
PSEUDO-DIVISION MACHINE (I): A MODEL OF SYMBOLIC
COMPUTATION

SHE ZHIKUN, XIA BICAN AND ZHENG ZHIMING

School of Mathematical Sciences, Peking University, Beijing 100871, China
E-mail: zkshe@mail1.math.pku.edu.cn, xbc@math.pku.edu.cn, zzheng@pku.edu.cn

Through careful study of the theory of real Turing machine and the algorithm of
pseudo-division, we define a new machine, called pseudo-division machine, which
is a formal model of computation over ring. Especially, it applies to symbolic
computation and it represents algorithms naturally. Some fundamental concepts
are defined and some primary results presented.

1 Introduction

The study of computability and computational complexity originated in the
work of logicians such as Gödel, Turing, Church, Kleene, and Post in the
1930s. The model of computation that developed in the following decades,
the Turing machine, has been extraordinarily successful in giving the founda-
tions and framework for theoretical computer science 3,6. Based on the point
of view that “the Turing model with its dependence on 0s and 1s is fundamen-
tally inadequate for giving such a foundation to the theory of modern scientific
computation, where most of the algorithms are real number algorithms”, L.
Blum, M. Shub and S. Smale 1,2 presented a formal model of real computa-
tion , which is now called “the real Turing machine” or “the BSS machine”.
Their theory preserves the Turing theory as a special case. Furthermore, by
providing a bridge between complexity theory and the fields of analysis, ge-
ometry, and topology, the real Turing machine may give us possibilities for
new attack on the classical problems of complexity theory, which heretofore
have been attacked using only the tools of logic and combinatorics.

The computation on computers includes two aspects: numerical compu-
tation and symbolic computation. The study of symbolic computation orig-
inated in the 1950s and has gained wide interests since the 1970s. In 1978,
Wen-tsün Wu 8,9 proposed a decision procedure for proving geometry theo-
rems of “equality type”, i.e. the hypotheses and conclusions of the statements
consist of polynomial equations only. This is a very efficient method for me-
chanically proving elementary geometry theorems (of equality type) 5. Now,
Wu’s method has been one of the most famous algorithms in the field of sym-
bolic computation. On the other hand, the complexity of Wu’s method has
rarely been studied. To discuss the computation complexity of Wu’s method,

icmsmach: submitted to World Scientific on April 12, 2002 1

as well as many other famous algorithms such as Gröbner basis method 4,
from the viewpoint of theoretical computer science is our motivation.

The point of view of this paper is that the symbolic computation, which
is over the objects having some basic algebraic structures, is quite different
from the numerical computation, which is over numbers. Therefore, although
the BSS machine, by its definition, would apply to computation over any ring
or field, it is not suitable for our study of the complexity of Wu’s method.
For example, the pseudo-division of two polynomials in several variables with
respect to one main variable can not be represented in the frame of the BSS
machine naturally. We need a new formal model that would describe the
essential properties of symbolic computation better. The goal of our work is
to develop a formal theory of symbolic computation so that we can study the
complexity of algorithms defined under the framework. The work presented
in this paper is our primary results.

2 Pseudo-Division

Let D be a unique factorization domain (UFD), A be a polynomial in
D[x1, ..., xn] and xk a fixed variable. While considered as a polynomial in
xk, A can be written as

A = A0x
a
k + A1x

a−1
k + · · ·+ Aa,

Ai ∈ D[x1, ..., xk−1, xk+1, ..., xn], (1)

where a is the degree of A in xk and denoted by deg(A, xk), A0 is the leading
coefficient of A in xk, denoted by lc(A, xk).

Let A and B be two polynomials in D[x1, ..., xn] and B 6= 0, b =
deg(B, xk), a = deg(A, xk). For pseudo-dividing A by B, considered as poly-
nomials in xk, we have a division algorithm as follows 7. Let R = A; repeat
the following process until r = deg(R, xk) < b : R ← B0R−R0x

r−b
k B, where

R0 = lc(R, xk). Finally, one obtains two polynomials Q and R in D[x1, ..., xn]
satisfying the relation

IsA = QB + R, (2)

where I = lc(B, xk), s = max(a − b + 1, 0), deg(R, xk) < b. In case b = 0,
R = 0 and Q = BaA.
Remark 1. Two standard ways to represent polynomials are dense represen-
tation (where every monomial is specified) and sparse representations (which
disregard terms whose coefficient is 0). For pseudo-division, polynomials are
regarded as univariate and every term is specified.

icmsmach: submitted to World Scientific on April 12, 2002 2

Let A and B be two polynomials in the form of Eq. (1) and denoted by
A = (A0, ..., Aa) and B = (B0, ..., Bb), respectively. From the viewpoint of
fraction-free Gauss elimination, we have a prem algorithm as follows. Let
(P, Q, t) ← (A,B, a− b); repeat the following two steps until t < 0:

1. (P, Q, t) ← (g(P, Q), Q, t− 1), where P ← g(P, Q) means

Pi ← Q0Pi − P0Qi, 0 ≤ i ≤ b + t, Qj = 0 if j > b; (3)

2. (P, Q, t) ← ShiftL(P, Q, t), which means Pi ← Pi+1 (0 ≤ i ≤ b + t −
1), Qj ← Qj , t ← t.

Return P while t < 0. We may represent the prem algorithm schematically
as in Fig. (1).

input A,B
(P, Q, t) ← (A,B, a− b)

?
t < 0 ?

?

No
?

Yes

(Branch)

output P (P, Q, t) ← ShiftL(P, Q, t)

(Shift)

(P, Q, t) ← (g(P, Q), Q, t− 1)

6

¾

(Computation)

Figure 1. A Machine For Pseudo-Division

3 The Pseudo-Division Machine

Suppose R be a ring. We list some notations defined in 1. Let

R∞ =
⊔

n≥0

Rn,

where for n > 0, Rn is the standard n-dimensional space over R and R0 is
the 0-dimensional space with just one point 0. For x ∈ Rn ⊂ R∞, we call

icmsmach: submitted to World Scientific on April 12, 2002 3

n the length of x. We denote by R∞ the bi-infinite direct sum space over R.
Elements of R∞ have the form

x = (..., x−2, x−1, x0.x1, x2, ...),

where xi ∈ R for all integers i, xk = 0 for |k| sufficient large, and . is a
distinguished marker between x0 and x1. In fact, R∞ can be viewed as a work
tape of a machine. Suppose h : Rm 7→ R is a polynomial (or rational) function
of degree d over R. Then h defines a polynomial (or rational) function ĥ :
R∞ 7→ R on R∞ of dimension m and degree d by letting ĥ(x) = h(x1, ..., xm)
for each x ∈ R∞. Suppose gi : Rm 7→ R, i = 1, ..., m, are polynomial (or
rational) functions of maximum degree d over R. Then the gi, i = 1, ..., m,
defines a polynomial (or rational) map on R∞

ĝ : R∞ 7→ R∞

of dimension m and degree d by letting (ĝ(x))i = ĝi(x), i = 1, ..., m and
(ĝ(x))i = xi for i < 1 or i > m. The space R∞ has natural shift operations,
shift left σl and shift right σr, where

σl(x)i = xi+1 and σr(x)i = xi−1. (4)

In order to define pseudo-division machine, we define the state space as
R∞ × ZkM , where kM is a positive integer. We call R∞ the computation
space and ZkM the counter space. That is to say, our machine will have two
work tapes. We relate the space R∞ and the state space by defining maps
I∞ : R∞ 7→ R∞ × ZkM and O∞ : R∞ × ZkM 7→ R∞ as follows.

I∞(x) = (..., 0, 0.x1, ..., xn, 0, 0, ...)× (v1, ..., vkM
) forx ∈ Rn, (5)

where every vi, i = 1, ..., kM , is a linear function in n, or, if x belongs to
a product space, is a linear function in the dimensions of all spaces in the
product space, and

O∞((..., x0.x1, ...)× (w1, ..., wkM
)) =

{
0 ∈ R0 if w1 = 0
(x1, ..., xw1) ∈ Rw1 otherwise. (6)

Definition 1. A pseudo-division machine M over R consists of a finite di-
rected connected graph with five types of nodes: input, computation, shift,
branch and output. The unique input node has no incoming edges and only
one outgoing edge. All other nodes have possibly several incoming edges. Com-
putation and shift nodes have only one outgoing edge, branch nodes exactly
two, Yes and No, and output nodes none.

In addition, the machine has three spaces: an input space IM = R∞, state
space SM = R∞ × ZkM , and output space OM = R∞, where kM is a positive

icmsmach: submitted to World Scientific on April 12, 2002 4

integer. Associated with each node of the graph are maps of these spaces and
next node assignments.

I. Associated with the input node is the map I∞ defined by Eq. (5) and a
unique next node β1.

II. Each computation node η has an associated computation map, gη : SM 7−→
SM , and a unique next node βη. The computation map gη is defined as
follows.

gη = (pη ◦ π1, fη) : R∞ × ZkM 7−→ R∞ × ZkM

y = (x, v) 7→ (pη ◦ π1(y), fη(y)) = (pη(x), fη(y))

where pη(x) : R∞ 7→ R∞ is a polynomial (or rational) function on R∞,
fη is a map from the state space to the counter space and π1 : SM → R∞
is the projection onto R∞.

III. Associated with each shift node η is a map gη ∈ {σ̂l, σ̂r} of the state space
to itself and a unique next node βη. The shift maps σ̂l and σ̂r are defined
as follows. For (x, v) ∈ SM ,

σ̂l(x, v) = (σl(x), v) and σ̂r(x, v) = (σr(x), v),

where σl and σr are defined by Eq. (4).

IV. Each branch node η has an associated branching function hη : SM 7−→ Z.
The next node along the Yes outgoing edge, β+

η , is associated with the
condition hη(y) ≥ 0 and the next node along the No outgoing edge, β−η ,
with the condition hη(y) < 0.

V. Finally, each output node η has an associated map O∞ defined by Eq. (6).

Remark 2. The dimension KM and degree DM of M are, respectively, the
maximum of the dimensions and the degrees of all maps associated with its
computation and branch nodes.
Remark 3. We can test if h(y) = 0 by a subroutine that uses the comparisons
h(y) ≥ 0 and −h(y) ≥ 0 (see Fig. (2))
Remark 4. For convenience, we assume all branch nodes are standard, that
is, that hη(y) = viη

for some 1 ≤ iη ≤ kM for each branch node η and
y = (x, v) ∈ SM . It is easy to see that this is without loss of generality of our
theory.
Remark 5. It is sometimes convenient to define computations that involve
non-positive coordinates. And this can be easily achieved by combining some
shift operations with computations.

icmsmach: submitted to World Scientific on April 12, 2002 5

h(y) ≥ 0 ?

@
@R
Yes­

­
­

­
­

­­À

No
−h(y) ≥ 0 ?

@
@R
Yes

´
´

´
´́+

No

h(y) = 0h(y) 6= 0

Figure 2. Testing for Equality

Remark 6. It is often convenient to stipulate that a machine M over R has
a unique output node. We then can identify the nodes of the machine with the
labels 1, . . . , N where 1 denotes the input node and N the output node.
Remark 7. It’s not difficult to see that a classical Turing machine is a
pseudo-division machine over Z2.

4 Relations to the BSS Machines

In this section, we will demonstrate by two examples that the BSS machine
can be simulated by the pseudo-division machine defined in last section. For
all the definitions and notations related to the BSS machine, please refer to 1.
Example 1. Let R be R or Q, that is, the field of the real numbers or rational
numbers. Let M (1) be a BSS machine in its normal form over R. We construct
a pseudo-division machine M (2) over R as follows.

I. The input spaces are both R∞. Let kM(2) = 1. For any x ∈ Rn ⊆ R∞, the

input map of M (1) is I
(1)
∞ (x) = (..., 0, 0,

n︷ ︸︸ ︷
1, ..., 1 .x1, ..., xn, 0, 0, ...). Let the

input map of M (2) be I
(2)
∞ (x) = ((..., 0.x1, ..., xn, 0, 0, ...), n). Furthermore,

let the input node of M (2) be followed immediately by a computation node

η with gη((..., 0.x1, ..., xn, 0, 0, ...), n) = ((..., 0, 0,

nz }| {
1, ..., 1 .x1, ..., xn, 0, 0, ...), n).

II. For each computation node η(1) in M (1), suppose gη(1) be its associated
polynomial (or rational) map, construct a computation node η(2) in M (2)

with associated map gη(2) defined as gη(2)(x, v) = (gη(1)(x), v).

III. For each shift node in M (1), construct a shift node in M (2) with the same

icmsmach: submitted to World Scientific on April 12, 2002 6

shift operation.

IV. For each branch node η(1) in M (1), we construct a computation node η
(2)
1

and a branch node η
(2)
2 in M (2) as follows. Suppose hη(1) , a polynomial

map, be the branching function associated with η(1), we define the asso-
ciated map with η

(2)
1 to be g

η
(2)
1

(x, v) = (x, sign(hη(1)(x))), where, for any
a ∈ R, sign(a) is 1 if a > 0; 0 if a = 0; −1 if a < 0. And we define
the next node to be η

(2)
2 . As to the branch node η

(2)
2 , let the associated

branching function h
η
(2)
2

(y) = v1.

V. For the output node N (1) in M (1), we construct a computation node ηN(2)

and the output node N (2) in M (2) as follows. gη
N(2) : (x, v) 7→ (x, f(x)),

where f(x) = mini≥0{x−i = 0}. And the next node is N (2). The output
map of N (2) is defined by Eq. (6).

It’s easy to see that M (2) simulates M (1).
Remark 8. If R is an ordered ring and M (1) a BSS machine over R with
branching condition h(x) < 0, we can construct a pseudo-division machine
over R which simulates M (1) by doing the same procedure as above and letting
sign(a) : R 7→ Z to be defined as above.
Example 2. Let R be C or Zp where p is a positive integer , that is, the field
of the complex numbers or the ring of integers modulo p. Let M (1) be a BSS
machine over R with the branching condition h(x) = 0 , We can construct a
pseudo-division machine M (2) over R to simulate M (1) by almost the same
procedure as in last example except replacing sign(a) by hB : R 7→ Z, where
hB(a) is 0 if a = 0; 1 otherwise.

For m > 0 let Sm = {((x−m+1, ..., x0, x1, ..., xm), v) | xi ∈ R and v ∈
ZkM } = R2m × ZkM . Naturally, we have the injections ĩ : Sm 7−→ S and
ĩ1 : R2m 7−→ R∞, and the projections π̃ : S 7−→ Sm, π̃1 : Sm 7−→ R2m and
π̃′1 : R∞ 7−→ R2m, defined, respectively, by

ĩ((x−m+1, ..., x0, x1, ..., xm), v) = ((..., 0, x−m+1, ..., x0.x1, ..., xm, 0, ...), v),

ĩ1((x−m+1, ..., x0, x1, ..., xm)) = (..., 0, x−m+1, ..., x0.x1, ..., xm, 0, ...),

π̃(x, v) = ((x−m+1, ..., x0, x1, ..., xm), v),

π̃1((x−m+1, ..., x0, x1, ..., xm), v) = (x−m+1, ..., x0, x1, ..., xm),

and π̃′1(x) = (x−m+1, ..., x0, x1, ..., xm). Then, we associate with the input
map I∞ the modified input map Ĩ∞ = π̃ ◦ I∞ : IM 7−→ Sm, and with each

icmsmach: submitted to World Scientific on April 12, 2002 7

gη = (pη◦π1, fη) the modified computation map g̃η = (p̃η◦π̃1, f̃η) : Sm 7−→ Sm,

where p̃η = π̃′1 ◦ pη ◦ ĩ1 : R2m 7−→ R2m, f̃η = fη ◦ ĩ : Sm 7−→ ZkM .
Now suppose γ is a computation path η0, η1, ..., ηk, At each step k

in the path γ, M evaluates a map P̃γ(k) : IM 7−→ R2m defined by P̃γ(k) =
p̃ηk ◦ · · · ◦ p̃η0 ◦ π̃1 ◦ Ĩ∞, and a map F̃γ(k) : IM 7−→ ZkM defined by F̃γ(k) =
f̃ηk ◦ g̃ηk−1 · · · ◦ g̃η0 ◦ Ĩ∞. Restricted to Rn, where m ≥ max(KM , n) + k, P̃γ(k)

is an ordinary polynomial function.
We also associate with the output map O∞ the modified output map Õ∞ =

O∞ ◦ ĩ : Sm 7−→ R∞. Let G̃γ(k) = (P̃γ(k), F̃γ(k)), then, for γ ∈ ΓT , ΦM |Vn
γ

=

Õ∞◦G̃γ(T−1). It’s easy to see that the input-output map ΦM , restricted to the
n-dimensional component of the path set Vγ , is a polynomial map composed
with the output map Õ∞.

Likewise, suppose ηk is a standard branch node (see Remark 4), M

evaluates the step-k branching function F̃B
γ(k) : IM 7−→ Z defined by

F̃B
γ(k) = Πjη

◦ F̃γ(k), where Πjη
: ZkM 7−→ Z is the projection onto the

jηth (1 ≤ jη ≤ kM) coordinate.
We note that Vγ(k) is determined by the branching conditions along the

path γ(k). Suppose m is large enough, for example m = max(KM , n) + k, let

Lγ(k) = {F̃B
γ(k′)|k′ < k, k′ a branch step in γ, and ηk′+1 = β−(ηk′)}

Rγ(k) = {F̃B
γ(k′)|k′ < k, k′ a branch step in γ, and ηk′+1 = β+(ηk′)}

Theorem 1. For any pseudo-division machine M, the following properties
hold.

(1) For a computation path γ(k),

Vn
γ(k) = {x ∈ Rn|f(x) < 0, g(x) ≥ 0, f ∈ Lγ(k), g ∈ Rγ(k)}.

(2) For γ ∈ ΓT , ΦM |Vn
γ

= Õ∞ ◦ G̃γ(T−1) = Õ∞ ◦ (P̃γ(T−1), F̃γ(T−1)). Be-
cause P̃γ(T−1), restricted to the n-dimensional component of the path set
Vγ , is a polynomial map, the input-output map ΦM , restricted to the n-
dimensional component of the path set Vγ , is a polynomial map composed
with the output map Õ∞.

Remark 9. For any map f ∈ Lγ(k)

⋃
Rγ(k), if it can be expressed as f = f1◦f2,

where f2 : IM 7→ R is a polynomial function and f1 : R 7→ Z satisfies that
f2(x) <R 0 if and only if f(x) < 0, then Vn

γ(k) is a basic semi-algebraic
set. Here, <R means the ordering in R. So, from Examples 1 and 2, for a
pseudo-division machine simulating a BSS machine, we have the same path
decomposition theorem as in 1.

icmsmach: submitted to World Scientific on April 12, 2002 8

5 An Example

In this section, we will give a formal, detailed construction of a pseudo-division
machine that performs pseudo-division of two polynomials like the prem algo-
rithm in Section 2. And then, we point out some essential differences between
our machine and the BSS machine.

Let D be a UFD, A and B be two polynomials in D[u1, ..., us] and uk

a fixed variable. We pseudo-divide A by B with respect to uk. Let R =
D[u1, ..., uk−1, uk+1, ..., us], kM = 5 and A = (a1, ..., an), B = (b1, ..., bm),
where ai, bj ∈ R.

Input (A,B) = (a1, ..., an, b1, ..., bm) ∈ R∞, let t = n−m and

I∞(A,B) = (x, v) = ((..., 0.a1, ..., an, b1, ..., bm, 0, ...), (n,m, t, n,m− 1)).

Then, by a sequence of machine operations, we get a sequence of states:

...
((...0.a1, 0, a1, ..., an, b1, ..., bm, 0, ...), (n, m, t, n, m− 1))

...
((...0, a1, ..., an.a1, b1, b1, ..., bm, 0, ...), (n, m, t, 0, m− 1))

((...0, a2, ..., an.a1, b1, b1, ..., bm, 0, ...), (n, m, t, n− 1, m− 1))
...

((...0.a1, b1, a2b1, ..., anb1, b1, ..., bm, 0, ...), (n, m, t, 0, m− 1))
((...0.a1, b1, a2b1, ..., anb1, b1, ..., bm, 0, ...), (n, m, t, n, m− 1))

...
((...0, a2b1, ..., anb1, b1.a1, b2, b2..., bm, 0, ...), (n, m, t, 0, m− 2))

((...0, a2b1, ..., anb1, b1.a1, b2, b2..., bm, 0, ...), (n, m, t, n− 1, m− 2))
...

((...0, a2b1 − a1b2.a1, b2, a3b1, ..., anb1, b1, b2..., bm, 0, ...), (n, m, t, 0, m− 2))
...

((..., a2b1 − a1b2, ..., amb1 − a1bm.a1, bm, am+1b1, ..., anb1, b1, ..., bm, ...), (n, m, t, 0, 0))
...

((...0.a1, bm, a2b1 − a1b2, ..., amb1 − a1bm, am+1b1, ..., anb1, b1, ..., bm, ...), (n, m, t, 0, 0))

((...0.a
(1)
2 , 0, a

(1)
2 , ..., a

(1)
n , b1, ..., bm, ...), (n− 1, m, t− 1, n− 1, m− 1)),

where

a
(1)
i =


aib1 − a1bi if 2 ≤ i ≤ m

aib1 if m < i ≤ n.

icmsmach: submitted to World Scientific on April 12, 2002 9

input A,B
(x, v) ← I∞(A,B)

?
v3 < 0? -Y output O∞(x, v)

2σ̂r

?N
2σ̂r

?
x1 ← x3 ¾ N v3 < 0?

6Y
2σ̂l

6

?
v4 = 0? -N (x1, x2, x3) ← (x3, x1, x2)

?
σ̂l

?HHHHHHHY

v4 ← v4 − 1

¾ Y

x2 ← x3

v4 ← v1 − 1
?

v4 = 0?
?N

(x0.x1, x2) ← (x1.x2, x0)
?

σ̂r

?
x3 ← x3 · x2

v4 ← v4 − 1

- Y

?
x0 ← 0
v4 ← v1

?
v5 = 0?

?N

Y

- v5 ← m− 1
?

v5 = 0?

?
N

(x0.x1, x2) ← (x1.x2, x0)
v5 ← v5 − 1

?
σ̂r

- Y

¾

v1 ← v1 − 1
v3 ← v3 − 1
v4 ← v1 − 1
v5 ← m− 1

¾

v4 = 0?

?
Y

¾ N(x1, x2, x3) ← (x3, x1, x2)
?

σ̂l

?
v4 ← v4 − 1 ©©©©©©©*

x2 ← x3

v4 ← v1 − 1
?

v4 = 0?

?Y
x0 ← x0 − x1x2

v5 ← v5 − 1

¾ N(x0.x1, x2) ← (x1.x2, x0)
?

σ̂r

?
v4 ← v4 − 1 ©©©©©©©*

¾

Figure 3. The machine doing pseudo-division

Now proceeding as before, the machine produces in turn the states:

((...0.a
(2)
3 , 0, a

(2)
3 , ..., a

(2)
n , b1, b2..., bm, 0, ...), (n− 2,m, t− 2, n− 2,m− 1))

...
((...0.a

(t+1)
t+2 , 0, a

(t+1)
t+2 , ..., a

(t+1)
n , b1, ..., bm, 0, ...), (m− 1,m,−1,m− 1,m− 1)),

where

a
(j)
i =

{
a
(j−1)
i b1 − a

(j−1)
1 bi if i ≤ m

a
(j−1)
i b1 if m < i ≤ n.

icmsmach: submitted to World Scientific on April 12, 2002 10

And finally, after two shift left operations, output the first m−1 elements
of the computation space, that is (a(n−m+1)

n−m+2 , ..., a
(n−m+1)
n). See Fig.3.

There are some essential differences between our machine and the BSS
machine. First of all, we separate the computations on the ring R from those
on Z. When the characteristic of R is p > 0, it seems difficult and unnatural
for a BSS machine to manage computations over R while the computations in
our machine are natural and easy to understand. Secondly, the branching
conditions are now tested in Z other than R. This is necessary in most
computations over such rings as rings of polynomials in several variables. For
pseudo-division, in any BSS machine one has to simulate the test of branching
condition n − m < 0 since it cannot be checked under the ordering of R =
D[u1, ..., uk−1, uk+1, ..., us].

Acknowledgments

The authors are indebted to Professor H. Ganzinger for helpful discussion
and to NKBRSF-(G1998030600) for support. Also, one of the authors, Xia,
thanks the Max-Planck-Institut für Informatik for hospitality.

References

1. L. Blum, F. Cucker, M. Shub and S. Smale, Complexity and Real Com-
putation, Springer-Verlag, New York, 1997.

2. L. Blum, M. Shub and S. Smale, On a theory of computation and com-
plexity over the real numbers: NP -completeness, recursive functions and
universal machines, Bulletin (New Series) of the American Mathematical
Society, 1989, 21(1): 1-46.

3. D. S. Bridges, Computability, New York: Springer-Verlag, 1997.
4. B. Buchberger, Gröbner bases: An algorithmic method in polynomial

ideal theory, In Multidimensional Systems Theory, (Edited by N.K. Bose),
pp. 184-232, Reidel, Dordrecht, 1985.

5. S. C. Chou, Mechanical geometry theorem proving, Reidel, Dordrecht,
1988.

6. M. Garey and D. Johnson, Computers and Intractabilitiy: A Guide to
the Theory of NP-Completeness, Freedman, 1979.

7. D.M. Wang, Elimination Methods, Springer-Verlag, New York, 2001.
8. W. T. Wu, On the decision problem and the mechanization of theorem-

proving in elementary geometry, Sci. Sinica 21: 159-172 1978.
9. W.T. Wu, Mechanical theorem proving in geometries: Basic principles

(translated by X. Jin and D. Wang), Springer, New York, 1994.

icmsmach: submitted to World Scientific on April 12, 2002 11

