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 Statistica Sinica 4(1994), 639-650

 A CONSTRUCTIVE DEFINITION OF DIRICHLET PRIORS

 Jayaram Sethuraman

 Florida State University

 Abstract: In this paper we give a simple and new constructive definition of Dirichlet
 measures removing the restriction that the basic space should be 1Zk- We also give
 complete, self contained proofs of the three basic results for Dirichlet measures:
 1. The Dirichlet measure is a probability measure on the space of all probability

 measures.

 2. It gives probability one to the subset of discrete probability measures.
 3. The posterior distribution is also a Dirichlet measure.

 Key words and phrases: Bayesian nonparametrics, random probability measures, Di
 richlet measures.

 1. Introduction

 Dirichlet measures form a class of distributions of a random probability mea
 sure P on a measurable space (X, B) and are useful in Bayesian nonparametrics.
 The purpose of this paper is to give a constructive definition of Dirichlet mea
 sures for arbitrary measurable spaces (X,B), and to give a self contained proof
 showing that it satisfies the main properties PI, P2 and P3, which are defined
 later in this section. This is done in Sections 2, 3 and 4. This definition simplifies
 the proofs of earlier results of Ferguson (1973) and Blackwell (1973) and is also
 useful to prove new results. This is illustrated by the examples in Section 5.

 The following notations are required to give a rigorous definition of a Dirichlet
 measure.

 Let X be a random variable, representing "data", taking values in a measur
 able space (X,B) and let its unknown probability measure be P. The unknown
 probability distribution P, is the "parameter" in the nonparametric problem,
 and it takes values in V, the collection of all probability measures on (X, B). Let
 C be the smallest a-field generated by sets of the form {P : P(A) < r} where
 A £ B and r 6 [0,1]. Let v be a probability measure on (V,C). Such a probabil
 ity measure v can be used as a prior distribution for P. The Bayesian solution is
 to compute the posterior distribution, ux, of P given X, and use it for decision
 making.

 If X is a finite set {1,2,..., k}, say, then every probability measure P on X
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 640 JAYARAM SETHURAMAN

 is given by a vector (pi = P({1}),... ,pk = P({k})) taking values in the simplex
 Afc = {(pi,... ,Pk) : 0 < pi < 1,..., 0 < pk < 1, J2Pj = 1}) which is a subset of
 1Zk. It is therefore easy to define probability measures on A*. In particular, we
 can use the Dirichlet measures on finite dimensional spaces, which are defined in
 the next paragraph.

 Let (71,72, • • •, 7jt) be a vector such that 7, > 0, j = 1,2,..., k, and such
 that > 0- Let z7i, j = 1,2,..., k, be independent Gamma random variables
 with scale parameter 1 and shape parameters 7,, j = 1,2,..., k, respectively. Let
 z — and Uj = {z-tjz),j = 1,2, The joint distribution of the ran
 dom variable (j/i, y2, ■ ■ ■, yk), taking values in A*,, is defined to be fc-dimensional
 Dirichlet measure

 Let e, denote the fc-dimensional vector consisting of 0's, except for the jth
 co-ordinate, which is equal to 1. Notice that the Dirichlet measure Vej puts all
 its probability mass at the point ej. Furthermore, it is interesting to note that
 V-zej = Vej. This fact will use used later in the proof of Theorem 4.3.

 When X is not a finite space, P takes values in an infinite dimensional space,
 and hence the definition of a prior distribution for P has always required a more
 careful description of the attendant measure theoretic problems. Bayesian non
 parametrics with general data spaces X, becomes feasible only if one can define
 a large class of prior distributions v on ('P,C) and also obtain the corresponding
 posterior distributions vx. The class of Dirichlet measures, which are probability
 distributions on (V,C), forms one such family of prior distributions.

 The intuitive definition of a Dirichlet measure in the general case is easy to
 give. Let A4 be the class of non-zero finite measures on (X,B) and let a € A4.
 A probability distribution v on (V,C) is said to be a Dirichlet measure with
 parameter a if for every measurable partition {Bi, B2, ■ ■ ■, Bk} of X, the distri
 bution of (P(Bi), P(B2),..., P(Bk)) under v is the finite dimensional Dirichlet
 distribution T>(a(B1),a(B2),...,a(Bk))• When such a probability measure u on (V,C)
 can be demonstrated to exist, it will be denoted by T>a.

 There are three main properties of Dirichlet measures that make them useful
 in Bayesian nonparametrics. Apart from their marginals having finite dimen
 sional Dirichlet distributions, they possess the following three properties:

 PI Va is a probability measure on (V,C),
 P2 Va gives probability one to the subset of all discrete probability measures on

 (X,B), and
 P3 the posterior distribution Vx is the Dirichlet measure Va+sx where 6x is the

 probability measure degenerate at X.

 We now give a brief review of earlier work on the definition of a Dirichlet
 measure and indicate some of the difficulties. Dirichlet measures were introduced

This content downloaded from 115.27.192.252 on Thu, 09 May 2019 02:36:45 UTC
All use subject to https://about.jstor.org/terms



 A CONSTRUCTIVE DEFINITION OF DIRICHLET PRIORS 641

 in Ferguson (1973) and in Blackwell and McQueen (1973). We will now describe
 the work in these two papers.

 It is easy to see that the distributions of (P(Pi), P(B2),..., P(Bk)) give rise
 to a consistent family of measures over the class of all partitions (B\, B2,..., Bk).
 Ferguson (1973) argued on the basis of the Kolmogorov consistency theorem,
 that this fact leads to a unique probability measure on [0, l]s with its associated
 Kolmogorov er-field. Furthermore, for any given sequence of disjoint measurable
 sets Bi, B2, ■ ■., the probability is one that

 p(uß,-) = Ep(ßi), (L1)

 where P(-) is the canonical representation of a point in [0,1]B. This set of prob
 ability one may depend on the sequence Bx, B2,.... Such a P is a member of V
 if and only if (1.1) were true for all disjoint sequences Bi, B2, ■ ■.. The collection
 of such disjoint sequences is uncountable. This presents a problem in making
 this definition rigorous and establishing property PI. For the special case where
 X is the real line, or more generally a separable complete metric space, one can
 use a result of Harris ((1968), Lemma 6.1). This result states that a verification
 of (1.1) for a select countable number of cases of disjoint sequences of sets is
 sufficient to ensure that (1.1) holds for all disjoint countable sets and that the
 set function P is a probability measure. An appeal to this result is one way to
 show that there is a probability measure on ('P,C) with the required properties
 and this defines the Dirichlet measure Va.

 In a later section, Ferguson ((1973), Section 4) gives an alternative construc
 tive definition of the Dirichlet measure which shows that it gives probability one
 to the subset of discrete probability measures. However, it takes some effort to
 see that the two definitions are equivalent.

 Ferguson (1973) also establishes the posterior distribution property P3 by
 using a very peculiar definition (see his Definition 2) for the joint distribution
 of (P, X), rather than the straightforward definition that the distribution of X
 given P is P.

 Blackwell and McQueen (1973) appeal to the famous theorem of de Finetti to
 show that there is a one-to-one correspondence between sequences of exchange
 able random variables and probability measures on (P,C). A particular case of
 exchangeable random variables, namely the generalized Polya urn scheme, cor
 responds to the Dirichlet measure. In this paper and in Blackwell (1973), they
 establish the three properties PI, P2 and P3. Their proof is elegant but quite
 indirect and also requires the space A to be a separable complete metric space.

 Freedman (1963) and Fabius (1964) contain early work on tail-free priors,
 which include Dirichlet priors, for the case when X is the set of integers or [0,1],
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 642 JAYARAM SETHURAMAN

 We briefly summarize the rest of the paper. Let (X,B) be an arbitrary
 measurable space. Let £ be the usual Borel a-field restricted to [0,1]. In Sec
 tion 2, we define a function P based on a sequence of i.i.d. random variables
 (0n, Yn),n = 1,2,..., taking values in ([0, l]x X,£ x B). See (2.1). By its very
 definition, P is a random measure taking values in (V,S) and giving probability
 one to the subset of discrete probability measures on (X,B). This establishes
 properties PI and P2. We give a direct proof, in Theorem 3.4 of Section 3, that
 the finite dimensional marginal distributions of P are Dirichlet distributions.
 This establishes that the distribution of P is a Dirichlet measure. In Theorem

 4.3 of Section 4 we prove property P3 thus establishing that the posterior dis
 tribution is also a Dirichlet measure. The definition and proofs are all given in
 some detail to make this paper self contained.

 This constructive definition of a Dirichlet measure was presented at an in
 vited paper of an IMS meeting in 1980 and also announced in Sethuraman and
 Tiwari (1982) which dealt with the convergence of Dirichlet measures. This def
 inition has since been used by several authors to simplify previous calculations
 and to obtain new results involving Dirichlet measures. For instance see Doss
 (1991), Ferguson (1983), Ferguson, Phadia and Tiwari (1992), Kumar and Tiwari
 (1989).

 2. Constructive Definition of the Dirichlet Measure

 Let a be a non-zero finite measure on (X,B). Let ß(B) = a(B)/a(X)
 be the normalized probability measure arising from a. Let B(7,6) stand for
 the Beta distribution on [0,1] with parameters 7 and S. This Beta distribu
 tion is the marginal distribution of the first co-ordinate of the Dirichlet measure
 P(7, S) on the two-dimensional simplex A2 defined earlier. Let J\f = {1,2,...}
 be the set of positive integers and let P be the cr-field of all subsets of Af. Let
 {D, S, Q} be a probability space supporting a collection of random variables
 (0, Y, 7) = ((9j,Yj),j = 1,2,...,/) taking values in (([0,1] x X)°° xj\f,{£ x
 B)°° x P), with a joint distribution defined as follows. The random variables
 (0i, 02) • • •) are independently and identically distributed (i.i.d.) with a common
 Beta distribution B(l,a(X)). The random variables (Yi,Y2,...) are indepen
 dent of the (0!, 02, - - -) and i.i.d. among themselves with common distribution
 ß. Let p1 = 0i and let pn = 0nE[i<m<n-i(1 - #m) for n = 2,3,.... Notice
 that Ei<m<#Pm = 1 - ]li<m<n(1 - 0m) 1 with Q-probability one. Let
 Q(I = n|(0, Y)) = pn, n = 1,2,.... The existence of a probability space (fi, S, Q)
 and such a sequence of random variables (0, Y, 7) follows from the usual construc
 tion of a product measure, and does not require any restrictions on (X,B), such
 as its being a separable complete metric space.

This content downloaded from 115.27.192.252 on Thu, 09 May 2019 02:36:45 UTC
All use subject to https://about.jstor.org/terms



 A CONSTRUCTIVE DEFINITION OF DIRICHLET PRIORS 643

 Define
 OO

 P(e,Y;B) = P(B) = J2pMB)> (2-1)
 n=1

 where Sx(-) stands for the probability measure degenerate at x.
 This is the new constructive definition of a Dirichlet measure. As convenience

 dictates, we drop all or part of the arguments (0, Y, B) and denote the random
 measure in (2.1) by P, for simplicity of notation. Since P is clearly a measurable
 map from (fi, S) into (V, C) and takes values in the subset of discrete probability
 measures, properties PI and P2 are self evident.

 Notice that the random variable I introduced above has not been used in

 the definition of P. It will be used later, in Section 4, to prove the posterior
 distribution property P3.

 A more direct way to describe the constructive definition in (2.1) is as follows.
 Let Yi,y2,... be i.i.d. with common distribution ß. Let {p\,P2,...} be the prob
 abilities from a discrete distribution on the integers with discrete failure rate
 {9i,&2, • • •} which are i.i.d. with a Beta distribution B(l, a(X)). Let P be the
 random probability measure that puts weights pn at the degenerate measures ôYn,

 n = 1,2, This is the random probability measure P described in (2.1). The
 alternative definition given in Ferguson ((1973), Section 4) uses a different set of
 random weights which are arranged in decreasing order. The use of unordered
 weights in this paper simplifies all our calculations. It is interesting to note that
 the weights used by Ferguson (1973) are equivalent to our weights rearranged in
 decreasing order. However, it is not clear that there is an easy way to unorder
 the weights of Ferguson (1973) to obtain weights with the simple structure of
 (2.1).

 3. The Distribution of the Random Measure P is T>„

 We will digress a little before establishing that the distribution of P is the
 Dirichlet measure T>a.

 Let 0*n = On+i,Y* = Yn+i, n = 1, 2,..., and let J — I—1. Using the definition
 (0*, Y*, J) = ((0j, 02, • ■ •)' On*) Y£,...), J), we see that the random probability
 measure P in (2.1) satisfies

 P(0,Y;B) = e16Yl(B) + (1 - 61)P(6*,Y*; B). (3.1)

 Notice that (0*, Y*) has the same distribution as (0, Y) and is independent
 of (0i, Yi). Thus we can re-write (3.1) as the following distributional equation
 for P:

 P = 016Yl + (1 - 0i)P, (3.2)

 where on the right hand side P is independent of (0i, YJ.
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 644 JAYARAM SETHURAMAN

 Theorem 3.4 below uses the distributional equation (3.2) to show that the
 distribution of P is the Dirichlet measure Va. The proof of this theorem uses
 well known facts about finite dimensional Dirichlet measures and a result on

 the uniqueness of solutions to distributional equations, which are given below as
 Lemmas 3.1, 3.2 and 3.3.

 Lemma 3.1. Let 7 = (71,72,..., 7*) and 6 = (61,62, ■ • •, 6k) be k-dimensional
 vectors. Let U, V be independent k-dimensional random vectors with Dirichlet
 distributions and Ve, respectively. Let W be independent of (U,V) and have
 a Beta distribution B(7, 6), where 7 = Yflj antd à = Yf&j- Then the distribution
 ofWU + (1 — W)V is the Dirichlet distribution V1+6.

 Lemma 3.2. Let 7= (71,...,7k), 7 = £77- and let ßj = 7^/7, j = 1,2,...,k.
 Then

 y ßjT>J+ej = t,7.

 This conclusion can also be written as E(D1+Z) = Dy, where Z is a random
 vector that takes the values e; with probability = 1,.. •, k.

 The proofs of these two lemmas are found in many standard text books, for
 instance in Wilks ((1962), Section 7).

 Lemma 3.3 stated and proved below shows that certain distributional equa
 tions have unique solutions. Such results appear in several areas of statistics,
 notably in renewal theory. For a recent work which gives more general results
 see Goldie (1991). The following lemma is sufficient for our purposes. Its proof,
 which is not new, is given here to make this paper self contained.

 Lemma 3.3. Let W, U be a pair of random variables where W takes values
 in [—1,1] and U takes values in a linear space. Suppose that V is a random
 variable taking values in the same linear space as U and which is independent
 of (W,U) and satisfies the distributional equation

 V = U + WV. (3.3)

 Suppose that P(|W| = 1) fi 1. Then there is only one distribution for V that
 satisfies (3.3).

 Proof. Let V and V' be two random variables whose distributions are not equal
 but satisfy Equation (3.3). Let (Wn,Un) be independent copies of (W,U) which
 are independent of V, V'. Let Vi = V, Vf = V' and define, recursively, Vn+i =
 Un + WnVn and Vf+1 = Un + WnVf for n = 1,2,.... From the distributional
 equation (3.3), the V^'s have the same distribution as V and the Vf s have the
 same distribution as V'. However,

 \Vn+l - K+ll = \wn\ \vn - vf \ = n IWmWV-vfi^o
 l<m<n
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 A CONSTRUCTIVE DEFINITION OF DIRICHLET PRIORS 645

 with probability 1, since the W„'s are i.i.d., P(|Wi| < 1) = 1, and JP(|W7!| =
 1) < 1. This contradicts the supposition that the distributions of V and V are
 unequal and proves that if the distribution of V satisfies (3.3), then it is unique.

 Theorem 3.4. Let {Bi, B2,..., Bk} be a measurable partition of X and let P =
 (P(Px), P(P2)>..., P{Bk)). Then the distribution of P is the k-dimensional
 Dirichlet measure P(a(B1),a(n2),...)Q(Bfc))

 Proof. Let D = (6Yl(Bi),6Yl(B2),.. ■ ,6Yl(Bk)). Notice that P(D = e^) =
 P(Yj G Bj) = ß(Bj),j = 1,2From (3.2) we see that P satisfies the
 distributional equation

 P = Ö1D + (1-01)P, (3.4)

 where, on the right, 9X has a Beta distribution B(l,a(X)), D is independent
 of 9X and takes the value ej with probability ß(Bj),j — 1,2, ...,k, and the
 Pdimensional random vector P is independent of (0l5D).

 We first verify that the ^-dimensional Dirichlet measure for P satisfies the
 distributional equation (3.4) and then show that this solution is the unique so
 lution.

 Let the distribution of P on the right of (3.4) be the fc-dimensional Dirichlet
 measure D(a(Bi),a(B2),...,a(B,.))• The Pdimensional Dirichlet measure Ve. gives
 probability 1 to e,. Given that D = e^, the distribution of 6iD + (1 — $i)P is
 the distribution of 9iVe. + (1 — 9i)V(a(Bl),a(B2),...,a(Bk)) anc^ this, by Lemma 3.1,
 is P(Q(B1),a(B2),..-,a(ßfc))+e;, - Summing over the distribution of D is equivalent to
 taking a mixture of these Dirichlet measures with weights ß(Bj) = a(Bj)/a(X),
 which by Lemma 3.2, is equal to P(Q(B1),a(B2),...,a(Bfc))- This verifies that the k
 dimensional Dirichlet measure satisfies the distributional equation (3.4). Lemma
 3.3 shows that this solution is unique. This completes the proof of Theorem 3.4.

 4. The Posterior Distribution of P is Va+sx

 Let X = Yi. Then X is a random variable from (f1,S) into X defined
 explicitly as a function of (0, Y, I). The next lemma shows that the distribution
 of X given P is P and hence the joint distribution of (P,X) is that of the
 "parameter" and "data" in a Bayesian nonparametric problem.

 Lemma 4.1. The distribution of X given P is P.

 Proof. Let B 6 B. By direct calculation, we get

 Q(X € B\(6, Y)) =YJQ{Xe B\I = n, (0, Y))Q(J = n\(d, Y))
 n

 = J26Yn(B)Pn = P(B).
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 Since this conditional probability is a function of P, it immediately follows that
 Q(-\P) exists as a regular conditional probability and Q(X G B\P) = P(B) with
 Q-probability 1.

 We now come to the posterior distribution of P, i.e. the distribution of
 P given X. We do this by separately obtaining the conditional distribution of
 (0, Y) given 1 = 1 and given I > 1. When / and g are functions of (6, Y,I), we
 will use the notations £(/) and C(f\g) to denote the distribution of / and the
 conditional distribution of / given g, under Q, respectively.

 Lemma 4.2. The following are the conditional distributions of (6, Y, I) given
 1=1 and given I > 1:

 £((0!, Yi),(0*, Y*)|J = 1) = B(2,a{X)) x C(9, Y) (4.1)

 and

 £((0!, Y*,J)\I > 1) = B(l,a(X) + 1) x C(9, Y, I). (4.2)

 Proof. Note that Q(I = 1|(0, Y)) = 9X. Thus, if A, E £, Bj G B,i = 1,2,... ,n,
 we have the relation

 Q{9i G Ai, Yi G Bi,i = 1,2,... ,n, I = 1}

 a  [ I(xi G Ai,Ui G Bui = 1,2, ...,n)x1 JJ [(1 - Xi)a{x) 1dxiß(dyi)\.
 l<i<n

 This implies that, conditional on I = 1, 9X has distribution B(2,a(X)), the dis
 tributions of 9i,i = 2,3,..., n, and Yt,i = 1,2,... ,n, are all unchanged, and all
 these are independent. This gives all the finite dimensional conditional distri
 butions and proves (4.1). The proof of (4.2) follows along the same lines since
 Q{I> 1|(0,Y)) = 1-0,.

 Theorem 4.3. The posterior distribution of P given X is the Dirichlet measure
 Ba+Sx •

 Proof. Let P* = P{6*,Y*). We can rewrite (3.1) as P = 9x8Yl + (1 — 6X)P*.
 When I = 1, we use (4.1) and obtain

 C(P\X,I = 1) = £(616Yl + (1 - ex)P*\X,I = 1)

 = e[6x + (1 - e[)p**, (4.3)

 where 9[ has distribution B(2, a(X)), and P** is a random probability measure,
 independent of 9[, whose distribution is the Dirichlet measure Va. The ran
 dom probability measure putting all its mass on the degenerate measure 8X is
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 A CONSTRUCTIVE DEFINITION OF DIRICHLET PRIORS 647

 the Dirichlet measure VSx which is also equal to V2gx. Since 6[ has a Beta
 distribution B(2,a(X)), this latter choice allows us to use Lemma 3.1 to obtain

 C(P\X,I = 1) = Va+2Sx. (4.4)

 When I > 1, we use (4.2) and first obtain

 C{e*,Y*,X\I > 1) = £{d,Y,X) (4.5)

 since X = Y} = Y J on 7 > 1. Thus

 C(P\X,I> 1) = £(Mn + (1 - Ô1)P*\X,I > 1)

 = 0'I6Yi + (1 - (4.6)

 where Yi has distribution ß, Ö" is independent of Yx and has distribution B{ 1,
 a(X) + 1), and P*** is a random probability measure, independent of (Yi,0"),
 whose distribution is C(P\X), in view of (4.5). We can combine (4.3) and (4.6)
 to obtain a distributional equation for £(P|X) as follows.

 C{P\X) = A(9[6X + (1 - 0i)P") + (1 - A)(d'l6Yl + (1 - e'l)P***), (4-7)

 where all the random variables on the right are independent and have the dis
 tributions previously specified, and the random variable A takes values 1 and 0
 with probabilities and respectively. Notice that the distribution
 of P*** is C(P\X) which makes (4.7) a distributional equation.

 From Lemma 3.3 we conclude that if there is a solution to (4.7), it will be a
 unique solution. We now verify that C(P\X) = T>a+sx satisfies the distributional
 equation (4.7). Relation (4.4) can be rewritten as

 [SX + (1-9[)P** ^Va+2Sx. (4.8)

 By conditioning on Yx and using Lemma 3.1, and then taking expectations with
 respect to Yx, we find that

 e';sYl + (l - sà E(va+Sx+Syi), (4.9)
 where Yx has distribution ß. Let Z be a random variable in (T, B) with distri

 buti0n (*(X)+1)6X + (aW + D^ = (°W + l) ' Combilling (4-8) and (4-9)' and Usin§
 Lemma 3.2 on mixtures of Dirichlet measures, we conclude the distribution of
 the random measure in the right hand side of (4.7) is equal to

 'Pa+26x + / / \E(Va+Sx+sYl) - E(Va+Sx+Sz) (a(X) +1) ™ W + l)
 = Va+Sx
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 648 JAYARAM SETHURAMAN

 This proves that T>a+Sx is the posterior uiouiiuuiruii ui x gtvcu yi .

 Suppose that the random variables Xx,X2,..., Xn given P are i.i.d. with
 common distribution P, where P is distributed according to the Dirichlet measure
 T>a. This is the situation when a sample of size n is drawn. The posterior
 distribution of P given (Xx,..., Xn) follows from Theorem 4.3 and the following
 general fact described in the next paragraph.

 Let the random variables Xx, X2, ■ ■ ■, Xn given P be i.i.d. with common
 distribution P, where P has an arbitrary prior distribution u on (V,C). Let
 uXl be the posterior distribution of P given Xx. Then the joint distribution of
 (X2,X3,... ,Xn) given Xx is the same as the joint distribution of the random
 variables (Y2, Y3,..., Yn) which can be described after introducing a new random
 probability measure P1 as follows: given P', Y2,Y3,... ,Yn are i.i.d. with common
 distribution P', and P' has distribution vXl.

 If the prior distribution of P is Va, then from this remark and Theorem 4.3,
 it follows that the posterior distribution of P given (Xx,X2,..., Xn) is Va+Y,sx ■

 5. Examples

 The first application of our construction of Dirichlet measures was made in
 Sethuraman and Tiwari (1982) wherein the weak convergence of a sequence of
 Dirichlet measures was established. There is no other method available to prove
 such weak convergence. See that paper for the details.

 More conventional applications have appeared in several papers, wherein old
 and new results have been proved using our construction of Dirichlet measure.
 See, for instance, Ferguson (1983), Ferguson, Phadia and Tiwari (1992), Kumar
 and Tiwari (1989).

 We now give another application wherein one needs to simulate a random
 measure P with a Dirichlet measure and a random variable X with distribution P.

 It is impossible to generate such a random measure P, even with our construction,
 since it will mean generating an infinite number of random variables. However,
 if our interest is in X, then this can be accomplished because our construction
 of a Dirichlet measure shows that one needs to know only a finite number of the
 infinite number of the variables in the definition of P. This has been done in a

 recent paper of Doss (1991). We now sketch some of the details.
 Let a be a non-zero measure in A4 and ß(B) = a(B)/a{X) be the normalized

 measure of a. Suppose that the prior distribution of P is the Dirichlet measure
 T>a. Let the distribution of X given P be P. This is the standard setup that we
 have discussed up to now. Fix a non-empty set A in B, which is not a singleton
 set. Let Y = I(x G A), where /(•) is the indicator function. Suppose that it is
 observed that X € A, that is Y — 1, but the value of X is not observed. This
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 happens in the standard models of censoring. What is C(P\Y = 1), the posterior
 distribution of P given Y = 1? This and other generalizations are addressed in
 Doss (1991). For any probability measure Q on (X,B), let QA be the version of
 Q truncated to A, defined by

 QA(B) = Q(BDA)/Q(A).

 The following two conditional distributions are straightforward: C(P\X, Y =
 1) = Va+Sx, and C(X\P,Y = 1) - PA.

 This suggests that one can use the Markov chain successive substitution
 method described in Gelfand and Smith (1990) to simulate an observation from
 C{P\Y = 1), as follows. Let (PQ,X0) be arbitrary point in V x X. For n =
 1,2,..., let Pn have distribution £(P\Xn-i,Y = 1) and Xn have distribution
 C(X\Pn, Y = 1). Then from the results in Athreya, Doss and Sethuraman (1992)
 as shown in Doss (1991), it follows that (Pn,Xn) and also averages based on
 (Po,Xo), ..., (Pn,Xn), converge in distribution to £((P,X)\Y = 1), as n —► oo.
 By retaining P alone we obtain an approximation to £(P\Y = 1).

 This simulation requires generating observations from both distributions
 C(P\X, Y = 1) and £(X\P, Y — 1), but we see below that we can generate
 from the latter distribution and bypass the former distribution. In other words,
 we will show below that, we can generate Xn without the full knowledge of Pn,
 which will be difficult to generate since it has a Dirichlet distribution. From our

 constructive definition, Pn is of the form Yl'jLiPj^Yj, where pj and Y, are random
 variables depending on the parameter of the Dirichlet distribution of Pn. Also
 Xn is just Yj, conditioned to lie in A by the simple rejection method, where J is

 an integer valued random variable taking the value j with probability p3. This
 random index J can be generated on the basis of a uniform random variable U

 by putting J = min{j : <r<jPr >U}, which requires the evaluation of only a
 finite number of pr's. If Yj G A, we let Xn = Yj, and this means that we need to
 generate only Yi,... ,Yj. If Yj £ A, we repeat the procedure by using another
 uniform random variable U to generate a J until Yj G A. Thus one can ignore
 the problem of generating Pn and go straight to generating Xn. For some large
 n, we declare that C{P\Y = 1) is approximated by C(Pn+1\Xn,Y = 1) which is
 Va+Sxn, and compute approximations to functionals of C(P\Y = 1). This ex
 ample is an illustration of the power of our constructive definition. More details
 and other more useful generalizations are given in Doss (1991).
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