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1 Introduction

By semi-algebraic systems [2, 5], we mean systems of polynomial equations and in-
equalities. Strictly speaking, we call





p1(x1, x2, ..., xs) = 0,
p2(x1, x2, ..., xs) = 0,
· · · · · · ,
pn(x1, x2, ..., xs) = 0,
q1(x1, x2, ..., xs) ≥ 0, ..., qr(x1, x2, ..., xs) ≥ 0,
g1(x1, x2, ..., xs) > 0, ..., gt(x1, x2, ..., xs) > 0,
h1(x1, x2, ..., xs) 6= 0, ..., hm(x1, x2, ..., xs) 6= 0,

a semi-algebraic system, where pi(1 ≤ i ≤ n), ql(1 ≤ l ≤ r), gj(1 ≤ j ≤ t), hk(1 ≤ k ≤
m) are all polynomials in x1, ..., xs with integer coefficients and we always assume that
{p1, ..., pn} has a finite number of common zeros. For convenience, we call it sas.
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Many problems in both practice and theory can be reduced to the problems of
solving system sas. For example, some special cases of “p-3-p” problem [8] which
originates from computer vision, the problem of constructing limit cycles of plane
polynomial systems [13, 16] and the problem of automated discovering and proving
for geometric inequalities [22, 21]. Moreover, many problems in geometry, topology
and differential dynamical systems are expected to be solved by translating them into
solving certain semi-algebraic systems [2].

There are two classical algorithms for solving semi-algebraic systems, which are
Tarski’s method [15] and cylindrical algebraic decomposition method proposed by
Collins [5]. The complexity of these two algorithms are super-exponential time and
double-exponential time, respectively. Therefore, they are not effective in practice.
In the past two decades, there have been some exciting results [9, 3, 2, 14] in the-
ory. For example, Smale proved there exists a singly exponential time algorithm for
semi-algebraic systems [2]. However, the problem is far from being solved. Efficient
algorithms are highly needed to help solving related problems in those fields mentioned
above.

In this paper, combining the algorithms for solving systems of polynomial equations
such as Ritt-Wu method [20, 19] and wr algorithm [24] with Uspensky algorithm [6]
for isolating real zeros of a univariate polynomial, we present an effective algorithm
for isolating the real solutions of semi-algebraic systems which, in some sense, can be
viewed as the generalization of Uspensky algorithm. Our algorithm has been found to
be very efficient in practice on a large number of problems with various backgrounds
though it is not a complete one in theory.

The paper is divided into four sections. Section 2 presents the kernel part of our
algorithm while Section 3 shows the lifting part and recursive part of our algorithm.
Section 4 includes some examples solved by our program realzero which implements
the algorithm in maple.

2 Basic Algorithm

In this paper, all the polynomials, if not specified, are in Z[x1, ..., xs]. For any poly-
nomial P with positive degree, the leading variable xl of P is the one with greatest
index l that effectively appears in P . By a triangular set, we mean a set of polynomials
{fi(x1, ...xi), fi+1(x1, ...xi+1), ..., fl(x1, ...xl)} in which the leading variable of fj is xj.

It is well known that for a system of polynomial equations with zero dimensional so-
lutions, there exist many algorithms based on Ritt-Wu method, Gröbner basis method
or subresultant method, which can decompose the given system into systems of trian-
gular equations (see, for example, [19, 20, 4, 17, 18, 11, 1, 24]). Therefore, in Sections
2 and 3, we only consider triangular equations and the problem we discuss is to isolate
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the real solutions of following system tsa,




f1(x1) = 0,
f2(x1, x2) = 0,
· · · · · · ,
fs(x1, x2, ..., xs) = 0,
g1(x1, x2, ..., xs) ≥ 0, ..., gr(x1, x2, ..., xs) ≥ 0,
gr+1(x1, x2, ..., xs) > 0, ..., gt(x1, x2, ..., xs) > 0,
h1(x1, x2, ..., xs) 6= 0, ..., hm(x1, x2, ..., xs) 6= 0,

where {f1, f2, · · · , fs} is a normal ascending chain [24] (also see Definition 2.3 and
Remark 2 in this section).

Definition 2.1 (Discriminant)
Given a polynomial g(x), let resultant(g, g′x, x) be the Sylvester resultant of g and

g′x with respect to (w.r.t.) x. We call it the discriminant of g w.r.t. x and denote it
by Discrim(g, x) or simply by Discrim(g) if its meaning is clear.

It should be pointed out that the definition of discriminant here is little different
from others which are the quotient of resultant(g, g′x, x) by the leading coefficient of
g(x).

Definition 2.2 (Resultant and Pseudo-remainder w.r.t. a Triangular Set)
Given a polynomial g and a triangular set {f1, f2, ..., fs}, let

rs := g, rs−i := resultant(rs−i+1, fs−i+1, xs−i+1), i = 1, 2, ..., s;

qs := g, qs−i := prem(qs−i+1, fs−i+1, xs−i+1), i = 1, 2, ..., s,

where resultant(p, q, x) means the Sylvester resultant of p, q w.r.t. x and prem(p, q, x)
means the pseudo remainder of p divided by q w.r.t. x.

Let res(g, fs, ..., fi) and prem(g, fs, ..., fi) denote ri−1 and qi−1 (1 ≤ i ≤ s),
respectively, and call them the resultant and pseudo-remainder of g w.r.t. the triangular
set {fi, fi+1, ..., fs}, respectively.

Definition 2.3 [24] (Normal Ascending Chain)
Given a triangular set {f1, f2, ..., fs}, by Ii (i = 1, 2, ..., s) denote the leading coef-

ficient of fi in xi. A triangular set {f1, f2, ..., fs} is called a normal ascending chain
if

I1 6= 0, res(Ii, fi−1, ..., f1) 6= 0, i = 2, ..., s.

Definition 2.4 (Critical Polynomial of System tsa)
Given a tsa, called T . For every fi(i ≥ 2), let

Bf2 = Discrim(f2, x2),
Bfi = res (Discrim(fi, xi), fi−1, fi−2, · · · , f2), i > 2.

For ∀q ∈ {gj(1 ≤ j ≤ t)}⋃{hk(1 ≤ k ≤ m)}, let

Bq = res (q, fs, fs−1, · · · , f2).
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We define
BPT (x1) =

∏

2≤i≤s

Bfi ·
∏

1≤j≤t

Bgj ·
∏

1≤j≤m

Bhk.

and call it the critical polynomial of the system T w.r.t. x1. We also use BP or BP (x1)
to denote BPT (x1) if its meaning is clear.

Definition 2.5 (Regular tsa)
A tsa is regular if resultant(BP (x1), f1(x1), x1) 6= 0.

Remark 1 According to Definition 2.5, for a regular tsa, every Bhk(1 ≤ k ≤
m) has no common zeros with f1(x1), which means every solution of {f1 = 0, f2 =
0, · · · , fs = 0} always satisfies hk 6= 0 (1 ≤ k ≤ m). Thus, if a tsa is regular, we can
always assume it has no hk, without loss of generality.

Given two polynomials p(x) ∈ Z[x] and q(x) ∈ Z[x], suppose p(x) and q(x) has no
common zeros, i.e., resultant(p, q, x) 6= 0, and α1 < α2 < ... < αn are all distinct real
zeros of p(x). By modified Uspensky algorithm [6], we can get a sequence of intervals,
[a1, b1], · · · , [an, bn], which satisfies,

1) αi ∈ [ai, bi] for i = 1, · · · , n,

2) [ai, bi]
⋂

[aj, bj] = ∅ for i 6= j,

3) ai, bi(1 ≤ i ≤ n) are all rational numbers,

4) the maximal size of each isolating interval can be less than any positive number
given in advance.

Because p(x) and q(x) has no common zeros, the intervals can also satisfy,

5) any zeros of q(x) are not in any [ai, bi].

In the following, we denote the above algorithm by nearzero(p, q, x) which plays a
very important role in our method.

Theorem 2.1 Given a regular tsa. Suppose f1(x1) has n distinct real zeros, then,
by calling nearzero(f1, BP (x1), x1) we can get a sequence of intervals, [a1, b1], · · · , [an, bn],
which satisfies that, for ∀[ai, bi](1 ≤ i ≤ n) and ∀β, γ ∈ [ai, bi],

1) if s > 1, the system





f2(β, x2) = 0,
· · · · · · ,
fs(β, x2, ..., xs) = 0,
g1(β, x2, ..., xs) ≥ 0, ..., gr(β, x2, ..., xs) ≥ 0,
gr+1(β, x2, ..., xs) > 0, ..., gt(β, x2, ..., xs) > 0,
h1(β, x2, ..., xs) 6= 0, ..., hm(β, x2, ..., xs) 6= 0,
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and the system





f2(γ, x2) = 0,
· · · · · · ,
fs(γ, x2, ..., xs) = 0,
g1(γ, x2, ..., xs) ≥ 0, ..., gr(γ, x2, ..., xs) ≥ 0,
gr+1(γ, x2, ..., xs) > 0, ..., gt(γ, x2, ..., xs) > 0,
h1(γ, x2, ..., xs) 6= 0, ..., hm(γ, x2, ..., xs) 6= 0,

have the same number of distinct real solutions and,

2) if s = 1, for ∀q ∈ {gj(1 ≤ j ≤ t)}⋃{hk(1 ≤ k ≤ m)}, sign(q(β)) = sign(q(γ)),
where

sign(x) =





1, x > 0,
0, x = 0,

−1, x < 0.

Proof. Because the tsa is regular, f1 has no common zeros with the critical poly-
nomial BP (x1). So, by calling nearzero(f1, BP (x1), x1) we can get a sequence of
intervals which satisfies the five conditions of nearzero. If s = 1, the conclusion is
obvious. So, suppose s > 1. Because BP (x1) =

∏
2≤i≤s Bfi ·∏1≤j≤t Bgj has no zero on

[ai, bi], clearly, the sign of each Bfi and Bgj is invariant on the interval [ai, bi].
First of all, Bf2 = Discrim(f2, x2) 6= 0 on the interval [ai, bi] implies the number

of distinct real zeros of f2 is invariant on [ai, bi]. Furthermore, Bf3 6= 0 on [ai, bi]
implies that if f2 = 0, then Discrim(f3, x3) 6= 0 on [ai, bi], which means the number of
distinct real solutions of equations {f2 = 0, f3 = 0} is invariant on [ai, bi]. Continuing
similar discussions, we get that the number of distinct real solutions of equations {f2 =
0, · · · , fs = 0} is invariant on [ai, bi]. Secondly, Bgj 6= 0 on [ai, bi] implies that if
{f2 = 0, · · · , fs = 0}, then gj 6= 0 on [ai, bi], which means the number of distinct real
solutions of the given tsa without f1 is invariant on [ai, bi]. The proof is complete.

In the rest of this section, we discuss irregular tsas, i.e. resultant(BP, f1, x1) = 0,
and give a theorem which guarantees that we can always assume a given system to be
regular, without loss of generality. Our main tool is wr algorithm [24, 25]. Here are
some related definitions and results.

Definition 2.6 [24, 25] (Simplicial)
A normal ascending chain {f1, f2, ..., fs} is simplicial with respect to a polynomial

g if either prem(g, fs, ..., f1) = 0 or res(g, fs, ..., f1) 6= 0.

Theorem 2.2 [24, 25] For a triangular set AS : {f1, f2, ..., fs} and a polynomial g,
there is a constructive algorithm which can decompose AS into some normal ascending
chains ASi : {fi1, fi2, ..., fis} (1 ≤ i ≤ n), in which every chain is simplicial w.r.t. g
and this decomposition satisfies that Zero(AS) =

⋃
1≤i≤n Zero(ASi).

Remark 2 This decomposition is called the wr decomposition of AS w.r.t. g
and the algorithm is called the wr algorithm. By Theorem 2.2, we always consider
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the triangular set {f1, f2, ..., fs} which appears in a tsa as a normal ascending chain,
without loss of generality.

Definition 2.7 [23] (Discrimination Matrix)
Given a polynomial with general symbolic coefficients,

f(x) = a0x
n + a1x

n−1 + · · ·+ an,

the following 2n× 2n matrix in terms of the coefficients,



a0 a1 a2 · · · an

0 na0 (n− 1)a1 · · · an−1

a0 a1 · · · an−1 an

0 na0 · · · 2an−2 an−1

· · · · · ·
· · · · · ·
a0 a1 a2 · · · an

0 na0 (n− 1)a1 · · · an−1




is called the discrimination matrix of f(x), and denoted by Discr (f). By dk or dk(f)
denote the determinant of the submatrix of Discr (f), formed by the first k rows and
the first k columns for k = 1, 2, · · · , 2n.

Definition 2.8 [25] (Discriminant Sequence)
Let Dk = d2k, k = 1, · · · , n. We call the n-tuple

[D1, D2, · · · , Dn]

the discriminant sequence of f(x). Obviously, the last term Dn is Discrim(f, x).

Definition 2.9 [25, 12] (Principal Subresultants)
Let Dt

k be the submatrix of Discr (f), formed by the first 2n − 2k rows, the first
2n− 2k− 1 columns and the (2n− 2k + t)th column, where 0 ≤ k ≤ n− 1, 0 ≤ t ≤ 2k.
Let |Dt

k| = det(Dt
k). We call |D0

k| (0 ≤ k ≤ n − 1) the kth principal subresultant of
f(x). Obviously, |D0

k| = Dn−k (0 ≤ k ≤ n− 1).

Definition 2.10 [25, 12] (Subresultant Polynomial Chain)
For k = 0, 1, ..., n− 1, let

Qn+1(f, x) = f(x), Qn(f, x) = f ′(x),

Qk(f, x) =
k∑

t=0

|Dt
k|xk−t = |D0

k|xk + |D1
k|xk−1 + · · ·+ |Dk

k |.

We call {Q0(f, x), Q1(f, x), ..., Qn+1(f, x)} the subresultant polynomials chain of f(x).

Theorem 2.3 [25] Suppose {f1, f2, ..., fj} is a normal ascending chain, where K is
a field and fi ∈ K[x1, ..., xi], i = 1, 2, ..., j and f(y) = a0y

n + a1y
n−1 + · · ·+ an−1y + an

is a polynomial in K[x1, ..., xi][y], let

PDk = prem(|D0
k|, fj, ..., f1) = prem(Dn−k, fj, ..., f1), 0 ≤ k ≤ n− 1.
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If for some k0 ≥ 0,
res(a0, fj, ..., f1) 6= 0

PD0 = · · · = PDk0−1 = 0, res(|D0
k0
|, fj, ..., f1) 6= 0,

then, in K[x1, ..., xj]/(f1, ..., fj), we have gcd(f, f ′x) = Qk0(f, x).

Now, we deal with irregular tsa with resultant(BP, f1, x1) = 0. The idea is to
decompose this system by wr algorithm into some new regular systems.

• If there is some Bhk so that resultant(BP, Bhk, x1) = 0, do wr decomposition
of {f1, f2, ..., fs} w.r.t. hk and, without loss of generality, suppose we get two
new chains {A1, A2, ..., As} and {C1, C2, ..., Cs}, in which prem(gj, As, ..., A1) = 0
but res(gj, Cs..., C1) 6= 0. If we replace {f1, f2, ..., fs} by {C1, C2, ..., Cs} in the
tsa, the new system is regular. Obviously, another system obtained by replacing
{f1, f2, ..., fs} with {A1, A2, ..., As} in the tsa, has no real solution.

• If there is some Bgj so that resultant(BP, Bgj, x1) = 0, do wr decomposition
of {f1, f2, ..., fs} w.r.t. gj and, without loss of generality, suppose we get two
new chains {A1, A2, ..., As} and {C1, C2, ..., Cs}, in which prem(gj, As, ..., A1) = 0
but res(gj, Cs..., C1) 6= 0. Now, if in the tsa we have gj > 0, we simply replace
{f1, f2, ..., fs} by {C1, C2, ..., Cs} and the new system is regular. If in the tsa
we have gj ≥ 0, we first get a system tsa1 by replacing {f1, f2, ..., fs} with
{C1, C2, ..., Cs} and then, get another system tsa2 by replacing {f1, f2, ..., fs}
with {A1, A2, ..., As} and deleting gj from it. These two systems are both regular.

• If there is some Bfi so that resultant(BP, Bfi, x1) = 0, let [D1, · · · , Dni
] be the

discriminant sequence of fi w.r.t. xi. First of all, we do wr decomposition of
{f1, ..., fi−1} w.r.t. Dni

and, without loss of generality, suppose we get two new
chains {A1, ..., Ai−1} and {C1, ..., Ci−1}, in which prem(Dni

, Ai−1, ..., A1) = 0 but
res(Dni

, Ci−1..., C1) 6= 0. Step 1, replacing {f1, ..., fi−1} with {C1, ..., Ci−1}, we
will get a regular system. Step 2, let us consider the system obtained by replac-
ing {f1, ..., fi−1} with {A1, ..., Ai−1} which is still irregular. Consider Dni−1, the
next term in [D1, · · · , Dni

]. If res(Dni−1, Ai−1, ..., A1) = 0, do wr decomposition
of {A1, ..., Ai−1} w.r.t. Dni−1. Keep repeating the same procedure 1 until at a
certain step we have, for certain Di0 and {Ā1, ..., Āi−1}, res(Di0 , Āi−1, ..., Ā1) 6= 0
and ∀j (i0 < j ≤ ni), prem(Dj, Āi−1, ..., Ā1) = 0. By Theorem 2.3, we have
gcd(fi, f

′
i) = Qni−i0(fi, xi) in K[x1, ..., xi−1]/(Ā1, ..., Āi−1). Now, let f̄i be the

pseudo quotient of fi divided by gcd(fi, f
′
i) and replace {f1, ..., fi−1, fi} with

{Ā1, ..., Āi−1, f̄i}, the new system will be regular.

• If by repeating above three kinds of processes, we decompose an irregular tsa
into some regular systems TSCi (1 ≤ i ≤ n) and we have Zero(TSCi1) ⊆
Zero(TSCi2) for some i1 6= i2, 1 ≤ i1, i2 ≤ n, then delete system TSCi1.

1This procedure must terminate because {f1, ..., fs} being a normal ascending chain implies
res(Ii, fi−1, ..., f1) 6= 0 and D1 = niI

2
i implies res(D1, fi−1, ..., f1) 6= 0.
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Thus, we have got

Theorem 2.4 For an irregular tsa, there is a constructive algorithm which can
decompose tsa into some regular systems TSCi. Let Rzero(·) denote all the dis-
tinct real solutions of a given system, then this decomposition satisfies Rzero(TSC) =∑

Rzero(TSCi).

3 Lifting and Recursion

By Theorem 2.4, we need only to consider regular tsa. For a regular tsa, by call-
ing nearzero(f1(x1), BP (x1), x1), we can get a sequence of intervals satisfying the 5
conditions of algorithm nearzero. How do we take use of these isolating intervals of
f1(x1) to get those of f2(x2), ..., fs(xs)?

Given a regular tsa T , for every fi(i ≥ 2), let

Uij =





res ( ∂fi

∂xj
, fi, fi−1, · · · , f2),

∂fi

∂xj
6≡ 0,

1, ∂fi

∂xj
≡ 0,

(2 ≤ i ≤ s, 1 ≤ j ≤ i− 1),

MPT (x1) =
∏

2≤i≤s

∏
1≤j≤i−1 Uij.

Algorithm: REALZERO

input: a regular tsa T1

output: isolating intervals of real solutions of T1 or reports fail

Step 0 i:=1;

Step 1 resultant(fi(xi),MPTi
(xi), xi) = 0? If yes, the algorithm does not work, stop;

if no, by nearzero(fi(xi), BPTi
·MPTi

, xi), get a sequence of isolating intervals
on xi, say S(i).

Step 2 For each element I = [a(1), b(1)]× · · · × [a(i), b(i)] in S(i), let VI be the vertexes
of the i-dimensional cube I.

Step 3 Because resultant(fi(xi),MPTi
(xi), xi) 6= 0, regarding xi+1 as an implicitly

defined function by fi+1 in x1, x2, ..., xi, respectively, xi+1 is monotonic when

x1 is on [a(1), b(1)],..., xi is on [a(i), b(i)]. For every vertex (v
(1)
j , ..., v

(i)
j ) in VI ,

substitute x1 = v
(1)
j , ..., xi = v

(i)
j into T1 and delete the first i equations of it. Let

i := i + 1, we denote the new system by T
(i)
j . Regarding T

(i)
j as a new regular

tsa, do Step 1. If not exit, we get a sequence of isolating intervals on xi, say
S

(i)
j : [α

(i)
j,1, β

(i)
j,1], ..., [α

(i)
j,ni

, β
(i)
j,ni

].
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Step 4 By Theorem 2.1, the numbers of intervals in any two sequences, S
(i)
j1 and

S
(i)
j2 (1 ≤ j1 ≤ j2 ≤ |VI |), are the same. So, we merge these sequences into one:

S(i) : [α
(i)
1 , β

(i)
1 ], ..., [α(i)

ni
, β(i)

ni
], where

α
(i)
k = min(α

(i)
1,k, ..., α

(i)
|VI |,k), β

(i)
k = max(β

(i)
1,k, ..., β

(i)
|VI |,k), (1 ≤ k ≤ ni).

If two intervals in S(i) intersect or the maximal size of these intervals exceeds
the given positive number, by a sub-algorithm below, we shrink the cube I and
still denote it by I. Let i := i − 1, back to Step 2; else we get a sequence of
i-dimensional cube: I × S(i). We denote the sequence still by S(i). If i < s, back
to Step 2, else

Step 5 For each s-dimensional cube I = [a(1), b(1)]× · · · × [a(s), b(s)] in S(s), substitute
x1 = a(1), ..., xs = a(s) into each gj (1 ≤ j ≤ t) and check whether gj > 0 or gj ≥ 0
according to T1. If all the inequalities satisfied, output I.

Sub-algorithm: SHR

input: a k-dimensional cube I0 in S(k)

output: a k-dimensional cube I ⊂ I0

Step 0 Suppose I0 = [a1, b1]×· · ·×[ak, bk]. We know f1(x1) has one and only one zero,
say x0

1, in [a1, b1] (Without loss of generality, we assume f1(x1) has no repeated
zeros). By intermediate value theorem, we can get an interval [a

′
1, b

′
1] ⊂ [a1, b1]

with x0
1 ∈ [a

′
1, b

′
1] and b

′
1 − a

′
1 = (b1 − a1)/10.

Step 1 Let i := 1, I = [a
′
1, b

′
1] and VI be the vertexes of the i-dimensional cube I.

Step 2 For every vertex (v
(1)
j , ..., v

(i)
j ) in VI , substitute x1 = v

(1)
j , ..., xi = v

(i)
j into T1

and delete the first i equations of it. Let i := i+1, we denote the new system by
T

(i)
j . Regarding T

(i)
j as a new regular tsa, call nearzero (fi(xi), BPTi

·MPTi
, xi).

When calling nearzero, let the maximal size of intervals be 1/10 of that when
we computed [ai, bi] in REALZERO. We get a sequence of isolating intervals on xi,

say S
(i)
j .

Step 3 Merge S
(i)
j (1 ≤ j ≤ |VI |) into one sequence S(i). Of course we know [ai, bi]

should correspond to which interval in S(i). Denote the interval by [a
′
i, b

′
i].

Step 4 Denote I × [a
′
i, b

′
i] still by I. If i=k, output I; else let VI be the vertexes of the

i-dimensional cube I and back to Step 2.

For a regular tsa with resultant(fi(xi),MPTi
(xi), xi) 6= 0, the algorithm REALZERO

can isolate the real solutions of the system. It has been found to be very efficient in
practice on a large number of problems with various backgrounds though it is not a
complete one in theory.
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4 Realzero and Examples

Combining the algorithm REALZERO with Ritt-Wu method and wr algorithm, we gen-
eralize REALZERO to deal with general semi-algebraic systems sas which is defined in
Section 1. Our method has been implemented in maple program realzero.

There are three basic kinds of calling sequences for sas in maple:

realzero([p1, · · · , ps], [q1, · · · , qr], [g1, · · · , gt], [h1, · · · , hm], [x1, · · · , xs]);
realzero([p1, · · · , ps], [q1, · · · , qr], [g1, · · · , gt], [h1, · · · , hm], [x1, · · · , xs], width);
realzero([p1, · · · , ps], [q1, · · · , qr], [g1, · · · , gt], [h1, · · · , hm], [x1, · · · , xs], [w1, ..., ws]); .

The command realzero returns a list of isolating intervals for all real solutions of
the input system or reports the method does not work on some branches. If the 6-
th parameter “width”, a positive number, is given, the maximal size of the output
intervals is less than or equal to the number. If the 6-th parameter is a list of positive
numbers, [w1, ..., ws], the maximal sizes of the output intervals on x1, ... and xs are less
than or equal to w1, ... and ws, respectively. If the 6-th parameter is omitted, the most
convenient width is used for each interval returned. In what follows, all the examples
were computed on a Pentium/800 PC with 256 Mb RAM under maple v.4.

Example 1 Given a system of polynomial equations 2,





p1 = x1(2− x1 − y1) + x2/2− x1/2 = 0,
p2 = x2(2− x2 − y2) + x1/2− x2/2 = 0,
p3 = y1(5− x1 − 2y1) + y2/2− y1/2 = 0,
p4 = y2(3/2− x2 − 2y2) + y1/2− y2/2 = 0,

find the isolating intervals of positive solutions and non-negative solutions of it.
Call

realzero ([p1, p2, p3, p4], [x1, x2, y1, y2], [ ], [ ], [x1, x2, y1, y2], 1/1000);

the output is (the maximal size of all the intervals is less than 1/1000 ),

[[[
123699

262144
,

151

320
],

[
15604750193840633515355762525347641882989981

15429603258688008185068797668747034522695597
,

25646736065207290639

25350470632055620751
],

[
319400452616066402549

152102823792333724506
,

64807714054451707909444009190671657811201765

30859206517376016370137595337494069045391194
],

[
117665269819559725768

163049658030390350401
,

23867887436121200844755218097593146520662280

33070540167780718023098481036025768815988257
]],

[[0, 0], [0, 0], [0, 0], [0, 0]], [[0, 0], [0, 0], [
77397

32768
,

38699

16384
], [

283969593

268435456
,

71012665

67108864
]],

[[2, 2], [2, 2], [0, 0], [0, 0]]],

which means the system has 4 non-negative real solutions and obviously, only one of
them is positive. The time spent is 4.855 seconds.

2The example was provided by Prof. Lu Zhengyi in a talk in Chengdu, China this spring, who
proposed a method, based on an entirely different principle, for isolating the real solutions of a
polynomial system of equations.
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Example 2 This example is one of the special cases of “p-3-p” problem [8]. Given




p1 = x2 + y2 − xy − 1 = 0,
p2 = y2 + z2 − yz − 4 = 0,
p3 = 100z2 + 100x2 − 100zx− 441 = 0,
x > 0, y > 0, z > 0,

call
realzero ([p1, p2, p3], [ ], [x, y, z], [ ], [x, y, z], 1/100);

the output is (the maximal size of all the intervals is less than 1/100 ),

[[[
329
640

,
1317
2560

], [
7484377440343
6494479183360

,
52609887507
45636563840

], [
43054377865877
18655898501120

,
24498926286479469
10606777162792960

]]].

The time spent is 0.510 seconds.

Example 3 This problem originates from automated proving for inequality-type
theorems. Given





p1 = (x− y)2 + (y − z)2 + (z − x)2 − 13/10 = 0,
p2 = (x + y + z)xyz + 1/25 = 0,
p3 = (x + y)2 + (y + z)2 + (z + x)2 − 1 = 0,
x + y > 0, y + z > 0, z + x > 0,

call

realzero ([p1, p2, p3], [ ], [x + y, y + z, z + x], [ ], [x, y, z], [1/100, 1/10, 1/10, 1/10]);

the output is (1.211 seconds),

[[[
−6081

20480
,
−19

64
], [

173

512
,

87

256
], [

2121

3520
,

265581

429568
]], [[

−609

2048
,
−19

64
], [

35

64
,

5

8
], [

283

840
,

57423

163520
]],

[[
6939

20480
,

347

1024
], [
−609

2048
,
−607

2048
], [

9197

15360
,

360041

579584
]], [[

693

2048
,

347

1024
], [

155

256
,

157

256
], [
−370699

1248000
,
−733683

2474240
]],

[[
1249

2048
,

625

1024
], [
−39

128
,
−37

128
], [

66473

210560
,

145251

400000
]], [[

1249

2048
,

625

1024
], [

43

128
,

11

32
], [
−46663

156320
,
−366839

1239680
]]].

Example 4 Given following regular tsa,




f1(b) = 0,
f2(b, c) = 0,
f3(b, c, d) = 0,
f4(b, c, d, e) = 0,
b > 0, c > 0, d > 0, e > 0, c− d 6= 0,

where f1 is a polynomial in b with degree 32, which is given in the appendix, and

f2 = 2075 b16 c12 + 284580 b14 c10 + 357840 b12 c9 + 10185588 b12 c8 + 20167488 b10 c7

+ (21285312 b8 − 62355744 b10) c6 − 99610560 b8 c5

+ (−4855244976 b8 − 361573632 b6) c4 + (−37158912 b4 − 3758980608 b6) c3

+ (54181472832 b6 + 429235200 b4) c2 + (4897760256 b4 + 488374272 b2) c

− 123974556480 b4 + 18874368 + 9432723456 b2,
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f3 = 9 b4 d3 + 45 b4 c d2 + (35 b4 c2 − 486 b2) d− 108 b2 c− 264 + 10 b4 c3,

f4 = (36 d2 b2 − 8 c2 b2 − 28 d b2 c) e + 15 b4 c d2 + 6 b4 c3 + 21 b4 c2 d− 144 b2 c
+ 9 b4 d3 − 120− 648 b2 d.

We call
realzero([f1, f2, f3, f4], [ ], [b, c, d, e], [c− d], [b, c, d, e]);

and get (201.977 seconds),

[[[
741

2048
,

1483

4096
], [

76905

32768
,

76995

32768
], [17,

35

2
],

[
10861925319343565779854723937

22127792367701489429879193600
,

165511946920932232989924461779

333262179329283918463743557632
]], [

[
741

2048
,

1483

4096
], [

199727

32768
,

49971

8192
], [

21

2
, 11],

[
10501218509973981520215735655

4910135500314640502581362688
,

2424563760027166415456804899

1058153874210595032992317440
]],

[[
1803

2048
,

3607

4096
], [

9

4
,

289

128
], [

17

4
,

9

2
], [

23829095983254931

4908557229096960
,

68808656977494510860283

13000075334176032686080
]],

[[
1803

2048
,

3607

4096
], [

311

128
,

39

16
], [

31

8
, 4], [

1393400289557972985919

203852745321228533760
,

62442717485556822243

8514631644974415872
]]

, [[
8177

4096
,

4089

2048
], [

1935

2048
,

121

128
], [

29

16
,

15

8
],

[
215634413938911169503822007

18687908488874225251123200
,

3132517750841677845229

257952942173863280640
]], [[

39343

4096
,

2459

256
],

[
97

512
,

195

1024
], [

769

2048
,

1547

4096
],

[
5995545076788180708016364661

105759302845003541459763200
,

45550235812704818962737

789572509364150861824
]]].
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Appendix

f1 = 241538508382138075462768483549507937558926051383237186598921\
35143477508299833761559265231377708635407176637146131171128509762\
9761b32 + 635066713778840598710749498577504496793070850884097947974\
38029219177777722424790935669882905230018966867662706346221816526\
25273216640b30 − 61751672968559423134724687728230891908778934060236\
33346079511963379997673499794946894262027603963333723121547282957\
28824956115726848000b28 + 27390034646753639766624212069599001290967\
59448312686194199639473757366983350460922339943178170551929762470\
251477314187497028082105057280b26 − 1437145166237554579477639351890\
59794915618143392460779148627234144024674310258895855296843282026\
2735689676445367034239551743254142648320b24 − 298609258728339835915\
11873209280400659942863793385889444751464527738926059859502184401\
2436391877650836905308408943702288447254625779712b22 + 435447287511\
29852462155896216013929270344442811835212525492551812771844033485\
662489132077458388407791801673830767006425164301268418560b20 − 3414\
88074367456093473004956003122708578333573667293973935929910141878\
3540565919352395939247814785296729972490057003026109068312838144b18 +

82237565552698611657570566658152443771941213949595401920250155054\
50490851490444645492294205808268848998735781764749955762521605406\
72b16 − 18465863911534614222771407254727218540553077903981494060726\
33493473284280274236822702569461113776661096178555364273916711096\
2872320b14 + 210458398154301515264393872128757750183426243499830192\
25945815801961543179698127213788008273551581371156105365020925245\
8008412160b12 − 139786675574463317676421937828553960047493569539985\
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18250677206097934122810155232883104878564803527356387141413117228\
18845540352b10 + 58518821530242525343370224841451531318336644453000\
07497442033037334476891210594913793124432039758371062267351116039\
560626176b8 − 1553901833784639522211865208589780740623802505099793\
47778214149227003875939955374111373227667330769980827373188349301\
88288b6 + 31399605401650712044647367132918454229000779662777456747\
422632241786296296046865042734023650341502533877789531725365248b4 −
22147981528466208237751095469143763697499488557226201213514166702\
188991127101416805749416908807763189989750987554816b2 + 6072087665\
34027611425076641314953202561482473671769904296105502296130677639\
9525491814383795284511167695839821824
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