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Computing and manipulating the real solutions of polynomial systems is a requirement for many appli-
cation areas such as biological modeling, robotics, program verification, to name a few. The RegularChains
library in Maple provides a collection of tools for dealing with systems of polynomial equations, inequa-
tions and inequalities. These tools include isolating and counting the real solutions of zero-dimensional
systems, describing real solutions of positive dimensional systems, classifying the number of real roots of
parametric systems, finding sample points (thus determining emptiness) of semi-algebraic sets, performing
set theoretical operations on semi-algebraic sets as well as computing cylindrical algebraic decompositions.
The theory and algorithms underlying these tools are described in [9, 10, 5, 1, 3, 4]. Most commands
implementing these tools are part of the SemiAlgebraicSetTools module while the others can be found in
the ParametricSystemTools module or at the top level of the RegularChains library itself. All of these
commands but one are already present in Maple 15, that is, in the current version of Maple.

1 Design and Specification
One design features of the RegularChains library is the use of types for a few key algebraic structures

such as regular chains, constructible sets, semi-algebraic sets, etc. This feature, unusual for a Maple
package, forces the user to provide command input in an unambiguous manner and eases the manipulation
of complex output values. Let us illustrate this design feature with one example. Based on the algorithms
of [3], the RealTriangularize command decomposes an input semi-algebraic system into finitely many
so-called regular semi-algebraic systems. An object of type regular semi algebraic system. consists of
a regular chain, a quantifier-free formula and positive inequalities. The RegularChains library provides
types for the former two whereas inequalities form a Maple primitive type.

The values of these algebraic types are encoded by expression trees whose leaves are polynomials. For
non-trivial examples, these expressions are likely to be large. Hence, by default, the output format of such
a value is simply the name of its type, for instance quantifier free formula. However, two commands
Display and Info provide a pretty printer and parsable printer for the values of the algebraic types
exported by the RegularChains library. The fact that RealTriangularize decomposes any semi-algebraic
system into finitely many regular semi-algebraic systems leads to a convenient representation of semi-
algebraic sets. Indeed, regular semi-algebraic systems enjoy remarkable properties, which enable an easy
implementation of set theoretical operations on semi-algebraic sets, like Difference and Intersection.

Another design feature is the use of Maple piecewise structure for formatting the output of commands
producing a set of “components” (for instance regular semi-algebraic systems). This has at least two
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advantages. First, this highlights the relations between components. Secondly, this supports lazy evaluation
in the form of unevaluated recursive calls, see [3] for details.

Below, we list our main functions, with their specifications, to be illustrated during the demonstration.
• RealRootIsolate. For any semi-algebraic system (i.e. system of polynomial equations, inequalities)

with finitely many complex solutions, this command isolates all the real solutions by so-called boxes;
in the the real space Rn, a box is a Cartesian product of n bounded intervals of R.

• RealTriangularize. For any semi-algebraic system, this command returns a decomposition into
regular semi-algebraic systems. This “solve” command for semi-algebraic systems has no restrictions
or limitations. Up to our knowledge, this is the first such command in a computer algebra system.

• SamplePoints. For any semi-algebraic system S, this command computes at least one sample point
per connected component of S. The sample points are encoded by boxes.

• RealRootClassification. For a generically zero-dimensional parametric semi-algebraic system S,
this command computes conditions for S to have a prescribed number of real solutions.

• CylindricalAlgebraicDecompose. For a set of polynomials F in n variables, this command com-
putes an F -sign invariant cylindrical algebraic decomposition of the real space Rn.

• Difference. For any two semi-algebraic sets A and B (represented by regular semi-algebraic systems)
this command computes the set-theoretical difference A \B.

2 Applications

Our software demonstration is articulated around four application problems.

2.1 Branch cut computations. In analysis, a major challenge is the manipulation of “multivalued
functions”. Regarding them as single-valued functions requires the imposition of branch cuts, which are
normally semi-algebraic sets in Cn = R2n across which the functions are not continuous. In [6], the authors
show how the connectivity of the complement of the branch cuts becomes the question of interest. Since
cell adjacency in a cylindrical algebraic decomposition (CAD is explicit, one way (the only practical one
known to us) of exploring these connectivity questions is to compute a CAD of R2n induced by the branch
cuts, and construct connected components from this. The CAD algorithm of [5] starts with a triangular
decomposition of the set of polynomials occurring in the branch cuts, irrespective of how they are linked,
whereas the QEPCAD approach [2] takes advantage of knowing how the equalities and inequalities are
connected. Nevertheless, [8] shows that the approach of [5] often produces no more cells than QEPCAD.

2.2 Verification of real solvers. On a given input polynomial system, two solving tools may produce
correct results that look fairly different. Proving that these two results are equivalent can be a very
complex task. Here’s an example. Given a triangle with edge lengths a, b, c (denoting the respective edges
a, b, c too) the following two conditions C1, C2 are both characterizing the fact that the external bisector
of the angle of a, c intersects with b on the other side of a than the triangle: C1 = a > 0 ∧ b > 0 ∧ c >
0 ∧ a < b + c ∧ b < a + c ∧ c < a + b ∧ (

b2 + a2 − c2 ≤ 0 ∨ c(b2 + a2 − c2)2 < ab2(2ac− (c2 + a2 − b2))
)
,

C2 = a > 0∧ b > 0∧ c > 0∧a < b+ c∧ b < a+ c∧ c < a+ b∧ c−a > 0. With the set-theoretical operations
on semi-algebraic sets, we can verify the equivalence of C1 and C2 by computing C1 \ C2 and C2 \ C1.

2.3 Realization of matroids. Consider a rank n ordinary matroid M and a field K. A classical
problem is to ask whether M arises from a finite subset P of the affine space Kn−1 as the matroid of the
affine dependencies among P . When K is an ordered field, it is natural to ask whether M is orientable,
that is, whether there exists an oriented matroid M representable over K and with M as underlying
ordinary matroid. Via the notion of a chirotope, one can turn this question into testing the consistency of
a semi-algebraic system, which can be done via our SamplePoints command.

2.4 Study of the equilibria of biological systems. Many biological system can be modeled as dynam-
ical systems. The library MABsas [7], developed by our third author and his colleagues, can automatically
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convert a biochemistry reaction network to a system of nonlinear ordinary differential equations governing
the reaction. After building the model, the existence of a unique positive equilibrium is an important
question, which can be answered with our commands RealRootClassification and RealTriangularize.

In the screen shot below, the purpose of theMaple session is to obtain a description of the real points of
the hypersurface EVE from the Algebraic Surface Gallery. The output of RealTriangularize consists of 9
regular semi-algebraic systems. The first one is two-dimensional, the second one is one-dimensional and the
other 7 components give points. The entire software demo will be available at www.csd.uwo.ca/~moreno/
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[7] François Lemaire and Asli Ürgüplü. Modeling and Analysis of Biological Systems, 2008. www.lifl.fr/∼urguplu.

[8] N. Phisanbut, R.J. Bradford, and J.H. Davenport. Geometry of Branch Cuts. Communications in Computer
Algebra, 44:132–135, 2010.

[9] L. Yang and B. Xia. Real solution classifications of a class of parametric semi-algebraic systems. In Proc. of the
A3L’05, pages 281–289, 2005.

[10] T. Zhang and B. Xia. A new method for real root isolation of univariate polynomials. Mathematics in Computer
Science, 1:305–320, 2007.

168




