameter A = n='2527

2. Gaussian prior N'(0, 72):
p(3) = —— exp(— 2/ (272))

~ Buap equals the Ridge estimator with penalty parameter
A= n"10%/7?

but we will argue that Lasso (i.e., the MAP estimator) is also
good if the truth is sparse with respect to ||5%||3, e.g. if prior is
(much) more spiky around zero than Double-Exponential
distribution

2014-12-29 B2 88 S5HL88 22 2] 43



Lasso for orthogonal design

Y=X3+c, n'X'X=]

Lasso = soft-thresholding estimator

BN = sien(Z)(1Z] - \/2)+, Z = (XYY,
oL

3{()\) — QSGFI(Zj):

2014-12-29 B2 88 S5HL88 22 2] 44



Lasso for orthogonal design

threshold functions

m — —— Adaptive Lasso
= = Hard-thresholding
» «  Soft-thresholding

Las: __
Bi(A

2014-12-29 ACIE RS IR 2o 45



Estimation of regression coefficients

2014-12-29

Y=X3'+c, p>n
with fixed (deterministic) design X

problem of identifiability:
for p > n: X3° = X4
for any 6 = 59 + ¢, € in the null-space of X

~- cannot say anything about || 3 — 5°|| without further
assumptions!

~» we will work with the compatibility assumption (see later)
and we will explain: under compatibility condition

15 = 8O < C \/Iog

so = |supp(3°) | = I{J, .ﬁf # 0}

BRI 5822 2] 46



Asymptotic Results-preview

for (fixed design) linear model Y = X539 + = with
active set So = {j; 5 # 0}
two key assumptlons

. heighborhood stability condition for design X
& irrepresentable condition for design X

2. beta-min condition

mlsn\ﬁﬂ > C+/sglog(p)/n, C suitably large
/<20

both conditions are sufficient and “essentially” necessary for

S(\) = S, with high probability. x> +/log(p)/n
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Asymptotic Results

neighborhood stability condition < irrepresentable condition

n—IXTX =%

active set S = {J; 3; #0} = {1....,s0} consists of the first so
variables; part|t|on

¢ _ [ 508 5.5
2.55,5) &S5

irrep. condition : HiSE;;SonU s, sien(A9, . ) oo < 1

2014-12-29 B2 88 S5HL88 22 2] 48



Parameter Tuning

choice of \: Aoy from cross-validation
empirical and theoretical indications (Meinshausen & PB, 2006)

that
é(:)LCV) 2 SU (OI’ Srelev)
maoreover

S(Acv)| < min(n. p)(= nif p> n)

2014-12-29 B2 88 S5HL88 22 2] 49



Parameter Tuning

recall:

e Fa!

S(ACV) 2 SU (Or Srelev)

and we would then use a second-stage to reduce the number
of false positive selections

~ re-estimation on much smaller model with variables from S
» OLS on S with e.g. BIC variable selection
» thresholding coefficients and OLS re-estimation
» adaptive Lasso (Zou, 2006)

> ...

2014-12-29 G ok RS [ o
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Adaptive Lasso

re-weighting the penalty function

15 \

| Brnn‘ J |

3 = argmin(|

3,-”,-,:‘,- from Lasso in first stage Sor OLS if p < n)
Zou (2006)

threcheld funotions:

for orthogonal design,

if .é.fn.fr = OLS:

Adaptive Lasso = NN-garrote
~ |less bias than Lasso
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Adaptive Lasso

Lasso Adaptive Lasso
& &
o (=] o
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o o
o o
o o
o) ITe)
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KKT conditions and Computation

2014-12-29

characterization of solution(s) 3 as minimizer of the criterion
function

Q\(5) = [IY — X5[3/n + 5]

since Q,(-) is a convex function:
necessary and sufficient that subdifferential of 0Q\(3)/05 at
contains the zero element

e

Lemma
denote by G(3) = —2X' (Y — X3)/n the gradient vector of
IY —X3|[5/n

Then: 3 is a solution if and only if

s

Gj(3) = —sign(3)\ if 3j # 0,
1Gi(5)] < Aif 3 =0

ACIE RS IR 2o 53



Coordinate descent algorithm for

computation

general idea is to compute a solution 5(Agig.k) @and use it as a

starting value for the computation of ,,.-i'-?()\grid__k_ﬂ

h\,—/
< Agrid,k

300) € RP an initial parameter vector. Set m = 0.

REPEAT:
Increase mby one: m+«~ m-+1.
Forj=1....,p:

. . —1 p
f1G(3T ) <A+ set 5™ =0,
fam- (M) . H(m—1)
otherwise: ,..-j’f. = argming O;\(;_Sﬂ. ).
3_j: parameter vector setting jth component to zero

,Bir;’_”: parameter vector which equals 3(™=1) except for jth
component equalling 3
UNTIL numerical convergence
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Coordinate descent algorithm for

computation

For linear regression

Gj(8) = —2X] (Y = X3)/n
g(m _ sign(£) (14| - A/2)+

E 2j

Z =X (Y-X5_)/n. £=n"XTX

~~+ componentwise soft-thresholding

glmnet: R-package

2014-12-29 G ok RS [ o
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Least Angle Regression-- LAR

L. Start with » =y, 31, F2.... 3, = 0. Assume z; standardized.
2. Find predictor x; most correlated with r.

3. Increase (; in the direction of sign(r.x;) until some other
competitor x; has as much correlation with current residual

as does z;.
4. Move (/3;. 8% ) in the joint least squares direction for (2;, xy)
until some other competitor ay has as much correlation with

the current residual

[y |

Continue in this way until all predictors have been entered.

Stop when (r,2;) =0V j, i.e. OLS solution.
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Least Angle Regression-- LAR

X2

g

The LAR direction us at step 2 makes an equal angle with x; and
X9.
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Least Angle Regression-- LAR

For each iteration, we have;:
m Active set A; at the beginning of the kth step
m Coefficient vector 3 4, at this step

m k — 1 nonzero values, the one just entered the model has
coefficient 0.

Then we do:
m Compute current residual ry =y — X 4,54, :
m Compute direction & = (X’ X4, )~'X7 1z

m Evolve the coefficient 54, (o) = B4, + o - o4 until some x;
has as much correlation with the current residual.

m Add x; to the active set Ay
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Least Angle Regression-- LAR

Algorithm 3.2a Least Angle Regression: Lasso Modification.

4a. If a non-zero coefficient hits zero, drop its variable from the active set
of variables and recompute the current joint least squares direction.
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Least Angle Regression-- LAR

2014-12-29

Least Angle Regression Lasso
o | g
= =
= 2 .
o =
b 3
= =
i} s o fs]
Y 9 9 9
“ =
w w
o e o =
U 'I_ N U '|_ —
- -
T T
i . | . | . . | . . | . | . | . . | . [
0 £ 10 15 a Y 10 15
Ly Arc Length Ly Arc Length

FIGURE 3.15. Left panel shows the LAR coefficient profiles on the simulated
data, as a function of the L1 are length. The right panel shows the Lasso profile.
They are identical until the dark-blue coefficient crosses zero at an arc length of
about 18.
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Generalization of Lasso and Ridge

regression

Consider:
N p

P
B = Argmin Z(}:f — Bo — ZA’.{;;‘%)E + A Z |3;
J=1

B i=1 j=1

q

m |3;|? prior distribution for 3;,

m ¢ — | smallest ¢ that constraint is still convex,

m Typically ¢ = 1.2 (Lasso and Ridge regression).

m can be determined by data, but not worth the effort.

‘-j'=1 q:D,.’j LJ!:D].

g=4 g=2
| |
I I

FIGURE 3.12. Contours of constant value of zj 1317 fer given values of q.
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The Dantzig Selector

Candes and Tao (2007) proposed the Dantzig Selector (DS):

. subject to || X' (y — X3) oo < s

min |3
I&;

It can also be written as:

mgn X" (y — XB3)||sc subjectto [|3; <t
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The grouped Lasso

Suppose the p predictors are divided into L groups, with p, the
number in group £. The grouped-Lasso solves the minimization

problem:

L L
min | ||y — 891 — Z X503 + A Z Vel Bel2

3ERP
| (=1 =1

where X, is the predictors corresponding to the /th group, with
corresponding coefficient vector /3.
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Sure Independent Screening

In Linear regression:
The true sparse model
My ={1<i<p: 3 #0}

u.:=XT}-'

M, ={1<i< p:|wi| 1s among the first [yn] largest of all }
ve(0,1)
Need to show

P(MyCMy)—1 as n— oc
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Sure Independent Screening

Rationale of correlation learning:

When p > n, the OLS estimator
Brs = (XTX)“:XT}T is noisy

e

X'X)* is the Moore-Penrose generalized inverse

The ridge regression
wt = (XTX+ A1)~ 'XTy
w)h—)-f]LS as )\—}0-.

Aw? > w as A\ — oo.
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Sure Independent Screening

Iteratively thresholded ridge regression screener (ITRRS)

’\/{5 y={1<i<p: |u.:r)“| 1s among the first [6 p] largest of all}. (8)

(a) First, carry out the procedure in submodel (8) to the full model {1...., p} and obtain a
submodel M 5. With size [6p].

(b) Then, apply a similar procedure to the model M 5., and again obtain a submodel M3 52 C
’\/[5 \, with size [6% p]. and so on.

(c) Finally, obtain a submodel Mj \ = .Mé \, with size d = [6% p] < n. where [65~! p] > n.
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Sure Independent Screening

Theorem 1 (accuracy of SIS). Under conditions 1-4, if 2k + 7 < 1 then there is some 0 <
| — 2k — 7 such that, when v~ cn ¢ with ¢ > 0, we have, for some C > 0,

P(M4 C M) =1—O[exp{—Cn'=>*/log(n)}].

Theorem 2 (asymptotic sure screening). Under conditions 1-4, if 2k +7 < 1, A(p*/*n) ™! - oo,
and 6n'~2"~7 — 00 as n — oo, then we have, for some C > 0,

P(My C J’Mé‘)\) =1— Olexp{—Cn ey log(n)}].

2014-12-29 Haizim Sl 67



Sure Independent Screening

Condition 1. p>n and log(p) = O(n®) for some ¢ € (0.1 — 2k). where « is given by condition
3.

Condition 2. z has a spherically symmetric distribution and property C. Also, e ~ A (0, o2) for
some o > 0.

Condition 3. var(Y)= 0O(1) and, for some x>0 and ¢3.c3 >0,

. o))
min |5 =2 —

: ~1
and min |cov(3. Y. X;)| = ca.
o I_aml (3 i) = ca

nh‘

As seen later, x controls the rate of probability error in recovering the true sparse model.
Although b=min;ec pm, |cov(,,8i_l Y. X;)| is assumed here to be bounded away from 0, our asymp-
totic study applies as well to the case where b— 0 as n — oc. In particular, when the variables
in My are uncorrelated, b= 1. This condition rules out the situation in which an important
variable is marginally uncorrelated with Y, but jointly correlated with Y.

Condition 4. There are some 7 >0 and ¢4 > 0 such that

Amax (2) < can’ .
> =cov(x)
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Sure Independent Screening

5=3, 18

p Results for the following methods:
Dantzig Lasso SIS-SCAD SIS-DS SIS-DS— SIS-DS-
selector SCAD AdaLasso
1000 103 62.5 15 37 27 34
(1.381) (0.895) (0.374) (0.795) (0.614) (1.269)
20000 — — 37 119 60.5 99
— — (0.288) (0.732) (0.372) (1.014)
2014-12-29 BRI 5822 2]
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Feature Screening by Distance Correlation

» Szekely, Rizzo and Bakirov (2007) proposed the
distance correlation

dcov’(u, v) = f | (L. 8) — du(t)dy(s)||Pw(t, s) dt ds,
Rdu+d1-

Du(t) Dv(s) Pun(t.s)
characteristic functions of two random vectors

o I+d, ) o 1+d !
w(t,s) = {eq,ca, L1 sl )

dcov(u, v)

dcorr(u, v) =

Jdcov(u, u)dcov(v, v)
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Feature Screening by Distance Correlation

For two normal random variables

dcorr(U, V)

: . 1/
p arcsin(p)++/1—p2—parcsin(p/2)—/4—p?+1
B | 4+7/3—+/3

2

El e T

Distance correlation is strictly increasing in |p]|

2014-12-29 B2 88 S5HL88 22 2] 71



Feature Screening by Distance Correlation

dcovi(u,v) = S; + S, — 25;.

S1 = Efllu—=1]g|lv—"l4}.
S» = E{|[u—ullg }E{lv—"V]s}, and
Sy = E{E(Jlu =14 | WE(|v — V]| V)},

(1, V) is an independent copy of (u, v).
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Feature Screening by Distance Correlation

l Fi r
S; = — Z Z Ju; —ujllg, |lvi —Vjilla,.

i=1 j=1
~ l H il [ R h
S2= 1522 i —willaz ) D IV = Vila.
i=1 j=I1 i=1 j=I
l H n H
Ss= 52 2 2w = willa,1v; = vila,.
i=1 i=1 I=1

dﬁ!z(u. V) = ?1 -+ gg — 2?3

_— dcov(u, v)
dcorr(u, v) =

Jdcov(u, u)dcov(v, v)

2014-12-29 Haizim Sl 73



Feature Screening by Distance Correlation

D = {k : F(y | x) functionally depends on X} for some

y e W, |,
I = {k : F(y | xX) does not functionally depend on X for any
y e WU, 1. (2.5)

N

wr = deor?(Xg,y), and @ = dcorr (Xk, V)

D = lk:or =cn™™, forl <k < p}

Li et al. (2012) JASA
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Feature Screening by distance correlation

Theorem I. Under Condition (Cl),forany0 < y < 1/2 — k.
there exist positive constants ¢; > 0 and ¢, = 0 such that

Pr ( max ‘fﬁg — mk| > .:'.'H_K)
I=k=p
< O(plexp{—cn'2*T) 4 nexp(—con?)]). (2.6)
Under Conditions (C1) and (C2), we have that

Pr(D < ﬁ*) > 1 — O(sp[exp{—cin' 2“7} + nexp(—can’)]).
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Feature Screening by distance correlation

(C1) Both x and y satisfy the subexponential tail probability
uniformly in p. That is, there exists a positive constant
so such that for all 0 <= 5 < 25y,

sup max E {exp (s||Xg[l])} < co. and

p l1=k=p
E {exp (-‘fll}’ll;)} < 00.

(C2) The minimum DC of active predictors satisfies

min w; > 2en” <,
keD

for some constants ¢ = Oand O0<k < 1/2.
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Feature Screening by distance correlation

2014-12-29

(1.a):

(1.b):
(1.c):
(1.d):

Y =11 X1 + 25X + a3 f31(Xp < 0)
+ cafaXan + &,
Y =11 X1 Xo + a3l Xip < 0) + caff3Xop + &,
Y = c1p1 X1 X2+ a3fl(Xp2 < 0) X2 + &,
Y = (“]ﬂ]X] + t'.'zﬁEXZ + 5'3,831{){]2 < 0)
+ exp(cs| Xa2])e,

MOl L2 2 )
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Feature Screening by distance correlation

Table 1. The 5%, 25%, 50%. 75%. and 95% quantiles of the minimum model size S out of 500 replications in Example 1

S SIS SIRS DC-SIS

Model 5% 25% 50% 75% 95% 5% 25% 50% 75% 95% 5% 25% 50% T75% 95%
Case 1: p = 2000 and o;; = 0.5/l

(l.a) 4.0 4.0 5.0 7.0 21.2 4.0 4.0 5.0 7.0 45.1 40 4.0 40 6.0 18.0

(1.b) 08.0 578.5 1180.5 1634.5 1938.0 2329 8715 1380.0 17252 19424 5.0 9.0 245 73.0 345.1

(l.c) 3905.9 1037.2 1438.0 1745.0 1945.1 238.5 805.0 1320.0 1697.0 1946.0 6.0 10.0 22.0 59.0 324.1

(1.d) 130.5 611.2 1166.0 1637.0 1936.5 42.0 3042 797.0 14322 1846.1 4.0 50 9.0 41.0 336.2
Case 2: p = 2000 and o;; = 0.8/l

(1.a) 5.0 9.0 16.0 97.0 7204 5.0 9.0 180 112.8 957.1 40 7.0 11.0 31.2 507.2

(1.b) 26.0  283.2  852.0 1541.2 1919.0 103.9 603.0 1174.0 1699.2 1968.0 5.0 8.0 11.0 17.0 98.0

(l.c) 2245 7752 12495 1670.0 1951.1 118.6  573.2 1201.5 1685.2 1955.0 7.0 10.0 15.0 38.0 198.3

(1.d) 79.0 583.8 1107.5 1626.2 1930.0 50.9 300.5 728.0 1368.2 1900.1 4.0 7.0 17.0 73.2 653.1
Case 3: p = 5000 and ¢;; = 0.5/

(1.a) 4.0 4.0 5.0 0.0 59.0 4.0 4.0 5.0 7.0 88.4 4.0 4.0 4.0 6.0 34.1

(1.b) 165.1 1112.5 2729.0 3997.2 4851.5 560.8 1913.0 3249.0 4320.0 4869.1 5.0 11.8 45.0 168.8 956.7

(l.c) 1183.7 2712.0 3604.5 4380.2 4885.0 440.4 1949.0 3205.5 42428 4883.1 7.0 17.0 53.0 1795 732.0

(1.d) 259.9 1338.5 2808.5 3990.8 47649 118.7 823.2 1833.5 33145 4706.1 4.0 5.0 150 772 848.2
Case 4: p = 5000 and oy; = 0.8/l

(1.a) 5.0 10.0 26.5  251.5 25227 5.0 10.0 28.0 3248 32464 5.0 8.0 140 69.0 14551

(1.b) 40.7  639.8 2072.0 3803.8 4801.7 215.7 1677.8 3010.0 43522 4934.1 5.0 8.0 11.0 21.0 162.0

(l.c) 479.2 1884.8 3347.5 4208.5 48752 297.7 1359.2 2738.5 4072.5 4877.6 8.0 12.0 22.0 830 657.9

(1.d) 307.0 1544.0 28325 4026.2 4785.2 1482 672.0 18740 3330.0 46652 40 7.0 21.0 1652 1330.0
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Bayesian Methods

See Blackboard
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