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 The Annals of Statistics
 1974, Vol, 2, No. 6, 1152-1174

 MIXTURES OF DIRICHLET PROCESSES WITH APPLICATIONS

 TO BAYESIAN NONPARAMETRIC PROBLEMS1

 BY CHARLES E. ANTONIAK

 University of California, Berkeley

 A random process called the Dirichlet process whose sample functions

 are almost surely probability measures has been proposed by Ferguson as

 an approach to analyzing nonparametric problems from a Bayesian view-

 point.

 An important result obtained by Ferguson in this approach is that if

 observations are made on a random variable whose distribution is a random

 sample function of a Dirichlet process, then the conditional distribution

 of the random measure can be easily calculated, and is again a Dirichlet

 process.

 This paper extends Ferguson's result to cases where the random meas-

 ure is a mixing distribution for a parameter which determines the distri-
 bution from which observations are made. The conditional distribution of

 the random measure, given the observations, is no longer that of a simple

 Dirichlet process, but can be described as being a mixture of Dirichlet pro-

 cesses. This paper gives a formal definition for these mixtures and develops

 several theorems about their properties, the most important of which is a

 closure property for such mixtures. Formulas for computing the con-

 ditional distribution are derived and applications to problems in bio-assay,

 discrimination, regression, and mixing distributions are given.

 1. Introduction. In certain statistical problems, the distribution F on the

 sample space (X, ,B) is only known to belong to some collection of distributions

 W= {Fj. This collection JW may be treated as a parameter space in a
 Bayesian analysis of these problems, but the Bayesian approach requires the

 placing of a prior distribution on . If Xw is a parametric family, the prior

 distribution can be given for the parameters. However, in many so-called non-

 parametric or distribution-free problems the set 5 may be too large to permit
 such treatment. For example, X may be the class of all distribution functions

 on the real line. In this context, discussing what he calls the "empirical Bayes"

 problem, Robbins [16] has said:

 A strictly Bayesian approach might be to start out with

 an a priori distribution of probability over the class .~' of
 all possible distributions F ... this could possibly be con-

 verted into an a posteriori distribution after Xl, X2, . X*,
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 MIXTURES OF DIRICHLET PROCESSES 1153

 have been observed. Whether anyone will espouse this

 view and recommend a procedure for carrying it out re-
 mains to be seen.

 Some properties that would be desirable for such a procedure can be para-

 phrased from Raiffa and Schlaifer [14], page 44 for this situation as follows:

 1. The class _ of random prior distribution on YW should be analytically trac-
 table in three respects:

 (a) It should be reasonably easy to determine the posterior distribution on

 X given a "sample";

 (b) It should be possible to express conveniently the expectations of simple

 loss functions; and

 (c) The class 2 should be closed, in the sense that if the prior is a member

 of _, then the posterior is a member of _.

 2. The class _ should be "rich," so that there will exist a member of Q cap-
 able of expressing any prior information or belief.

 3. The class _ should be parametrized in a manner which can be readily inter-

 preted in relation to prior information and belief.

 While these requirements are not mutually exclusive, they do seem, in the

 case we are considering, to be antagonistic in the sense that some may be

 obtained at the expense of others. For example, several authors, among them

 Dubins and Freedman [5], [6], Kraft and van Eeden (12), and Kraft [11], have

 described distribution function processes which satisfy the second requirement,

 but are deficient in the first and third.

 More recently, Ferguson [9] has defined a process called the Dirichlet process

 which is particularly strong in satisfying the first and third requirements and is
 only slightly deficient with respect to the second requirement.

 Although Ferguson was successful in using the Dirichlet process for Bayesian

 analyses of several nonparametric problems, there are some statistical models

 for which the closure property 1 (c) does not hold. For example, the nature of

 sampling in mixing distribution problems and bio-assay problems can be such

 that the posterior distribution is not a simple Dirichlet process, but can be

 represented as a mixture of Dirichlet processes, i.e., as belonging in a sense to

 a linear manifold spanned by Dirichlet processes.

 This paper reviews the basic properties of Ferguson's Dirichlet process in

 Section 2. Section 3 develops the additional structure necessary to define mix-

 tures and derives some basic properties of mixtures, culminating in Theorem 3

 which states, roughly, that mixtures of Dirichlet processes have the closure

 property 1 (c).

 The somewhat unusual behavior of samples from a Dirichlet process is ex-

 amined in Section 4 and explicit formulas for the posterior distributions are

 derived. Section 5 illustrates the application of mixtures of Dirichlet processes
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 1154 CHARLES E. ANTONIAK

 to estimation problems, including estimation of a mixing distribution and em-

 pirical Bayes estimation. The remaining Sections 6-8 give applications to a

 regression problem, a bio-assay problem, and a discrimination problem.

 2. Ferguson's Dirichlet process. In a fundamental paper on a Bayesian

 approach to nonparametric problems, Ferguson [9] defines a random process,

 called the Dirichlet process, whose sample functions are almost surely proba-

 bility measures, and he derives many important properties of this process. To

 save space, we will list below only the definition and those properties we need

 for this paper.

 DEFINITION 1. Let 9 be a set, and a a-field of subsets of 9. Let a be a
 finite, nonnull, nonnegative, finitely additive measure on (9, ) We say a

 random probability measure P on (9, _V) is a Dirichlet process on (8, _/)
 with parameter a, denoted P C e(a), if for every k = 1, 2, * *.. and measurable

 partition B1, * ., Bk of E), the joint distribution of the random probabilities

 (P(B1), I. P, (Bk)) is Dirichlet with parameters (a(B1), .. , a(BOj), denoted
 (P(B1), *.., P(Bk))e ??Y(a(B1), *.., a(Bk)). (When a(Bi) = 0, P(Bi) - 0 with
 probability one.)

 Ferguson shows that this definition satisfies the Kolmogorov criteria for the

 existence of a probability 9 on the space of all functions from _v into [0, 1]

 with the v-field generated by the cylinder sets. Certain properties of the

 Dirichlet process obtained by Ferguson will be needed later.

 (i) If P e 9J(a), and A e JV then e(P(A)) = a(A)/a(E9).

 (ii) If PF ?2(a) and conditional given P, 01 02, ' 02 *, are i.i.d. P, then
 P 01, 02, *, *,~ * ! 09(?a ? l 3) where 3x denotes the measure giving mass
 one to the point x.

 (iii) If P e 3'(a), then P is almost surely discrete. (See also Blackwell [2].)

 We point out that property (ii) above satisfies desirable properties 1 (a) and

 1 (c). The posterior distribution is easily computable and in the same class as

 the prior. Property (i) above fulfills desirable property 3 in two respects. Since

 e(P(A)) = a(A)/a(9), one can choose the "shape" of a to reflect his prior guess
 at the shape of the distribution. Moreover, it follows from (i) and (ii) that

 e(P( ) 101, 029 ...* Io,) is (n + a(9))-'[a(6))'(P(.)) ? nFn(.)], where Fn is the
 empirical df. Thus the magnitude of a(o) represents, in a sense, the degree of

 faith in the prior guess, and appears in the formula as if it were "prior sample
 size." The statistician can choose the magnitude of a(e) to represent the

 strength of his conviction, independent of his opinion about the "shape" of the

 distribution.

 On the other hand, the almost sure discreteness of a Dirichlet selection given

 in (iii) would seem to be inconsistent with desirable property 2 for situations

 where one wants a prior on a class of continuous distributions. In many cases of

 interest, however, this discreteness is no more troublesome than the discreteness
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 MIXTURES OF DIRICHLET PROCESSES 1155

 of a sample cdf. The real concern of property 2 in this context is that dis-

 tribution functions chosen by a Dirichlet process can be reasonably "close" to

 the kind of distribution functions one is interested in. In this regard, Ferguson
 has proved that the Dirichlet process is "rich" in the sense that there is positive

 probability that a sample function will approximate as closely as desired the

 measure given any specified collection of _v measurable sets by any fixed distri-

 bution which is absolutely continuous with respect to the parameter measure a.

 The mixtures of Dirichlet processes which we define below can also be shown

 to be "rich" in this same sense, but we will make no use of the property in

 this paper.

 3. Mixtures of Dirichlet processes. Because the basic Dirichlet process de-

 fined above does not encompass enough of the situations encountered in Bayesian

 analysis, we proceed now to the concept of a mixture of Dirichlet processes,

 which, roughly, is a Dirichlet process where the parameter a is itself random.

 Before we can make this idea more precise we need a slight generalization of

 the usual definition of a transition probability, and later we will find it necessary

 to impose certain regularity conditions on the underlying spaces to assure the

 existence of some needed conditional distributions.

 DEFINITION 2. Let (9, QV) and (U, X) be two measurable spaces. A tran-
 sition measure on U x is a mapping a of U x SV into [0, oo) such that

 (a) For every u e U, a(u, .) is a finite, nonnegative, nonnull measure on

 (b) For every A c XV, a(., A) is measurable on (U, ?).

 We note that this differs from the definition of a transition probability in that

 a(u, 9) need not be identically one. We make this change because we want
 a(u, .) to be a parameter for a Dirichlet process.

 DEFINITION 3. Let (9, iV) be a measurable space, let (U, M, H) be a prob-
 ability space, called the index space, and let a be a transition measure on U x

 -V. We say P is a mixture of Dirichlet processes on (E, S) with mixing dis-
 tribution H on the index space (U, ?), and transition measure a, if for all
 k = 1, * * and any measurable partition A1, A2, , Ak of 9 we have

 {~fP(Aj) < yl, * * * P(Ak) <_ Yk}

 = 5 u D(yj, , . Yk la(u, A1) . *, a(u, Ak)) dH(u),

 where D(01, * O*, Sk I a1, . *, ak) denotes the distribution function of the Dirichlet
 distribution with parameters (a1, - .., ak).

 In concise symbols we use the heuristic notation:

 (P(Al)y P(A2) d - * X P(Ak)) . 5u -g(a(u, Al), a(u, A,)) dH(u)

 or simply P e 5Su _A(a(u, * )) dH(u).
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 1156 CHARLES E. ANTONIAK

 Roughly, we may consider the index u as a random variable with distribution

 H and conditional given u, P is a Dirichlet process with parameter a(u, .). In

 fact v can be defined as the identity mapping random variable and we will use

 the notation I u for "given v = u." In alternative notation, u e H, P I u C ?(a.),
 wher au = a(u, .).

 An example of a mixture of Dirichlet processes derived from a simple Dirichlet
 process is given below.

 EXAMPLE 1. Let P be a Dirichlet process on (9, SV) with parameter a. De-

 fine a(u, A) = a(A) + 3u(A), where bu(A) = 1 if u e A, 0 otherwise. Let H be
 a fixed probability measure on (9, XV). Then the process P* which choses u
 according to H, and P from a Dirichlet process with parameter a(u, A) is a
 mixture of Dirichlet processes as defined above. Moreover, for the mixture in

 this example, we note that if (B1, **, Bk) is any measurable partition of 9,

 (1) (P(Bl), P(B2), *I* P(Bk))

 e Zk=1 H(Bs)?2g(a(B1), a*, (B) + 1, a, a(Bk))

 Relation (1), in fact, characterizes mixtures of this type, and we will encoun-
 ter it frequently in this paper.

 DEFINITION 4. Let P be a mixture of Dirichlet processes on (0, JV) with
 mixing distribution H on index space (U, ?) and transition measure a on U x
 Si'. We say that 1, 02, . . . an is a sample of size n from P if for any m=
 1, 2, ... and measurable sets A1, A2, . , Am' C1, C2, * *, C. we have:

 (2) 9'{01 CC 1, * * , 0a e Cn U, P(A1), * * P(A.), P(C1), . * *, P(C,)}

 = fl=1 P(Ci) a.s.

 This definition determines the joint distribution of 01 ..., 0?&, P(A1), P(A.)
 since the customary

 9{1fo C C1,***, o S C., P(Al) < yl, ***eP(Am,) < Ym}
 may be found by integrating (3) with respect to the known joint conditional

 distribution of P(A1), * .*, P(A,,), P(C1), . . ., P(C,,) given u over the set

 [O'YI] x ... x [?,Y.] x [0, 1] x ... x [0, 1] and then integrating the resulting
 function of u with respect to H(u) over U.

 An immediate consequence of this definition is the following useful result.

 PROPOSITION 1. If P e Su ?2(a(u, .)) dH(u) and 0 is a sample of size one from
 P, then for any measurable set A,

 (3) -~~~9D(O EC A) - S u a (u, A9) dH(u) .
 a (u, 9))

 PROOF. -9D(O e A I U, P(A)) = P(A) a.s. hence

 A(6 e A I u) =ef{?(6 e A I u, P(A)) I u} a.s.

 = {P(A) I u} _ a(u, ) a. s.
 a(u, 9)
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 MIXTURES OF DIRICHLET PROCESSES 1157

 Finally

 a(8 y A) = . [a (u, A) S= a(u, A) dH(u) [1 c- A) _(u, E)i a(u,90)
 THEOREM 1. Let P be a Dirichlet process on (9, _V), with parameter a. Let

 O be a sample of size 1 from P, and A E _ be any measurable set such that
 a(A) > 0. Then the conditional distribution of P, given 0 C A, is a mixture of

 Dirichlet processes on (E9, _V), with index space (A, v n A), and transition measure

 a on A x (sQ/ n A), with distribution HA on (A, _ n A), where HA(.) = a(.)/a(A)
 on A and a(u, .) = a + e. for u e A.

 PROOF. Let (B1, B2, ..., Bn) be any measurable partition of 9. Since A is

 measurable we obtain a refined measurable partition by letting Bi' = A n Bi,

 and BO = Ac n Bs so that A = U=1 Bi'. If follows from property (ii) of the
 Dirichlet process listed in Section 2 that the conditional distribution of P(B1'),

 P(B21) * * * -, P(B,,'), P(B10), . * *, P(B,"?), given 0 e Bi' is Dirichlet with parameters
 (a (B,'), a(B2'), . *, a(Bi') + 1, * *, a(B?'). Integrating this with respect to the
 conditional probability that 0 E Bi', given 0 E A, we obtain the conditional dis-
 tribution of P(B1'), P(B2'), *I * , P(B,"?), given 0 e A, is

 . a(B('A) D(a(B,'), a*, (Bi') + 1, ** *, a(B)) .
 a(A)

 which we recognize as relation (1) in Example 1 following Definition 3, with

 H(.) = a(.)/a(A) on A. [1

 COROLLARY 1. 1. Let P be a mixture of Dirichlet processes on (9, -$Q/) with index

 space also (9, SV), and transition measure a. = a + 5.. If the distribution H on
 the index space (9, J/) is given by H(A) = a(A)/a(O), then P is in fact a simple

 Dirichlet process on (9, Se') with parameter a. In symbols

 Se 7(a + 5.) a(du) = _`r(a)
 a(E))

 We omit the proof and simply point out that H(.) = a(.)/a(E) is what we

 would obtain in Theorem 1 if we let A = 9. But being given 0 e 9 is being
 given no information at all, so the posterior distribution is the same as the prior,

 a simple Dirichlet process. The usefulness of Corollary 1.1 is that it enables

 one to reduce some mixtures of Dirichlet processes to simple Dirichlet processes.

 PROPOSITION 2. Let P be a Dirichlet process on (0, ) with parameter a, and

 let A E s/. Then given P(A) = M, the conditional distribution of (1 /M)P restricted
 to (A, v n A) is a Dirichlet process on (A, vY, n A) with parameter a restricted

 to A. That is, if A1, . . ., Ak is any measurable partition of A, then the conditional
 distribution of (P(A1)/M, * * *, P(Ak)IM), given P(A) = M, is a Dirichlet distribution
 with parameter (a(A1), *, a(Ak)).

 PROOF. From the definition of a Dirichlet distribution in terms of the

 gamma distribution as given in Ferguson [9] we know the distribution of
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 1158 CHARLES E. ANTONIAK

 P(A1)/1k 1 P(A), ** P(Ak)/L=l P(Ai) is Dirichlet (a(A1), *, a(A,)). But
 E" =l P(A) = P(A) = M by hypothesis. [

 Proposition 2 is an alternative way of stating that the Dirichlet process is

 "tailfree" as discussed by Doksum [4] and Fabius [7], who show further that

 the Dirichlet process is essentially the only process which is tailfree with respect

 to every tree of partitions. They also show that the Dirichlet process is the only

 one for which the posterior distribution of P(A) given a sample 81, 82, *. On,
 depends only on the number of observations falling in A, not where they fall

 in A.

 We now combine the results of Theorem 1, Corollary 1. 1, and Proposition 1

 to get:

 THEOREM 2. Let P be a Dirichlet process on (E), SV) with parameter a, and let

 8 be a sample from P. Let A e <. Then the conditonal distribution of P given P(A)

 and 8 e A is the same as the conditional distribution of P given P(A).

 Roughly speaking, if P(A) is known, then the event 8 e A tells us nothing
 more about the process. This is consistent with the definition of sampling given

 in Definition 4, and since P(O) = 1, a.s. it confirms the interpretation given for

 Corollary 1. 1.

 Before we can proceed to the most interesting theorems about mixtures of

 Dirichlet processes, we must stop to examine the measure theoretic structure

 we have created and insure the existence of certain conditional distributions by

 adding appropriate regularity conditions to the underlying spaces.

 Starting with the measure space (E), JV), index probability space (U, , H),
 and transition measure a on U x ,/ we define a measure ,u on the measurable

 product space (3 x U, Jv x X) as 1a(A x B) = 5B a(u, A)/a(u, E)) dH(u).
 If P is mixture of Dirichlet processes on (E), sV) with these parameters, and

 81, . .., 0 is a sample of size n, we will need to be able to go from the known

 conditional distribution of P given u, 801 82, . . .* in to the conditional distribu-
 tion of u given 81, . * *, 8n. To assure the existence of this conditional distribution
 we will henceforth require that (0, SV) and (U, _?~) be standard Borel spaces,
 defined as follows:

 DEFINITION 5. A standard Borel space is a measurable space (E, JV'), in
 which v is countably generated, and for which there exists a bi-measurable

 mapping between (E, JV) and some complete separable metric space (Y, W).

 If (e, JV) and (U, XW) are standard Borel spaces, then the product space
 (3 x U, _v x ') is a standard Borel space, and the required conditional distri-
 butions specified above are known to exist (see, for example, Parthasarathy [ 13]

 Chapter 5).

 With these definitions we can now state the last and most important theorem

 in this section which says, roughly, that if we sample from a mixture of Dirichlet

 processes, and the sample is distorted by random error, the posterior distribution

This content downloaded from 115.27.192.50 on Mon, 29 Apr 2019 07:00:51 UTC
All use subject to https://about.jstor.org/terms



 MIXTURES OF DIRICHLET PROCESSES 1159

 of the process is again a mixture of Dirichlet processes. We will see in the
 sections on applications that this situation occurs frequently.

 THEOREM 3. Let P be a mixture of Dirichlet processes on a standard Borel space
 (89, SV) with standard Borel index space (U, ?), distribution H on (U, ?), and

 transition measure a on U x S. Let (X, 4@) be a standard Borel sample space,
 and F a transition probability from 8) x <' to [0, 1]. If 0 is a sample from P, i.e.,

 a 1 P, u e P and X j P, 0, u e F(a, .), then the distribution of P given X = x is a mix-
 ture of Dirichlet processes on (8, SV), with index space (8) x U, v x 5), tran-

 sition measure a. + 6, on (8 x U) x XV, and mixing distribution H. on the index
 space (8 x U, -v x ?) where H. is the conditional distribution of (0, u) given
 X = x. In symbols, if

 u C H, PIu e-(a ) PG su(a )dH(u) ,
 a[P,ucP and XIP,a,ueF(a,.)

 then (PIX = x) c Sexu ?6(a. + 6o) dHx(8, u).

 PROOF. The distribution of P given (d, u, x) is 2(a + b), independent of x,
 the distribution of X given (1, u) is F(a, .) independent of u; the distribution of
 a given u is a(u, .)/a(u, 0); and the distribution of u is H. The last three define

 the joint distribution of (0, u, X) as given in the theorem, and conditional dis-
 tribution of P given X is obtained by integrating the known conditional distri-

 bution of P given (a, u, X), namely !`?-(a. + 6.), with respect to the conditional
 distribution of (a, u) given X, yielding the formula given in the theorem, which
 we recognize as a mixture of Dirichlet processes. [:

 Lest the imposing notation obscure the basic principles involved, we illustrate

 Theorem 3 with an example where U and X are two-point spaces, and 8 is the
 unit interval.

 EXAMPLE 2. Let X be a Bernoulli random variable with P(X = 1) = a, and
 let a have as prior distribution an equal mixture of Beta distributions, g(0) =
 4'Me(l, 2) + -?6e(2, 2). Then the posterior distribution of a given X = 1 is a
 mixture of Beta distributions, g(0 I X = 1) = 2Me(2, 2) + 3%e(3, 2).

 Notice that the posterior mixture gives more weight to Me(3, 2) since given
 X = 1, a is more likely to have come from Me(2, 2) in the prior mixture. This
 is a specific example of a general property of mixtures of Dirichlet processes
 which will be stated formally as Corollary 3.2.

 We now state two corollaries to Theorem 3 which treat cases that occur fre-

 quently in applications. No proof is given since they are simply special cases of
 Theorem 3.

 COROLLARY 3. 1. Let P be a Dirichlet process on a standard Borel space (8, JY),
 with parameter a and let a be a sample from P. Let (X, K) be a standard Borel
 sample space and F a transition probability from 8 x &2 to [0, 1]. If the conditional
 distribution of Xgiven P and a is F(a, .), then the conditional distribution of P given
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 1160 CHARLES E. ANTONIAK

 X = x is a mixture of Dirichlet processes on (9, JV) with mixing distribution H on

 index space (9, -QY) and transition measure a(8, .) = a(.) + 5,(*), where the mix-
 ing distribution H on (9, sV) considered as the index space is the conditional distri-
 bution of 8 given X = x; in concise notation:

 Pe??J(a),8eP,XIP,8eF(8, .) P PIXe 5 '(a + 6a0)dH_(8).
 Roughly, if the sample from a simple Dirichlet process is distorted by random

 error, then the posterior distribution of the process given the distorted sample

 is a mixture of Dirichlet processes.

 COROLLARY 3.2. Let P be a mixture of Dirichlet processes on a standard Borel

 space (9, XV), with standard Borel index space (U, ?), distribution H on (U, ),
 and transition measure a on U x -/. If 8 is a sample from P, then P given 8 is a

 mixture of Dirichlet processes on (9, -), with transition measure a + 6,9, and dis-
 tribution Ho on (U, ?), where Ho is the conditional distribution of u given 8. In
 symbols, if P e S u _2B(a,.) dH(u) and 8 e P then (P 8 0) c S u?iJ(a. + 30) dH0(u).

 The essential point of this corollary is that the observation 8 affects each

 component of the mixture as one would expect it to, by adding e0 to a., and in
 addition, changes the relative weightings of components of the mixture to the
 conditional distribution of u given 8. An explicit expression for this conditional
 distribution is given in Lemma 1 following Proposition 4.

 4. Properties of samples from Dirichlet processes. The preceding theorems
 were stated rather formally to reveal the underlying measure theoretic structure,

 but only for samples of size one, to avoid cumbersome notation. In what fol-
 lows we will develop more useful formulas for samples of size n, with less regard

 for elaborate formalism. We will see that the joint distribution of multiple

 samples possesses some peculiar properties caused by a virtual "memory" of

 the process. Sometimes a sample of size two is sufficient to illustrate these pe-
 culiarities. For example, let P be a Dirichlet process on a standard Borel space

 (9, -V) with parameter a, and assume that a is nonatomic. If 81 and 82 were a
 sample from a(8)/a(O) in the usual independent identically distributed sense,

 we would expect ,9;{81 = 821 = 0. The following argument shows that in fact,
 for such a Dirichlet process, i93{81 = 821 = 1/(a(9) + 1). The reason for this
 is that although a may be nonatomic, the conditional distribution of P given 8,
 is a Dirichlet process with parameter a + b6, which is already atomic with an

 atom of measure 1 at 8. Hence, the probability that 82 - 8l, given 81, is
 1/(a(O) + 1) independent of 81. If we proceed to calculate ,9?{3 = 2 = 8l 1 82 = 81}
 we see that the conditional distribution of P given 81 82, 81 = 82, is Dirichlet

 with parameter a + 2ba1. Hence JS{83 - 82 = 8l 1 82 = 81} = 2/(a(9) + 2), and
 consequently the joint probability that 80 = 82 = 83 is 2/[a(O) + 1)(a(O) + 2)],
 and by induction, ?7(80 = 02 = * * = tn) = l"-1)/{[a(9) + 1](ff-)}, where the
 definition of a'?' = 1 and aln' = a(a + 1) * (a + n - 1), n > 0. This property

 of the Dirichlet process is very similar to what happens in Polya urn schemes
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 MIXTURES OF DIRICHLET PROCESSES 1161

 and in one sense characterizes Dirichlet processes (see Feller [8] and Blackwell
 and MacQueen [3]).

 On the other hand, one can consider the probability that On is a new value,
 distinct from any previous observations 0,, 02, ..., *n-.l By the same logic as
 before, one notes that P(02 it 0,) = a(e)/(a(e) + 1). Similarly P(,3 v {10, 021) =
 a(9)/(a(9) + 2), regardless of whether 01- 02 or not. If one defines Wi as a
 random variable which equals 1 if St is a new, distinct value, and zero other-

 wise, then P(Wi = 1) = a(8)/(a(8) + i - 1). If we further define Zn =, Wi
 then Z,n is simply the number of distinct values of 0 which have occurred in the

 first n observations.

 Although P(Wn = 1) = a(O)/(a(O) + n - 1) is monotone decreasing in n,
 nevertheless note that E(Zn) = a()/(a(8)) + m- 1) = a(6) E m, I /(a(E) +
 m - 1) a(e)[log ((n + a(E))/a(8)))]. Hence E(Zn) -0 ?o, n -> oo. In fact,
 Korwar and Hollander [10] show Zn oas co, as n -f oo. Thus although new
 distinct values are increasingly rare, we are assured nonetheless of a steadily

 increasing number of distinct values. Moreover, since the distribution of the

 distinct values is simply a(.)/a(0), this property can be used in the usual way
 to obtain information about the shape of a(.) if it is unknown.

 On the other hand, the rate at which new distinct values appear depends only
 on the magnitude of a(e), and not the shape of a(.), and this property should
 enable us to obtain information about the magnitude of a(e) if it is unknown.

 We begin by obtaining an expression for P(Zn = k) as a function of a(e). As

 an aid in this we define a sequence of polynomials An(x) as

 Al(x) = x

 A2(X) (X + l)Al(x) = x(x + 1) =x(2)

 A,(x) = (x + n)- l)A,n(x) = x(x + 1) = .. (x J n- x(n)

 Hence An(x) is a polynomial of degree n in x with integer coefficients, which
 we write

 An(X) =na,x + na2x2 + ... + nanxn.

 If we substitute x = a(o) in An(x), then considerations similar to those in the
 discussion of repeated values enable us to identify the kth term of this poly-
 nomial with the event of observing exactly k distinct values in a sample of size

 n, P(Zn = k) = nakac(e)k//An(a ())-
 The coefficients nak of the polynomial are the absolute values of Stirling num-

 bers of the first kind, tabulated in (Abramowitz and Stegun [1] page 833).

 The significance of the foregoing is that if one knows he is sampling from

 some Dirichlet process with unknown parameter a, then he can obtain, inde-

 pendently, consistent estimates for a(.)/a(e) and a(e) by making use of the
 properties given above. If, however, there were some doubt that the process

 was in fact a Dirichlet process, then the only discriminating feature left is the
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 1162 CHARLES E. ANTONIAK

 actual pattern of multiplicities observed. As a first step in such discrimination

 we show that we can, in fact, determine the fine structure of the probability of

 various patterns of multiplicities in a sample from a Dirichlet process. If we

 were interested, for example, in the probability that the first two observations

 were identical, the third was different from the first two, the fourth and fifth

 matched the third, and the sixth and seventh matched but were different from

 the previous values, then an argument similar to that given above yields

 9'10, = 62 * 63 = 64 = 65 * 60 = 67 # 61} = -(E)1'2/a(E)) .
 Moreover, if one were only interested in characterizing the above event as

 one where, in a sample of size 7, only 3 distinct values of 6 occurred, and that
 two were pairs and one a triplet, then the subscripts of the O's are irrelevant,

 and we obtain the probability of the latter event by multiplying the previous

 expression by the appropriate combinatorial factor, in this case the familiar

 multinomial coefficient (27,3) divided by 2! since the two pairs are indistinguish-
 able. The result could be expressed

 '9iAI.i = ? 6 , = 6 6 - 6 = 6, = 6i = (2,23) a()3l1( LI ~~~~~~~~~~~~~~2! a(E9) 7

 where {i,j, k, 1, r, s, t} = {l, 2, 3, 4, 5, 6, 7) in some order. The generalization
 of this example and the simplification of its expression are the goals of the fol-

 lowing definition and proposition.

 DEFINITION 6. Let 61, 62, ...* 6 n be a sample of size n from a Dirichlet pro-
 cess P. We will say that the sample belongs to the class C(ml, m2, . ., in,M), and
 write (1, . *, 6n) e C(m1, . * *, m,), if there are ml distinct values of 6 that occur
 only once, m2 that occur exactly twice, * .., ml, that occur exactly n times.

 Two immediate consequences of this definition are that n = = imi, and the
 total number of distinct values of 6 that occur is Z,,-= mi. As an example
 of this notation we note that the sample in the preceding discussion belongs to

 the class C(O, 2, 1, 0, 0, 0, 0).

 PROPOSITION 3. Let P be a Dirichlet process on a standard Borel space (0, W),
 with parameter a, and let a be nonatomic. Let (6k ..*, 6,n) be a sample of size n
 from P. Then

 (4) .5q{(6l X**, 6,,) e C(m m, M, in.M)) = n! )(0) 'i

 PROOF. We calculate the probability of a particular sequence in the class

 C(ml, * * *, mi), observe that all such sequences are equally likely, and multiply
 by the number of these sequences.

 Let C0((mi, . . ., m,,) be the event that 61 * , 6.1, in that order, are unique in
 the sample and occur only once; that 61 +1' * , 6ml+2m2 occur twice each, in the

 order 0.1+1 = 6m1+2' 6mi+3 = 6l+,, etc. Then by the same argument given in the
 previous discussion 9i{01 . .. ., 6a) e C0(ml, m.* . . i")) = [l(O)a(8)] ni[1(l)a(E3)]n2 . . .

 [1 ( )] /a(8)
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 MIXTURES OF DIRICHLET PROCESSES 1163

 Next we must count the number of ways we can permute the indices of the

 0's to obtain all essentially different sequences. But this number is well known

 as the number of elements in a conjugate class of the symmetric permutation

 group on n elements, and is equal to

 1 ( n ) =l (mi!) 1, * ,1, 2, .. *, 2, *, n

 ml m2

 where ("l " denotes the well-known multinomial coefficient. For a deriva-

 tion of this number see Scott [17]. Multiplying this combinatorial factor by the

 preceding probability and dividing numerator and denominator by ]l[In [1 (i_l)]mi
 which is identical to 11i l [(i - 1)!]ms, the expression reduces to:

 n ! a((6))Iz=1 mi/af(e) (") 111 1 imi(mi !) .

 We see thus that the Dirichlet process induces a measure on the sample space

 En1 which gives positive mass to certain collections of sub-hyperplanes in an.
 The relative magnitude of the mass concentrated on the sub-hyperplanes,

 compared to the mass distributed over the remainder of the sample space, is

 seen to be a function of the magnitude of a(e). Consequently, for a given sam-

 ple size, we would expect many more multiplicities if a(e) is very small than if

 it is very large. Furthermore, if a(e) is unknown, this property just described
 enables us to make an inference about the magnitude of a(e) based on the

 number of multiplicities in a sample. We will see, in fact, that it is not the

 distribution of multiplicities, but the number of distinct values that occur in

 the sample, which is important in making inferences about a(e). We begin by

 formalizing the results of the previous example.

 PROPOSITION 4. Let P e Su 3Q(a.) dH(u), where a. is nonatomic for all u e U,
 and let (0,, 0,* ) be a sample of size n from P. Then the posterior distribution of
 u, given (0k ..., an) e C(m1, *.., m") e JV is determined by

 S B Z= dH(u)
 1(u e B a e C(mn)) = a(u

 5 u (( en dH(u)

 PROOF. From Proposition 3, we have

 S?7(6 e C(m) I u) = n! a(u, 1)= nim
 Il=l~~~ i(m!)c(u, )('n)

 Integrating with respect to H(u) over u e B gives the joint probability of 0 e C(m)

 and u e B. Since 91(Q e C(m)) > 0 we obtain the usual conditional probability
 by application of Bayes formula, and note that the combinatorial coefficients

 cancel. D

 It is important to notice that a consequence of the combinatorial coefficients
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 1164 CHARLES E. ANTONIAK

 cancelling is that the mi occur in the above expression only as E=1 m%, that is,
 in a sum expressing the total number of distinct values, which we have previ-

 ously denoted by Z,. This confirms our earlier remark, that Zn' is sufficient for
 at(e).

 We can conclude from Proposition 4 that if a is nonatomic and a.(e) = M,
 a constant independent of u, then the event 0 e C(m) is independent of the event

 u e B, and hence 6 ? C(m) provides no new information about u. This is a con-

 sequence of the assumption that a. be nonatomic. If a. is atomic the event
 6 e C(m) may still provide information about u even when a(u, 3) is independent

 of u. An analysis for a special case of atomic a is given later in Lemma 1, but

 some remarks of general validity are possible now.

 We note first that if a is atomic, then P assigns positive weight to certain

 specific points in the product space of observations E)"n, and these points are

 contained in the collections of sub-hyperplanes described earlier. If P, e _2(a,)

 and P2 E 3!(a2), where al(E) = a2(O) but a, is nonatomic and a2 has atoms, then
 there is a greater probability of duplicated values in a sample from P2 than in a

 sample from P1.

 If Pe S u !(au) dH(u), and some or all au are atomic, the posterior distribu-
 tion of u given 6 will depend on whether any of the observed samples 6i match
 any of the atoms of any of the au, and if so, whether the matched atoms are
 common to more than one value of u, and if common to more than one aU,
 whether the size of the atoms is the same, etc. To elucidate this idea consider

 the following example.

 EXAMPLE 3. Let au be a geometric distribution on u, u + 1, u + n, ... and
 H(u) be uniform on [0, 1]. Then with only one sample 6 from P, the distribu-
 tion of u given 6 is degenerate on #(mod 1). Notice that here there is no domi-

 nating a-finite meausre for the a., in fact, they are all mutually singular. Never-
 theless, the fact that the joint distribution of (0, u) is concentrated on a subspace

 of the space e x U enables us to find rather easily the posterior distribution of
 u given 6.

 We conclude this section with a partial extension of Corollary 3.2 to the case

 of a sample of size n.

 LEMMA 1. Let Pe Su (aj) dH(u) as in Theorem 3, let 0 = (61, - * ,an) be a
 sample of size n from P, and suppose there exists a a-finite, a-additive measure p on
 (0, SV) shch that for each u e U,

 (i) au is a-additive and absolutely continuous with respect to Xc, and

 (ii) the measure p has mass one at each atom of au. Then

 1 1, a,U'(6i')(mU(6i') + 1)(n'&i''-1) dH(u)
 (5) dH,1(u) = X

 Su M 7J~-~ a,. n':, (6')(mn(6i') + l)')1) dH(u) M.I (n)
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 MIXTURES OF DIRICHLET PROCESSES 1165

 where au'(.) denotes the Radon-Nikodym derivative of au(.) with respect to 4a; 0i'(8)
 is the ith distinct value of 0 in 0; n(0i') is the number of times the value 0i' occurs in

 0; M. = a.(0) and m.(0i') = arn'(0i') if 0i' is an atom of a., zero otherwise.

 PROOF. We obtain the joint distribution of (u, 01, * , 0,) by calculating the
 likelihood of 0 and making the appropriate normalization. Referring to the

 proof of Proposition 3 we see that the likelihood of Ok+1' given u, 01, * . Ok iS

 au'(6k+1) du!(Mu + k) for a value of 0,k+ which has not occurred previously in
 01'' . * *k' and [mu(Ok+l) + j] dp/(Mu + k) for a value of 6k+1 which has occurred
 previouslyj times in 01, * O 0k. Hence the likelihood of 8 (Of .*., O,n) given
 u is

 U 1S~~~~~~~

 M I71 au'(0i')(mu(0i') + 1)(?(i)1) dfen

 We obtain dH0(u) by multiplying the above by dH(u) and dividing by the un-
 conditional distribution of 0. El

 We have thus established the validity of the term dH0(u) in the following
 extension of Corollary 3.2.

 COROLLARY 3.2'. Let P and au be as in Lemma 1 and let 0 = (0k ..., On) be a
 sample of size n from P. Then

 P I ae Su _(a + E1 .) dHIz(u),

 where HlI is the conditional distribution of u given 0.

 5. Estimation problems: parameters, mixing distributions, and empirical
 Bayes. In this section we present a general sampling model using mixtures of

 Dirichlet processes, and point out some cases where this Dirichlet model leads

 to estimates different from standard Bayesian analysis. Consider a mixture of
 Dirichlet processes where the index space, parameter space, and observation

 space are all the real line with the a-field of Borel sets. Let G(O) be a sample

 distribution function from a mixture with parameter a. and mixing distribution
 H(u). Let 01, 02, . *, 0, be a sample of size n from G(0) and let Xi,, . . Xim
 be a sample of size mi from F0.(x). We consider the following problems:

 (a) Estimating the index of the parameter. If we wish to estimate u with squared

 error loss, then the Bayes estimate is simply uz = E(U 01, 0, * *, On) if the 0% are

 observed directly, and u = E(u I X,,, * * , Xnm ) if we only observe the Xxj. The
 theory is given in Theorem 3 and the required conditional distribution of u can

 be obtained using Lemma 1. The positive probability of duplications among
 the 0% causes some complications that will be illustrated in an example at the
 end of this section.

 (b) Estimating the (mixing) distribution function. Suppose we wish an estimate

 G for G with squared error loss, weighted according to some finite measure W
 on (-oo, so), i.e., L(G, G) = (G - 6)' dW. Then G = E(G 10, 02, 9, 0* )
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 1166 CHARLES E. ANTONIAK

 is the Bayes estimate when the 0i are observed, and G = E(G I XI,, . .., Xnm)
 when only the Xij are observed, the latter being the case when G(0) is an un-
 known mixing distribution.

 (c) The empirical Bayes problem. When G(0) is an unknown mixing distribu-

 tion, we may wish to estimate 0i given X,,, * * ., Xi. with squared error loss.
 The Bayes estimate is 0i = E(0j I X,,, * * , Xim.). We illustrate the problems dis-
 cussed above with an example where the prior guess is that the distribution is

 approximately normal. For conciseness of notation we let xf/(p, a2) denote the
 normal distribution function or measure as the context requires.

 EXAMPLE 4. Let G(0) be a sample distribution function from a mixture of

 Dirichlet processes on (- oo, oo) with transition measure a. = MI(u, a2),
 mixing distribution H = Ix(O, p2), and sampling distribution F. = ,x/(0, 92).
 Before treating problems (a), (b), and (c) in turn, we list some of the conditional

 distributions we will need in the analysis, for a sample of size 2, which will be

 sufficient to illustrate the interesting features of this model. To save space we

 omit the derivations, and to simplify many of the expressions we define the fol-

 lowing constants: a = (p2 + or2 + 2)-1 a' = (aT2 + r2)-l f3 = (2p2 + a2 + 92)-l'
 = (2p2 + 2a2 + 2)-1

 (6) G 01, 02 e - l(M (U, a2) + 601 + 682) dH(u I 08, 02)

 where H(u 101, 02) = _4(ifA a12), 1 = 20p2/(2p2 + a2) and a12 = p2a2/(2p2 + a2)
 when 01 # 02; Pi = 0p2/(p2 + a2), (A12 = p2a2/(p2 + (a2) when 01 = 2.

 (7) G IZ1 e r0. ?(M V(u, a2) + ar) dHxl(0, u)

 where Hx,(0, u) is bivariate Normal with p, = X, a(p2 + a2), 2 = X, ap2, a12=
 ar92(p2 + a2), a 2 = ap2(a2 + 92), a21 = a 2p2.

 (8) G I X1, X2 e 5 ! r(M (u, a2) + 6a1 + 602) dHX1,X2(01 02 a)

 where Hx VX2(01, 02 U) = Pd -'(J/I, ?) + p8.4/(p *, ?*), a mixture of trivariate
 Normal distributions. The mixing coefficient P8 = P(01 = 021 Xl, X2) = (1 +
 rM(x'~/~')* exp {a2((X - X2)2a_/4 _ X2fit)})-1 and Pd = 1 - pJ. The means,
 variances, and covariances of the distribution -l"'(y, 2) are a1 = a'(X ar2 +
 X2p 2 2 = a'(X2 2 + X2 p292), /13 = X213p2, a12 = a22 = a' 3Z.2 (a + 2a2p2 +

 2p2 + a292), a21 = a'~ Zp2, a31 = a32 = a'r32p2(a2 + r2), a3 2 = a' p2(a2 + 2)2.
 The component (y*, ?*) is a singular trivariate Normal where all the mass

 of the distribution is concentrated on the 01 = 02 plane. In this case, pl* =
 * - 2X(p2 + a2):' /1 = 2Xp2fi, A1*2 = 2*2 = 2*1 = ((P2 + 2) ) *2 =

 p2(2aOr2 + 92)f3', *3 = r*3 = p2T.2p
 We can now write down directly the solutions to the problems posed above.

 For (a) we get U,0 = 02p2/(a2 + 2p2) when 01 # 02, and ua = 8p2/(a2 + p2) when
 01 = 02. Thus the estimate u4 is discontinuous at 01 = 02. The heuristic expla-
 nation for this is that when 01 = 02, it is almost surely due to the atom at 01, and
 gives no information about u, hence the estimate for u reduces to that given only
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 MIXTURES OF DIRICHLET PROCESSES 1167

 01. If we are given X1 and X2, but do not get to see 01 and 02, we do not know
 whether 0 = 02, So we must consider two estimates, U = X22p2/(2p2 + q2 + 2),
 which is appropriate when 01 * 02, and u* = 22p2/(2p2 + 2a2 + r2) when 01 =
 02. Since we do not observe whether 01 = 02 or not, we must weight these two
 estimates according to the posterior probability, given X, and X2, that 01 = 02.
 This gives the estimate u' =-du + P8 z*

 The solution to problem (b), estimating G(0), requires that we compute

 E(G(0) I 01, 02) and E(G(0) I X1, X2). From Proposition 1 we get

 E(G(0) I10k, 02) = M -~.( /0- u\d( 1 2 2 20.
 M + 2 Mo (2a)dH(UIl O2)++2F2(O)

 For 01 * 02, we get

 M ( 2 202 a4 + 3p02or2\ b ~O+ 62 (9) G(0) = M ( 82 + ( + M + 2 2p2 2' 2p2 + a2 M + 2

 If 01 = 02, then for the reason given in (a) above, we get

 0(0' - M ('O ap2 v4 + 2a2p2' 2 a
 M + 2 p2 + (I2 p2 + r2 M?+ 2

 If we observe only the X1, X2, then

 E(G(0) | X1, X2)

 (10), 1 - X 2 + 32p29 T2(a4r4 a4p+ + 22 + p272>
 M + 2 2p2 + g2 + T2 2p2 + qJ2 + r2

 + 1 , (X2i 2 + X2fip292 T2(g4 + 2a2p2 + o292 + 2p2)
 M + 2 a2 + (2p2 + q2 ? T2)(a2 + r2

 ?108 LMr 2 X r2 - X2p2 4p2q2 + 2u 2 + 2 22 + 2 2
 LM+2 P2+222+ 2P2+262+9 2 ,< X( 2 +C2) 42p2,g + 2) g4+yr2+pr + .P-..

 M+ 2 2p2 + 2U2 + ri 2p2 + 2j2 + r2)
 Finally, we write down the solution to (c), the empirical Bayes problem. We

 have immediately 01 = E(0 I X1) = X1 p2/(p2 + 62 + z2) and 02 E(02 1 X1, X2) =
 Pd(X2 (2 + X2p p2Z.2/(u2 + r2) + p, 2X(p2 + a2)/(2p2 + 202 + 92). Moreover, if the
 formulation of the problem allows "hindsight," then given X1 and X2 we can

 obtain an expression for a revised estimate of 01 by replacing the subscript 2 by

 1 in the expression for 02. The effect of the possibility that 01 = 02 iS to shift

 0, J X1, X2 away from 01 I X1 and toward 02.
 Certain features of the preceding example illustrate an important difference

 between simple Dirichlet processes and mixtures of Dirichlet processes. Con-

 sider G e ?-(M_A7'(u, g2)) as above and assume for the moment that u is known,
 so that we have a simple Dirichlet process. Let Go = E(G) and G = E(G 01, 02),
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 1168 CHARLES E. ANTONIAK

 and let A denote the open interval (0, 02), (assume without loss of generality
 that 01 < 02). Note that G2(A) = GO(A)M/(M + 2) and in general, for any set
 which does not include any of the observations, the expected value of the prob-

 ability assigned that set under the posterior distribution is smaller by a factor

 M/(M + 2) than under the prior, even though the set may be "close" to the

 observations, as (01, 02) iS.

 However, if we let u be an index with mixing distribution _/Y(0, p2) as origi-
 nally in the example, then although 01 and 02 still do not contribute anything

 directly to G2(A), they do cause the mean of the posterior distribution of u given

 01 and 02 to be shifted away from zero toward A, and the variance to be de-

 creased to p2U2/(2p2 + g2). These changes may more than compensate for the fac-

 tor M/(M + 2), especially if p is large compared to a, (p > v), as seen from (9).
 Next consider the case where we only observe X1 and X2. Let B = (X1, X2),

 (assume X1 < X2), and G2* E(G I X1, X2). Referring to (10), we can see several
 terms which contribute to 62*(B). There is a change in the posterior distribution

 of u similar to that described for 01 and ,2 above. There is a component pd/(M + 2)
 which would have been concentrated on 01 if 01 had been observed, but which
 is now spread out around the estimated value of 01, and some of this mass falls

 in the interval B; similarly for 02. Finally there is a component 2p,/(M + 2)
 spread out around the midpoint of the estimates for 01 and 02. If p > a > T,

 then OX is near Xi, i = 1, 2 for the Pd components, and 0 is near X for the p,
 component. Thus G2*(B) may be much larger than G0(B), even though B does
 not contain X1 or X2.

 6. A regression problem. The problems considered in this section are similar

 to those in Section 5, in that the goal is a Bayes estimate of an unknown distri-

 bution function G on [0, 1], with loss function L(G, G) = 5 - (G(t) - G(t))2 dW(t),

 where W(t) is some finite measure. Again we assume G to be chosen by a

 Dirichlet process, but this time the sampling technique is more like that used

 in regression problems. If G(t) represents the cdf of G, then various values of

 t, say 0 < t1 < ... < tk ? 1 are chosen and the unknown value of G(ti) becomes

 a parameter in a distribution F(x I G(ti)). Samples from F(x I G(ti)) are used to
 make inferences about the value of G(ti).

 If G is a sample function from a Dirichlet process with parameter a, let

 Y, = G(tl), Y2 = G(t2)- G(tl), ***, Yk+1 = 1 - G(tk), and j31 = a(tl), P2 =
 a(t2)- a(tl), * *, &+1 = a(l) - a(tk). Then the joint distribution of Y1, .
 Yk+1 is Dirichlet with parameters P1, . *, k?+1. Hence the observations for dif-
 ferent values of i will not be stochastically independent in general. We illustrate

 the effect of this dependence with an example where F(x I G(t)) has a simple
 density function, and where k = 2.

 EXAMPLE 5. Let P be a Dirichlet process on ([O, 1], X), . the Borel sets,
 with strictly monotone parameter a and let F(x I G(t)) have density

 f(xIG(t)) = 2[xG(t) + (1 - x)(1 - G(t))] 0 < x < 1
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 MIXTURES OF DIRICHLET PROCESSES 1169

 and zero elsewhere. For given t, and t, define Y1 and Y2 as above and let X1 and
 X2 given Y1 and Y2 be independent samples from F(x I G(t,)) and F(x I G(t2))
 respectively. The joint density becomes

 f(x1, X2,y1, Y2) = 4[xlyl + (1 - x1)(1 - Yl)][X2(Yl + Y2) + (1 - x2)(1 - Y- Y2)]

 X Y1'-'Y2'(-1 - - Y1)P3-l F(M)

 A straightforward, but tedious, algebraic manipulation, using Bayes formula,
 yields

 (Y1, Y2 1 Xl = X1, X2 X2)

 e C-1(Xl, X2){Xl X2 P(10 + l)?(p, + 2, P25 P)

 + (1 -X)X2P2(32 + 1)0(l1 P2 + 2, p3)

 + (1 -X1)( - X2)3(P3 + 1)'(l, P25 P3 + 2)

 + x2 P1 2 9(P1 + 1, P2 + 1, P3)
 ? (X1 + X2- 2x1X2)V1P3?-(P1 + 1, P21 P3 + 1)

 + (1 -x1)V2 i3 ?(31, P2 + 1 P3 + 1)}

 where c(x1, x2) = (xlx2Pl(Pl + 1) + * * + (1 -XOP2P3).
 The algebraic manipulation referred to above makes frequent use of property

 (ii) of the Dirichlet distribution given in Section 2. The technique is not limited

 to linear densities, but the example shows that even with linear densities and

 small k, the posterior distribution is somewhat unwieldy for hand computations.

 Nevertheless, it is possible to transform any density which can be expressed

 as a finite polynomial in G(t) into a polynomial in the Yi's and absorb it into
 the Dirichlet density function. This leaves open the possibility of approximating

 density functions of interest by polynomials, and performing the required com-

 putations on a computer.

 7. A bio-assay problem. The next problem we treat is a type of bio-assay prob-

 lem. We wish to estimate the dose response curve of some animals to a certain

 drug. We assume, for simplicity, that an animal's response to a given dose of

 the drug is either positive, or negative (no response), and that each animal has

 a threshold that the dose given him must exceed to produce a positive response.

 However, this threshold varies from one animal to the next, so we treat it as a

 random variable with unknown distribution G. Kraft and van Eeden [12] have

 treated this problem using a process of the Dubins and Freedman type [5] to

 choose the distribution G. Our approach will be to let G be a sample function

 from a Dirichlet process. Essentially the same model has been considered by

 Ramsey [ 15].

 Let (), _) = ([0, 1], X) be the unit interval with Borel sets and assume,
 then, that G is chosen by a Dirichlet process with parameter a, and we select

 some dosage level t and administer this dosage to n animals. G(t) is the expected

 proportion of the animals whose response threshold is less than or equal to t,
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 that is, we "expect" nG(t) animals to give a positive response. Of course, G(t)

 is unknown, since G was chosen at random, but since G was chosen by a

 Dirichlet process, the prior distribution of G(t) is Me(a(t), M - a(t)). And, as
 is well known, the posterior distribution of G(t) given k positive responses in n

 trials is Me(a(t) + k, M + n - k - a(t)) where Me(a1, a2) is the Beta distribution.
 This analysis for one dosage level was deceptively simple, since things become

 much more complicated with the use of more than one level, as may be seen in

 the case when two levels, t1 and t2 are used, with n, and n2 trials respectively.
 Assume that t1 < t2, and [a(t2)- a(tl)] > 0. Let Ki be the number of successes
 among the ni trials at ti. Then the joint density of K1, K2, G(tl), G(t2) is most
 easily expressed in terms of Yi's, where Y1 = G(tl), Y2 = G(t2)- G(tl) and Y3 =
 1 - G(t2); and 1i's, where /31 = a(tl), P2 = a(t2), a(l) - a(t2). The joint
 density of (K1, K2, Y1, Y2) then becomes

 (ni)( 2)y k1(l - yl)n,-k(yl + y)k2(Y3)2-k2 F() Y1'Y2-21Y3_31

 on S = {Yl,Y2IYl _ 01 Y2 _ 0y1 +Y2 < 1} and wherey3 = I-y1-Y2.
 We can transform this into an expression which is recognizable as a mixture

 of Dirichlet distributions by making the substitutions (1 - Yi) = Y2 + y3, and

 expanding (Y2 + y3)"r-kl and (yl + y3)k2 using the Binomial formula. This leads
 finally to an expression for the conditional distribution of Y1, Y2 given K1 = kl,

 K2= k2 as 'kI =1 =0kl 1+ k1+i, 2?+ n-k k2-i-I, 3+ n2-
 k2 + j) where aij = bijl/E k >OE nl1 b.i; and

 b _ tn- ki 'k28 r(/, + kl+ i)r(i2+ n1-k, + k2 -i-])r(33 + n2- k2 +i) (71 V 1) (\) i)(3 + ()(p)(
 Before proceeding to our goal of a Bayes estimate of G we examine the

 expressions above in more detail to determine the source of the increased com-

 plexity. It is helpful to consider the problem from a slightly different viewpoint.

 Saying that K1 of the n, trials at t1 were successes is statistically equivalent to
 saying that a sample X1, ..., ATX of size n1 from G was taken, but all that was
 recorded was that K1 of the Xi's were less than or equal to t1. In particular, of

 the n, - K1 values of the Xi which were greater than tl, it is known how many
 fell in the interval (tl, t2] and how many in (t2, 1]. Hence we let J denote the
 number of the Xi's falling in the interval (t2, 1]. Since the true value of J is

 unknown, we must enumerate and weight appropriately all possible values of J

 from 0 to n1-K1. Similarly, if Y1 Y2, *. *, Y,2 is a sample of size n2 from G,

 and K2 values of Yi are less than or equal to t2, we let I denote the number of
 the Yi's that fell in the interval [0, tl]. Now if it were known that I = i and
 J =j, the joint distribution of G(t,), G(t2)- G(t,), and 1 -G(t2), given K1 = kl,
 J =j, K2 = k2, I = i would be Dirichlet with parameters (/, + k, + i, j2 + n, -

 k1 + k2 - i - Il P3+ j + n2- k2). Since I and J are unknown, the proper ex-
 pression is a mixture over all possible values of I and J as given by the double
 summation above.
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 MIXTURES OF DIRICHLET PROCESSES 1171

 By making a similar analysis for the case where there are three thresholds,

 one can show the corresponding summation runs over 6 indices, and in general,

 for m thresholds there would be m(m - 1) indices to be summed over. Gener-

 ally such tasks are best left to the computer.

 To resume our treatment of this problem we compute our estimate G of G.

 Recall that for squared error loss, the Bayes estimate is the mean of the posterior

 distribution of G. Moreover, since G is linear in the intervals [0, t1), [tl, t2),
 [t2, 1], we need only calculate G(t1) and G(t2).

 -> G t _ k2 1;1-kl a k, + i1
 Gt = E(G(tl)) = ] i + 2 +a =0E ( 1i= i M+ n1 + n2

 G(t2)= E(G(4)) = Ei=0 E i3= + M2 + fl + k,-]

 G(t) = G(tl)tltl O _ t < ti
 = G(tl) + [(t -0)(4 - t1)]{G(t2)_ G(tl) I, tl < t _< t,
 = G(t2) + [(t- t2)/(1 - t2)]{1 -(t2)}, t2 < t? 1

 We recognize G(tl) as a weighted average of the various estimates of G(tl) we
 would make if we knew I and J. It can be shown that for large M this estimate

 approaches the intuitively reasonable value (a1 + k1 + (al/a2)k2)/(M + n1 + n2).
 For small values of M, however, the situation is quite different, and contrary

 to intuition. Recall that M is, in a sense, a measure of our confidence in the

 parameter a. Very small values of M can be interpreted as meaning we have

 practically no prior information about G, and our estimate of the distribution

 will be heavily weighted in favor of the empirical distribution function. A less

 obvious consequence of a small M is the implication that the process chooses

 distributions with most of their mass concentrated at a few points.

 EXAMPLE 6. Let (9, ) = ([O, 1], M), a(t) = Mt, n1 = n2 = 100, ki = 1,
 k2 = 99, ti = X, t2 = 2. In words, of 100 samples where thresholds were com-
 pared with t1 = , one was less than or equal to 1 99 were greater than :. Of
 100 samples compared with t2 = 2, 99 were less than or equal to 2, and 1 was
 greater than 2. Recalling that because M is small we expect the process to have

 chosen a distribution with most of its mass on a few points, we could readily

 explain the sample result by deciding there is a very large jump in G somewhere

 on (3, 2], and significantly smaller jumps on [0, 3] and (2, 1], a total of three

 jumps. When we evaluate the weights aij, however, we find that the product
 17(M/3 + 1 + i)r(M/3 + 198 - i -j)F(M/3 + 1 + j) is largest, as M -0, for
 i = 99, j = 99, since then the center factor becomes F(M/3) and r(M/3) -- oo
 as M -O 0. But when we check the interpretation of these values for I and J,
 we discover they correspond to estimating F(I) = F(2) = 2. As M -* 0, the
 dominant posterior distribution is the one that gives a jump - 2 to [0, s), and
 a similar jump to (2, 1], and practically no weight to [1, 2)! Roughly speaking,

 the posterior Dirichlet process gives most of its weight to those distributions
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 1172 CHARLES E. ANTONIAK

 which can "explain" the sample with the fewest number of jumps, in this case

 two jumps instead of the more reasonable sounding three.

 We conclude our treatment of the bio-assay problem with a brief discussion
 of the design problem: Given the model of the bio-assay problem described
 above, and a budget, say, of n observations total, what are the "best" thresholds

 ti to test at, and what are the optimal numbers ni to test at each threshold?
 While this problem for general a and W is intractable, we nevertheless feel that
 for the special case a linear on [0, 1] and W uniform on [0, 1], the following
 conjecture is true.

 Conjecture. Let 0 be [0, 1] and _v the Borel sets, and let the bio-assay re-
 sponse curve G(6) be a sample function from a Dirichlet process on (0, .W)
 with parameter a(t) = Mt. If we have a total n _ ni of observations ni to
 be compared with thresholds ti, and we wish to estimate G by G to minimize

 0S(G- G)2dW, W=ton [0, 1], then

 (i) If k is fixed beforehand, the Bayes design is to set ti = i/(k + 1) and make

 the ni as nearly equal as possible, i.e., In - nj < 1 for all i? j
 (ii) If k is not fixed, the Bayes design is to let k = n and take one observation

 each at the thresholds ti = i/(n + 1).

 Ramsey [15] reaches this same conclusion independently for a similar model.
 A more intriguing question is what the optimal sequential design strategy is for
 fixed sample size, and for variable sample size, with the goal of achieving con-
 fidence bands for G(t). The author has not had much success in seeking answers

 to these questions.

 8. A discrimination problem. Statistical discrimination problems may be de-

 scribed as follows. We are given samples Xi,, * ., X2kt from unknown distribu-

 tions pi, i = 1, * * *, k and a sample Y1, * *, Y,. known only to come from one
 of the p*'s. The problem is to decide which one.

 We might model such a problem by assuming the pi's are independent samples
 from a Dirichlet process with parameter a, a(0) = M. A little preliminary

 analysis then reveals that the solution is very sensitive to the assumptions we

 make about a. If we assume a to be continuous, then the posterior distributions

 of the pi will have parameters ai with atoms of various sizes at each distinct
 value of the Xx,. Moreover, with probability one, the samples from each pi
 will be disjoint from the samples from all the other p's, but with probability

 I - (kiM + ki)", at least one sample point Yi will match some sample point
 Xij when the Y's come from distribution pi, in which case the choice of i is
 clear. If, however, none of the Y, matches any of the values of the Xij, then
 the choice of the pi to ascribe the Yi to becomes biased in favor of the pi from
 which we have the smallest sample of Xs, i.e., smallest ki. If, in this case, the
 ki are all equal, the sample of Y's has not given us any information, and a random
 decision is made.
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 MIXTURES OF DIRICHLET PROCESSES 1173

 For these reasons we will assume that a is purely discrete, and for more

 generality we assume Pi e .(aN)a ..., Pk e ?((ak), where a1 through ak are all
 discrete with the same support.

 In the notation we have been using, let e be the nonnegative integers and

 DW the a-algebra generated by the singleton sets. Let ai be the finite nonnega-
 tive a-additive measure defined on _Q/ through its values on the singleton sets,

 ai = (ai a, * *, ai., *. * *) where ai({]}) = aij, and jail = E Z=0 ai%. Let Pi E
 `2(a%) and XiA, *, Xik be a sample from Pi. Let Y1, * *, Y,n be a sample from

 some Pi, where the prior probability that Y1, * Y, Yn e Pi is rj, j = 1, *,k.
 Let L(i, j) denote the loss associated with deciding the Y's come from Pi when
 they come from P3. We seek a nonrandomized decision rule which minimizes
 our expected loss given the observations.

 First we notice that the distribution of Pi given Xil, , Xi,, is just .(ai'),
 where

 as = (aio + mio, ail + mil, *a, ai+ mi *
 = (a%o, a1 , aC, )

 and mi6 is the number of Xi's equal to j, j 0, 1,.... Hence the problem reduces
 to deciding which of k different Dirichlet processes with known parameters the

 samples Y1, * * *, Y,, come from. The discrimination problem has been reduced
 to a classification problem. To treat this we calculate the Bayes risk ri for each
 i, where

 r,= =l L(i, j)w(]j I Y1, . * *, Yn) , w(i I Y1, Y,") = ri P(Y I i)/P(Y)

 P(Y I i) = I| a(k-j )/a6t( n) P( Y) = =i P(Y I i) ,

 where k, = number of Y's equal to j. The Bayes decision rule chooses s where
 r, = min r. If, for example L(i, j) = 0, i = j; 1, i t j, and wri = 1/k for all i,
 then the Bayes decision rule chooses that s for which P(Y I s) = maxi P(Y I i).
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