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Abstract. Concerning quartics, two particular quantifier elimination
(QE) problems of historical interests and practical values are studied.
We solve the problems by the theory of complete discrimination systems
and negative root discriminant sequences for polynomials that provide a
method for real (positive/negative) and complex root classification for
polynomials. The equivalent quantifier-free formulas are obtained mainly
be hand and are simpler than those obtained automatically by previous
methods or QE tools. Also, applications of the results to program ver-
ification and determination of positivity of symmetric polynomials are
showed.

1 Introduction

The elementary theory of real closed fields is the first-order theory with atomic
formulas of the forms A = B and A > B where A and B are multivariate
polynomials with integer coefficients and an axiom system consisting of the real
closed fields axioms. The problem of quantifier elimination (QE) for real closed
fields can be expressed as: for a given standard prenex formula φ find a standard
quantifier-free formula ψ such that ψ is equivalent to φ. The problem of quantifier
elimination for real closed field is an important problem originating from math-
ematical logic with applications to many significant and difficult mathematical
problems with various backgrounds.

Many researchers contribute to QE problem. A. Tarski gave a first quantifier
elimination method for real closed fields in 1930s though his result was pub-
lished almost 20 years later [Ta51]. G. E. Collins introduced a so-called cylin-
drical algebraic decomposition (CAD) algorithm in the early 1970s [Co75] for
QE problem. Since then, the algorithm and its improved variations have be-
come one of the major tools for performing quantifier elimination. Through
these years, some new algorithms have been proposed and several important
improvements on CAD have been made to the original method. See, for ex-
ample, [ACM84b, ACM88, Br01a, Br01b, BM05, Co98, CH91, DSW98, Hong90,
Hong92]
and [Hong96, Mc88, Mc98, Re92, Wei94, Wei97, Wei98]. Most of the works
including Tarski’s algorithm were collected in a book [CJ98].
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In this paper, we consider the following two QE problems:

(∀λ > 0) ( λ4 + p λ3 + q λ2 + rλ + s > 0 ) (1)

and
(∀λ ≥ 0) ( λ4 + p λ3 + q λ2 + rλ + s ≥ 0 ), (2)

where s �= 0.
Many researchers studied the following problem of quantifier elimination (see,

for example, [AM88, CH91, La88, Wu92, Wei94]),

(∀x)(x4 + px2 + qx + r ≥ 0).

Problems (1) and (2) are similar to this famous QE problem but have obviously
different points, that is, the variable λ has to be positive or non-negative in our
problems. The two problems attract us not only because they are related to the
above famous QE problem but also because we encounter them when study-
ing some problems concerning program termination [YZXZ05] and positivity of
symmetric polynomials of degree 4.

Let Q(λ) = λ4 + p λ3 + q λ2 + rλ+ s with s �= 01. Problem (1) is equivalent to
finding the necessary and sufficient condition such that Q(λ) does not have pos-
itive zeros and Problem (2) is equivalent to finding the necessary and sufficient
condition such that Q(λ) does not have non-negative zeros or the non-negative
zeros of Q(λ) (if any) are all of even multiplicities. Therefore, if one has an effec-
tive tool for root classification or positive-root-classification of polynomials, the
problems can be solved in this way which is different from existing algorithms
for QE.

There do exist such tools. Actually, one can deduce such a method from the
Chapters 10 and 15 of Gantmacher’s book [Ga59] in 19592. González-Vega etc.
proposed a theory on root classification of polynomials in [GLRR89] which is
based on the Sturm-Habicht sequence and the theory of subresultants. For QE
problems in the form (∀x)(f(x) > 0) or (∀x)(f(x) ≥ 0) where the degree of f(x)
is a positive even integer, González-Vega proposed a combinatorial algorithm
[Gon98] based on the work in [GLRR89]. Other applications of the theory in
[GLRR89] to QE problems in the form (∀x > 0)(f(x) > 0) and other variants in
the context of control system design were studied by Anai etc., see [AH00] for
example.

The authors also have such kind of tools [YHZ96, Yang99, YX00] at hand.
The theory of complete discrimination systems for polynomials proposed in
[YHZ96] and the negative root discriminant sequences for polynomials proposed
in [Yang99, YX00] are just appropriate tools for root classification and positive-
root-classification of polynomials3. With the aid of these tools, determining the
1 If s = 0, the problems essentially degenerate to similar problems with polynomials

of degree 3 which are much easier.
2 The Russian version of the book is published in 1953.
3 The theories in [GLRR89] and [YHZ96] are both essentially based on the relations

between subresultant chains and Sturm sequences (or Sturm-Habicht sequences), i.e.,
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number of real (or complex/positive) zeros of a polynomial f is reduced to dis-
cussing the number of sign changes in a list of polynomials in the coefficients
of f (see also Section 2 of this paper for details). There are many research
works making heavy use of complete discrimination systems, see for example
[WH99, WH00, WY00].

Solutions to those two problems presented in this paper are obtained mainly
by hand with some computation by computer. Our formulas, especially for the
semi-definite case (Problem 2), are simpler than those generated automatically
by previous methods or QE tools and thus make them possible for AI applica-
tions. Hopefully, our “manual” method presented here could be turned into a
systematic algorithm later on.

The rest of the paper is organized as follows. Section 2 devotes to some basic
concepts and results concerning complete discrimination systems and negative
root discriminant sequences for polynomials. Section 3 presents our solutions to
Problems (1) and (2). Applications of our results to program termination and
determination of positivity of symmetric polynomials are showed in Section 4.

2 Preliminaries

For convenience of readers, in this section we provide preliminary definitions and
theorems (without proof) concerning complete discrimination systems and neg-
ative root discriminant sequences for polynomials. For details, please be referred
to [YHZ96, Yang99, YX00].

Definition 1. Given a polynomial with general symbolic coefficients f(x) =
a0x

n + a1x
n−1 + · · · + an, the following (2n + 1) × (2n + 1) matrix is called

the discrimination matrix of f(x) and denoted by Discr (f).
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0 a1 a2 · · · an

0 na0 (n − 1)a1 · · · an−1
a0 a1 · · · an−1 an

0 na0 · · · 2an−2 an−1
· · · · · ·
· · · · · ·
a0 a1 · · · · · · an

0 na0 · · · · · · an−1
a0 a1 · · · · · · an

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Denote by dk (k = 1, 2, · · · , 2n+1) the determinant of the submatrix of Discr (f)
formed by the first k rows and the first k columns.

Definition 2. Let Dk = d2k, k = 1, · · · , n. We call [D1, · · · , Dn] the discrim-
inant sequence of f(x) and denote it by DiscrList(f, x). Furthermore, we call
[d1d2, d2d3, · · · , d2nd2n+1] the negative root discriminant sequence of f(x) and
denote it by n.r.d.(f).

based on the subresultant theorem. However, the main results in these two theories
are expressed in different forms.
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Definition 3. We call [sign(B1), sign(B2), · · · , sign(Bn)] the sign list of a given
sequence [B1, B2, · · · , Bn].

Definition 4. Given a sign list [s1, s2, · · · , sn], we construct its revised sign list
[t1, t2, · · · , tn] as follows:

– If [si, si+1, · · · , si+j ] is a section of the given list, where

si �= 0, si+1 = · · · = si+j−1 = 0, si+j �= 0,

then, we replace the subsection [si+1, · · · , si+j−1] by the first j − 1 terms of
[−si, −si, si, si, −si, −si, si, si, · · · ], i.e., let

ti+r = (−1)[(r+1)/2] · si, r = 1, 2, · · · , j − 1.

– Otherwise, let tk = sk, i.e., no changes for other terms.

For example, the revised one of the sign list [1, 0, 0, 0, 1, −1, 0, 0, 1, 0, 0] is
[1, −1, −1, 1, 1, −1, 1, 1, 1, 0, 0].

Theorem 1 ([YHZ96, Yang99]). Given a polynomial f(x) with real coeffi-
cients, f(x) = a0x

n + a1x
n−1 + · · · + an, if the number of sign changes of the

revised sign list of [D1(f), D2(f), · · · , Dn(f)] is v, then the number of distinct
pairs of conjugate imaginary roots of f(x) equals v. Furthermore, if the number
of non-vanishing members of the revised sign list is l, then the number of distinct
real roots of f(x) equals l − 2v.

Definition 5. Let M = Discr(f). Denote by Mk the submatrix formed by the
first 2k rows of M , for k = 1, · · · , n; and M(k, i) denotes the submatrix formed
by the first 2k−1 columns and the (2k+i)-th column of Mk, for k = 1, · · · , n, i =
0, · · · , n − k. Then, construct polynomials

Δk(f) =
k∑

i=0

det(M(n − k, i))xk−i,

for k = 0, 1, · · · , n − 1, where det(M) stands for the determinant of the square
matrix M . We call the n-tuple

{Δ0(f), Δ1(f), · · · , Δn−1(f)}

the multiple factor sequence of f(x).

Lemma 1. If the number of the 0’s in the revised sign list of the discrimination
sequence of f(x) is k, then Δk(f) = gcd(f(x), f ′(x)), i.e. the greatest common
divisor of f(x) and f ′(x).

Definition 6. By U denote the set of {gcd0(f), gcd1(f), · · · , gcdk(f)}, where
gcd0(f) = f, gcdi+1(f) = gcd (gcdi(f), ∂

∂x gcdi(f)) and gcdk(f) = 1, i.e., all
the greatest common divisors at different levels. Each polynomial in U has a dis-
criminant sequence, and all of the discriminant sequences are called a complete
discrimination system (CDS) of f(x).
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Theorem 2 ([Yang99]). If gcdj(f) has k real roots with multiplicities n1, n2,
..., nk and gcdj−1(f) has m distinct real roots, then gcdj−1(f) has k real roots
with multiplicities n1 + 1, n2 + 1, · · · , nk + 1 and m − k simple real roots.

And the same argument is applicable to the imaginary roots.

Example 1. Let f(x) = x18 − x16 + 2x15 − x14 − x5 + x4 + x3 − 3x2 + 3x − 1.
The sign list of the discrimination sequence of f(x) is

[1, 1, −1, −1, −1, 0, 0, 0, −1, 1, 1, −1, −1, 1, −1, −1, 0, 0].

Hence, the revised sign list is

[1, 1, −1, −1, −1, 1, 1, −1, −1, 1, 1, −1, −1, 1, −1, −1, 0, 0],

of which the number of sign changes is seven, so f(x) has seven pairs of distinct
conjugate imaginary roots. Moveover, it has two distinct real roots and two
repeated roots. Since gcd(f, f ′) = x2 − x + 1, we know that f has two distinct
real roots, one pair of conjugate imaginary roots with multiplicity 2 and six pairs
of conjugate imaginary roots with multiplicity 1.

Theorem 3 ([Yang99, YX00]). Let [d1, d2, · · · , d2n+1] be the principal minor
sequence of the discrimination matrix of the following polynomial

f(x) = a0x
n + a1x

n−1 + · · · + an (a0 �= 0, an �= 0).

1. Denote the number of sign changes and the number of non-vanishing mem-
bers of the revised sign list of n.r.d.(f), [d1d2, d2d3, · · · , d2nd2n+1], by v and
2l, respectively. Then, the number of distinct negative roots of f(x) equals
l − v;

2. Denote [d2, d4, ..., d2n], [d1, d3, ..., d2n+1] and [d1d2, d2d3, ..., d2nd2n+1] by L1,
L2 and L3, respectively. If we denote the numbers of non-vanishing members
and the numbers of sign changes of the revised sign lists of Li (1 ≤ i ≤ 3) by
li and vi, respectively, then l3 = l1 + l2 − 1, v3 = v1 + v2.

3. If d2m−1 = d2m+1 = 0 for some m (1 ≤ m ≤ n), then d2m = 0.

Eliminating the quantifier in the formula

(∀x > 0) (f(x) > 0) (3)

is equivalent to finding the necessary and sufficient condition for f(x) not having
positive zeros. Similarly,

(∀x ≥ 0) (f(x) ≥ 0) (4)

is equivalent to the necessary and sufficient condition such that f(x) does not
have non-negative zeros or the non-negative zeros of f(x) (if any) are all of even
multiplicities. On the other hand, Theorems 1, 2 and 3 imply that, for a given
polynomial f(x), those conditions can be obtained by discussing on the signs of
elements in the negative root discriminant sequences of f(x) and gcdi(f). Thus,
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a sketch of an algorithm for solving (3) can be described as follows which is
similar to the combinatorial algorithm in [Gon98].

Algorithm: Def-Con
Input: A polynomial f(x) with degree n and f(0) �= 0
Output: The condition on the coefficients of f(x) such that (3) holds
Step 1. Let g(x) = f(−x) and denote by [d1, ..., d2n+1] the list of principal

minors of Discr (g).
Step 2. Discuss on all the possibilities of the signs of d2i. Output those sign

lists such that l1 − 2v1 = 0 (i.e., g(x) has no real zeros by Theorem 1) where
v1 and l1 are the numbers of sign changes and non-vanishing members of the
revised sign lists.

Step 3. For each list [d2, ..., d2n] which makes g(x) have real zeros, dis-
cuss on all the possibilities of the signs of d2i+1. Output those sign lists of
[d1, d2, ..., d2n+1] such that l/2− v = 0 (i.e., g(x) has no negative zeros by Theo-
rem 3) where v and l are the numbers of sign changes and non-vanishing members
of the revised sign lists of n.r.d.(f).

Analogously, we may have an algorithm, named Semi-Def-Con, for solving
(4) which is a little bit complicated since we have to use Theorem 2 to discuss
on multiple zeros. In order to simplify the description, we suppose the first 3
steps in Semi-Def-Con are the same as those in Def-Con. So, we only need to
consider those sign lists which make g(x) have negative zeros and multiple zeros
at the same time. For this case, we replace f(x) by gcdi(f) with a suitable i,
and run the first 3 steps recursively. By Theorem 2, we can get the condition for
the negative zeros of g(x) being all of even multiplicities.

By Def-Con and Semi-Def-Con, we can solve Problems (1) and (2) automat-
ically. However, the results are much more complicated than those we shall give
in the next section.

3 Main Results

Proposition 1. Given a quartic polynomial of real coefficients,

Q(λ) = λ4 + p λ3 + q λ2 + rλ + s,

with s �= 0, then
(∀λ > 0) Q(λ) > 0

is equivalent to

s > 0 ∧ ((p ≥ 0 ∧ q ≥ 0 ∧ r ≥ 0) ∨
(d8 > 0 ∧ (d6 ≤ 0 ∨ d4 ≤ 0)) ∨
(d8 < 0 ∧ d7 ≥ 0 ∧ (p ≥ 0 ∨ d5 < 0)) ∨ (5)
(d8 < 0 ∧ d7 < 0 ∧ p > 0 ∧ d5 > 0) ∨
(d8 = 0 ∧ d6 < 0 ∧ d7 > 0 ∧ (p ≥ 0 ∨ d5 < 0)) ∨
(d8 = 0 ∧ d6 = 0 ∧ d4 < 0))
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where

d4 = −8 q + 3 p2,

d5 = 3 r p + q p2 − 4 q2,

d6 = 14 q r p − 4 q3 + 16 s q − 3 p3 r + p2 q2 − 6 p2 s − 18 r2,

d7 = 7 r p2 s − 18 q p r2 − 3 q p3 s − q2 p2 r + 16 s2 p + 4 r2 p3 + 12 q2 p s

+ 4 r q3 − 48 r s q + 27 r3,

d8 = p2 q2 r2 + 144 q s r2 − 192 r s2 p + 144 q s2 p2 − 4 p2 q3 s + 18 q r3 p

− 6 p2 s r2 − 80 r p s q2 + 18 p3 r s q − 4 q3 r2 + 16 q4 s − 128 s2 q2

− 4 p3 r3 − 27 p4 s2 − 27 r4 + 256 s3.

Proof. We need to find the necessary and sufficient condition such that Q(λ)
does not have positive zeros. First of all, by Cartesian sign rule we have the
following results:

1. s > 0 must hold. Otherwise, the sequence [1, p, q, r, s] will have an odd num-
ber of sign changes which implies Q(λ) has at least one positive zero.

2. If the zeros of Q(λ) are all real, Q(λ) does not have positive zeros if and only
if s > 0 and p, q, r are all non-negative.

Therefore, in the following we always assume s > 0 and do not consider the
case when Q(λ) has four real zeros (counting multiplicity).

Let P (λ) = Q(−λ), then we discuss the condition such that P (λ) does not
have negative zeros. We compute the principal minors di (1 ≤ i ≤ 9) of Discr(P )
and consider the following two lists:

L1 = [1, d4, d6, d8] and L2 = [1, d3, d5, d7, d9]

where d3 = −p, d9 = sd8 and di (4 ≤ i ≤ 8) are showed above in the statement
of this proposition. In the following, we denote the numbers of non-vanishing
elements and sign changes of the revised sign list of Li by li and vi (i = 1, 2),
respectively.

Case I. d8 > 0.
In this case, by Theorem 1 P (λ) has either four imaginary zeros or four real

zeros. P (λ) has four imaginary zeros if and only if d6 ≤ 0 ∨ d4 ≤ 0 by Theorem
1. As stated above, we need not to consider the case when P (λ) has four real
zeros. Thus,

d8 > 0 ∧ (d6 ≤ 0 ∨ d4 ≤ 0)

must be satisfied under Case I.
Case II. d8 < 0.
In this case, L1 becomes [1, d4, d6, −1] with l1 = 4, v1 = 1 which implies by

Theorem 1 that P (λ) has two imaginary zeros and two distinct real zeros.
If d7 > 0, L2 becomes [1, −p, d5, 1, −1]. By Theorem 3, v2 should be 3 which

is equivalent to p ≥ 0 ∨ d5 ≤ 0.
If d7 = 0, L2 becomes [1, −p, d5, 0, −1]. By Theorem 3, v2 should be 3 which

is equivalent to p ≥ 0 ∨ d5 < 0.
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To combine the above two conditions, we perform pseudo-division of d7 and
d5 with respect to r and obtain that

27p3d7 = Fd5 + 12G2 (6)

where F, G are polynomials in p, q, r, s. It’s easy to see that p should be non-
negative if d7 > 0 and d5 = 0. Thus, we may combine the above two sub-cases
into

d7 ≥ 0 ∧ (p ≥ 0 ∨ d5 < 0).

If d7 < 0, L2 becomes [1, −p, d5, −1, −1]. By (6) we know that p = 0 ∧ d5 > 0
and p > 0 ∧ d5 = 0 are both impossible. Thus, v2 is 3 if and only if p > 0 ∧ d5 > 0.

In Case II, We conclude that

d8 < 0 ∧ [(d7 ≥ 0 ∧ (p ≥ 0 ∨ d5 < 0)) ∨ (d7 < 0 ∧ p > 0 ∧ d5 > 0)]

must be satisfied.
Case III. d8 = 0.
If d6 > 0, P (λ) has four real zeros (counting multiplicity) and this is the case

having been discussed already.
If d6 < 0, then l1 = 3 and v1 = 1. We need to find the condition for l2/2 = v2

by Theorem 3. Obviously, l2 must be an even integer. We consider the sign of
d7. First, d7 < 0 implies l2/2 = 2 and v2 is an odd integer and thus l2/2 = v2
can not be satisfied. Second, if d7 = 0, by Theorem 3 d5 �= 0 since d6 < 0. That
means l2 is odd which is impossible. Finally, if d7 > 0, v2 must be 2 and this is
satisfied by p ≥ 0 ∨ d5 < 0.

If d6 = 0, L1 becomes [1, d4, 0, 0]. And d4 ≥ 0 implies P (λ) has four real
zeros (counting multiplicity) and this is the case having been discussed already.
If d4 < 0, P (λ) has four imaginary zeros (counting multiplicity) and thus no
negative zeros.

In Case III, we conclude that

d8 = 0 ∧ [(d6 < 0 ∧ d7 > 0 ∧ (p ≥ 0 ∨ d5 < 0)) ∨ (d6 = 0 ∧ d4 < 0)]

must be satisfied. That completes the proof. �	

Proposition 2. Given a quartic polynomial of real coefficients,

Q(λ) = λ4 + p λ3 + q λ2 + rλ + s,

with s �= 0, then

(∀ λ ≥ 0 ) Q(λ) ≥ 0

is equivalent to
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s > 0 ∧ ((p ≥ 0 ∧ q ≥ 0 ∧ r ≥ 0) ∨
(d8 > 0 ∧ (d6 ≤ 0 ∨ d4 ≤ 0)) ∨
(d8 < 0 ∧ d7 ≥ 0 ∧ (p ≥ 0 ∨ d5 < 0)) ∨ (7)
(d8 < 0 ∧ d7 < 0 ∧ p > 0 ∧ d5 > 0) ∨
(d8 = 0 ∧ d6 < 0) ∨
(d8 = 0 ∧ d6 > 0 ∧ d7 > 0 ∧ (p ≥ 0 ∨ d5 < 0)) ∨
(d8 = 0 ∧ d6 = 0 ∧ (d4 ≤ 0 ∨ E1 = 0)))

where di (4 ≤ i ≤ 8) are defined as in Proposition 1 and

E1 = 8 r − 4 p q + p3.

Proof. Because Q(0) = s �= 0, it is equivalent to consider

(∀ λ > 0 ) Q(λ) ≥ 0.

And the formula holds if and only if Q(λ) has no positive zeros or each positive
zero (if any) of Q(λ) is of even multiplicity.

Since the first case that Q(λ) has no positive zeros has been discussed in
Proposition 1, we only discuss on the later case. So, we assume that s > 0 and
d8 = 0. All notations are as in Proposition 1.

Case I. d6 < 0.
L1 becomes [1, d4, −1, 0] which implies P (λ) has a pair of imaginary zeros and

one real zero with multiplicity 2. Thus, P (λ) is positive semi-definite no matter
what value λ is.

Case II. d6 > 0.
In this case, L1 becomes [1, d4, 1, 0] which implies that P (λ) has three distinct

real zeros of which one is of multiplicity 2. By Cartesian sign rule, the number
of positive real zeros (counting multiplicity) is even. Therefore, we need only to
find the condition such that Q(λ) has one distinct positive real zero (i.e., P (λ)
has one distinct negative real zero). Because l1 = 3, v1 = 0, by Theorem 3, it
must be l2/2 = v2 = 2. And this is true if and only if d7 > 0 ∧ (p ≥ 0 ∨ d5 ≤ 0).
From (6), we know that d7 > 0 ∧ p < 0 ∧ d5 = 0 is impossible. So we conclude
that, in this case, the following formula should be true.

d6 > 0 ∧ d7 > 0 ∧ (p ≥ 0 ∨ d5 < 0).

Case III. d6 = 0.
Since the case that d4 ≤ 0 has been discussed, we assume d4 > 0 which implies

that P (λ) has two distinct real zeros and no imaginary zeros. Because the case
that P (λ) has no negative zeros has been discussed as stated above, we must find
the condition such that each of the two real zeros of P (λ) is of multiplicity 2.

We can obtain the condition by discussing on the root classification of the
repeated part of P (λ) through Theorem 2. But the condition obtained is a little
bit complex than the one obtained in the following way.
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Suppose Q = (λ2 + aλ + b)2, we get

(−p + 2a)λ3 + (2b + a2 − q)λ2 + (2ab − r)λ + b2 − s = 0.

So
−p + 2a = 0, 2b + a2 − q = 0, 2ab − r = 0, b2 − s = 0, (8)

where a, b are indeterminates. Substituting p/2 for a in the equations, we get
2b+1/4p2−q = 0, −r+pb = 0, b2−s = 0. Suppose p �= 0 and substituting b = r/p
into the equalities, we get E1 = 0 and E2 = 0 where E1 = 8r − 4pq + p3, E2 =
r2 − p2s.

If p = 0, E1 = 0 and E2 = 0, then r = 0, d4 = −8q, d6 = 4q(4s − q2). Under
the precondition that d6 = 0∧d4 > 0, we have 4s−q2 = 0 which solves equations
(8) together with p = r = 0. In a word, the equations (8) has common solutions
if and only if E1 = 0 and E2 = 0 under the precondition that d6 = 0 ∧ d4 > 0.

On the other hand, we have

p2d6 = 2d4E2 + (2rq − 3rp2 + pq2)E1.

If d6 = 0 and d4 > 0, E2 = 0 is implied by E1 = 0. Finally, we conclude in this
case that

d6 = 0 ∧ d4 > 0 ∧ E1 = 0

should be true.
That ends the proof. �	

Remark 1. We have tried the two problems by our Maple program DISCOV-
ERER [YHX01, YX05] which includes an implementation of the algorithms in
Section 2 and obtained some quantifier-free formulas equivalent to those of (5)
and (7). However, the formulas are much more complicated than the ones stated
in Propositions 1 and 2. For example, the resulting formula for Problem (1) are
as follows.

s > 0 ∧ [ [d8 < 0, d7 <= 0, d6 < 0, 0 < d5, d4 <> 0, d3 < 0]∨
[d8 <= 0, 0 < d7, d6 < 0, d5 < 0]∨
[d8 <= 0, 0 < d7, d6 < 0, 0 <= d5, d4 <> 0, d3 < 0]∨
[d8 < 0, d6 < 0, 0 < d5, d4 = 0, d3 < 0]∨
[d8 < 0, 0 < d7, d6 <= 0, d5 = 0, d4 = 0, d3 <= 0]∨
[d8 < 0, d7 < 0, d6 = 0, d5 < 0, d4 = 0, d3 <= 0]∨
[d8 < 0, d7 < 0, d6 = 0, d5 = 0, d4 = 0, d3 = 0]∨
[d8 < 0, d7 < 0, d6 = 0, 0 < d5, 0 <= d4, d3 < 0]∨
[d8 < 0, d7 = 0, d6 = 0, d5 = 0, d4 = 0]∨
[d8 < 0, 0 <= d7, d6 = 0, 0 < d5, d4 = 0, d3 <> 0]∨
[d8 < 0, 0 < d7, d6 = 0, d5 < 0, 0 <= d4]∨
[d8 < 0, 0 <= d7, d6 = 0, 0 <= d5, 0 < d4, d3 < 0]∨
[d8 < 0, d7 <= 0, 0 < d6, 0 < d5, 0 < d4, d3 < 0]∨
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[d8 < 0, 0 < d7, 0 < d6, d5 < 0, 0 < d4]∨
[d8 < 0, 0 < d7, 0 < d6, 0 <= d5, 0 < d4, d3 < 0]∨
[d8 = 0, 0 < d7, d6 < 0, d5 = 0, d4 = 0, d3 <= 0]∨
[d8 = 0, 0 < d7, d6 < 0, 0 < d5, d4 = 0, d3 < 0]∨
[d8 = 0, d6 = 0, d4 < 0]∨
[d8 = 0, d7 < 0, d6 = 0, d5 <> 0, d4 = 0, d3 < 0]∨
[d8 = 0, d7 = 0, d6 = 0, d4 = 0, d3 < 0]∨
[d8 = 0, d6 = 0, d4 = 0, d3 < 0]∨
[d8 = 0, d6 = 0, 0 < d5, 0 < d4, d3 < 0]∨
[0 <= d8, d7 < 0, 0 < d6, 0 < d5, 0 < d4, d3 < 0]∨
[0 < d8, d6 <= 0]∨
[0 < d8, 0 < d6, d4 <= 0] ]

Here, d3 = −p and the other dis are defined as in Proposition 1. The above formula
contains much more clauses than formula (5). For Problem (2), the resulting for-
mula created by DISCOVERER is even more complicated because we have to add
some more clauses for the cases existing positive zeros with even multiplicities.

Remark 2. We use Cartesian sign rule in the proofs of Propositions 1 and 2. This
can be integrated into Def-Con and Semi-Def-Con to produce simpler formulas. In
fact, a naive use of Cartesian sign rule may decrease the number of clauses. Some
optimal strategy on sign discussion and result simplification can also be imple-
mented. However, some computation like pseudo-division in the proofs depends
on each concrete problem and thus is hard to be turned into an algorithm.

4 Two Examples in Application

Our first example comes from determination of termination of linear loop pro-
grams. Termination analysis plays a central role in formal verification of
programs [Cou00]. An ideal solution to the termination problem for a class of
programs is to prove the decidability of its termination problem and to establish
calculable conditions so that for any given specific program in the class, we can
compute these conditions to conclude whether the given program terminates.

The linear programs [BJT99, CH78, HPR97] are a class of programs that is
widely studied. A large number of reactive systems can be modelled precisely or ap-
proximately as the linear programs [HH95]. Unfortunately, the termination prob-
lem of linear programs is undecidable in general [Tiw04]. However, Tiwari proves
[Tiw04] the decidability of a specific class of linear loop programs of the form

P1 : while Bx > b {x := Ax + c}

where x (b and c) is a vector of N program variables (and real numbers), A
and B are N × N and N × M real matrices respectively, Bx > b represents a
conjunction of M linear inequalities in the program variables and x := Ax + c
represents the linear assignments to each of the variables.

Theorem 4 ([Tiw04]). The termination of nonhomogeneous linear program of
P1 is decidable.
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Denote the homogeneous case of the program P1 where b and c both are 0 by

P2 : while (Bx > 0) {x := Ax}.

Theorem 5 ([Tiw04]). If the program P2 is nonterminating, then there is a real
eigenvector v of A, corresponding to a positive real eigenvalue, such that Bv ≥ 0.

Definition 7. Assignment x := Ax of P2 is called a terminating assignment,
if matrix A has no positive eigenvalue.

Obviously, if x := Ax of P2 is a terminating assignment, then P2 terminates for
any matrix B. By the above definition, we have the following theorem as a direct
result from Proposition 1. The theorem first appeared in [YZXZ05] without proof
due to page limitation.

Theorem 6. Suppose A is a 4 × 4 matrix

A =

⎡
⎢⎢⎣

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

⎤
⎥⎥⎦ ,

x := Ax is a terminating assignment if and only if the condition (5) is satisfied
where

p = −a11 − a22 − a33 − a44

q = a33a44 + a11a22 − a41a14 − a31a13 − a32a23 − a34a43 + a22a44 + a22a33

−a21a12 − a42a24 + a11a44 + a11a33

r = −a32a24a43 + a11a34a43 − a11a33a44 − a21a42a14 + a11a32a23 + a21a12a33 +
a42a24a33 + a11a42a24 − a31a12a23 + a22a34a43 − a11a22a33 + a31a13a44 −
a11a22a44 − a42a23a34 − a22a33a44 − a41a12a24 + a32a23a44 − a41a13a34 +
a41a14a33 + a21a12a44 + a41a22a14 − a31a14a43 + a31a22a13 − a21a32a13

s = −a11a22a34a43 − a21a32a14a43 − a21a42a13a34 + a11a32a24a43 +
a21a42a14a33 + a41a12a24a33 + a31a12a23a44 − a31a12a24a43 +
a11a22a33a44 − a21a12a33a44 + a21a12a34a43 − a31a22a13a44 −
a41a12a23a34 + a31a22a14a43 − a31a42a14a23 − a11a32a23a44 +
a41a22a13a34 + a11a42a23a34 − a11a42a24a33 + a41a32a14a23 +
a21a32a13a44 − a41a22a14a33 − a41a32a13a24 + a31a42a13a24

Our second example comes from the determination of positivity of symmetric
polynomials with degree 4 and arbitrary number of variables. Let R be the real

numbers, R
n
+ = {(x1, ..., xn)|xi ∈ R, xi ≥ 0}, 1k = (

k︷ ︸︸ ︷
1, ..., 1), 0k = (

k︷ ︸︸ ︷
0, ..., 0) and

H
[n]
d the set of real symmetric d-homogeneous polynomials in n variables. For

any x = (x1, ..., xn) ∈ R
n, set

v(x) = |{xi| i = 1, ..., n}| , v∗(x) = |{xi| xi �= 0, i = 1, ..., n}| .
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That is to say, v(x) is the number of distinct elements in x and v∗(x) is the
number of distinct non-zero elements in x. V. Timofte proves the following result.

Theorem 7 ([Tim03]). Suppose f(x) ∈ H
[n]
d . Then f ≥ 0 holds on R

n
+ if and

only if it holds for x ∈ {x| x ∈ R
n
+, v∗(x) ≤ max([d

2 ], 1)}.

Set Nn = {(r, s)| r, s are positive integers with r + s ≤ n}. If d = 4, it’s easy to
see that

f(x) ≥ 0, x ∈ R
n
+

⇐⇒ f(x) ≥ 0, x ∈ R
n
+, v∗(x) ≤ 2

⇐⇒ f(t1 · 1r, t2 · 1s, 0n−r−s) ≥ 0, ∀t1, t2 ≥ 0, ∀(r, s) ∈ Nn

⇐⇒ ta2f( t1
t2

· 1r, 1s, 0n−r−s) ≥ 0, ∀t1 ≥ 0, ∀t2 > 0, ∀(r, s) ∈ Nn

⇐⇒ f(t · 1r, 1s, 0n−r−s) ≥ 0, ∀t ≥ 0, ∀(r, s) ∈ Nn

Therefore, to determine the positivity of a polynomial in H
[n]
4 on R

n
+, it’s

sufficient to determine the positivity of a finite number of polynomials in one non-
negative variable with degree 4. The result of Proposition 2 is exactly suitable
for the determination and if n is very large, the determination will benifit from
such off-line condition as (7).
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