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1 Statement of the problem

Let Q denote rational numbers, R denote real numbers and Q[X] denote the
ring of polynomials in (z1,...,2,) with coeflicients from Q. [a,b] = {z | a <
x < b,z € R} is called an interval and an interval vector is a vector with interval
elements. An interval vector with n elements is indeed an n-dimensional cube
in R™.

A set of n polynomials in Q[ X7, {fi(z1,...,&n), ..., fu(1,...,2pn)}, is called
a normal zero dimensional algebraic system (NZAS for short), if the following
algebraic system

f1($1,$27...,$n) = 07
f2($1,x2,...,$n) = 07

(1)
fn(xlal'Zw"ax’n) = 07

has only finite many real solutions.

Our problem is to isolate the real solutions (in a given cube) of normal zero
dimensional systems. That is to say, for a given NZAS in the form of (1) having
k distinct real solutions, compute k interval vectors (cubes) such that each cube
contains only one solution and no two cubes intersect.

2 Importance of the problem

Solving algebraic equations is no doubt one of the most important problems
in mathematics and other related fields. In the viewpoint of symbolic com-
putation, the solutions to algebraic equations should be “exact” and not be
“approximate”. That is to say, solving the equations numerically is not our goal
and we need to isolate the real solutions. In fact, real solution isolation of one
equation or several equations forms a base of many algorithms in the field of
computational real algebraic geometry.



3 Contribution to the problem

Based on a modified Krawczyk-Moore’s interval operator, we propose a general
and practical symbolic algorithm named NRoots, which can isolate all the real
solutions to an NZAS in a given interval vector. The correctness of the algorithm
is proven.

In order to isolate all real solutions of a given NZAS, we extend the algorithm
NRoots by combining interval value estimation with the method of resultant.

4 Originality of the contribution

There are many works related to real solution isolation of one polynomial or a
polynomial system based on different principles, see, for example, [2, 3, 4, 6, 7,
8, 10].

Existing symbolic algorithms for isolating real solutions of polynomial equa-
tions require triangularizing the equations first, which may involve very heavy
computation in some cases. Our method handles the input systems directly by
interval iteration, so a better performance can be expected on those systems
that are hard to be triangularized, such as sparse systems with high degrees or
randomly generated systems.

The original Krawczyk-Moore interval iteration method [1, 5, 9] for solving
nonlinear system is a numerical one, which has no guarantee that the outputs
are exact solution intervals and no solutions missed. Although it performs sym-
bolic and numerical computation, our method is essentially a symbolic algorithm
whose correctness is proven. And we can accelerate the exclusion of “bad inter-
vals” (which contain no roots) by combination of interval evaluation and original
testing.

We find that better interval evaluation and tight root bounds for multi-
variate polynomials will improve the efficiency greatly. We also adopt some
technics to improve the performance of our algorithms.

5 Non-triviality of the contribution

Our method has been implemented as a Maple program, which solves many
examples [11]. For instance, consider the following polynomial system generated
randomly by Maple:

fi = 14952 — 9yPx523 — 5ly'32%22 +1 =0,

fo = yxz'3 4+ 5yx?2" — 86y525:8 +1 =0,

f3 = 50y82* + 6Tyx'® — 39y°x221 +1 =0,

Our program runs 78.3 seconds in Maple 8 on a PC (Pentium 866Hz cup, 256Mb
memory, Win2000) and outputs the following result:
[[—1797 —897] [—61 —973] [ 677 %H
2048 7 1024 7° 64 7 10247711024 5127
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