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Abstract. A new algorithm for real root isolation of univariate polynomials
is proposed, which is mainly based on exact interval arithmetic and bisection
method. Although exact interval arithmetic is usually supposed to be ineffi-
cient, our algorithm is surprisingly fast because the termination condition of
our algorithm is different from those of existing algorithms which are mostly
based on Descartes’ rule of signs or Vincent’s theorem and we decrease the
times of Taylor shifts in some cases. We test our algorithm on a large number
of examples from the literature and report the performance.

Mathematics Subject Classification (2000). 68W30.

Keywords. Real root isolation, interval arithmetic, interval Newton operator,
bisection method, Maple.

1. Introduction

Real root isolation of univariate polynomials with integer coefficients plays a sig-
nificant role in many algorithms concerning computational real algebra and real
algebraic geometry. In many computer algebra systems (CAS), one can find imple-
mentations of algorithms based on different principles for real root isolation. The
realroot function in Maple and the RealRootIntervals function in Mathematica
are such examples.

Many algorithms for real root isolation have been proposed in the literature,
see, for example, [1,2,4–6,9,12], which can be classified into two kinds of methods:
bisection and non-bisection methods. For example, algorithms proposed in [4–6,9,
12] are essentially based on bisection strategy, taking use of different principles to
rule out intervals with no roots and to pick out intervals containing exactly one
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root and the algorithm proposed in [1, 2] is based on Vincent’s theorem, which
does not bisect intervals.

The idea of bisection method is natural and easy to understand. Suppose B
is the root bound of f(x), a univariate polynomial with integral coefficients, and
we have an effective rule M to determine the number of roots of f(x) in an
interval, then we may bisect (−B, B) (or (0, B)) repeatedly and apply M each
time to rule out intervals not containing roots. Sturm’s theorem is an instance
of such rules. Some other rules, e.g., Budan–Fourier’s theorem and Descartes’
rule of signs, can not be used directly to determine the exact number of roots
in intervals of polynomials in general. But combined with the bisection method
and some transformation techniques, the two rules are very suitable for real root
isolation [6]. In fact, methods based on Descartes’s rule of signs are most efficient
in general [4–6,8,12]. A systematic study was initiated in [8] comparing algorithms
based on different rules as well as giving some best theoretical results up to then.
All the known algorithms for real root isolation based on Descartes’ rule of signs
and the bisection strategy are described in [12] in a unified framework, and a new
algorithm REL is presented in [12] which is proved to be very efficient and can
works with huge polynomials, including orthogonal polynomials of degree 1000
and more.

The CF method proposed in [1] does not perform bisection. It is directly
based on Vincent’s theorem and is more tricky. A comparative study of the CF
method and the REL method through timings on some special polynomials is
reported in [2]. But, we are confused that the timings of REL reported in [2] is
inconsistent with the original ones in [12].

One main computation involved in algorithms based on Descartes’ rule of
signs and bisection is computing Taylor shifts. This is also true for the CF algo-
rithm. Because computing Taylor shifts may be very costly especially for poly-
nomials of high degrees, fast algorithms for Taylor shifts [7] are employed in the
REL and CF methods. Moreover, some special technics are implemented in REL
for fast Taylor shifts [11] while CF computes lower bounds of positive roots of
polynomials to decrease the number of Taylor shifts [2].

We propose an algorithm which is based on interval arithmetic and bisection
strategy. Our first idea is to use exact interval Newton operator to rule out intervals
not containing roots quickly. Our second idea is to decrease the number of Taylor
shifts. To achieve this, we perform exact interval Newton iteration instead of Taylor
shifts when some conditions are satisfied (see the remark in Section 4). Although
most interval algorithms and arithmetic are based on float point computation, we
think it is useful to study interval arithmetic with exact calculation.

The rest of the paper is organized as follows. Section 2 reviews briefly some
concepts and results in interval arithmetic. Section 3 introduces a naive algo-
rithm, called Nrealroot, for real root isolation, which does not perform Taylor
shifts. The weak points of Nrealroot is discussed and an improved algorithm
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called Trealroot is proposed in Section 4. We report the performance of an im-
plementation under Maple of Trealroot on a large number of examples from the
literature and analyse the performance of our program in Section 5. Finally, we
conclude in Section 6.

2. Interval arithmetic

Interval arithmetic, which is just the arithmetic operation on sets of real numbers,
is easy to understand. For instance,

[1, 2] + [3, 4] = [4, 6], [1, 2] · [−2, 3] = [−4, 6] ,

1/[−1, 2] = [−∞,−1]
⋃

[1/2, +∞] .

Strictly speaking, we have the following definitions [3]. Let the set of all
intervals is denoted by I(R).

Definition 1. For X = [a, b] ∈ I(R), the width, the midpoint and the sign of X are
defined, respectively, as W(X) = b − a, m(X) = a+b

2 and sign(X) is −1 if b < 0;
1 if a > 0 and 0 otherwise.

Definition 2. For X, Y ∈ I(R) and � ∈ {+,−, ·}, we define

X � Y = {x � y| x ∈ X, y ∈ Y } .

For X = [a, b] ∈ I(R), if sign(X) �= 0, we define

X−1 = 1/X = [1/b, 1/a] ;

if sign(X) = 0 and W(X) �= 0, we define

X−1 = 1/X =

⎧
⎨

⎩

[−∞, 1/a] : b = 0
[1/b, +∞] : a = 0

[−∞, 1/a] ∪ [1/b, +∞] : a < 0 < b ;
(2.1)

if X = [0, 0], X−1 is undefined. And Y/X is defined to be Y ·X−1, where Y/X =
Y · [−∞, 1/a]∪ Y · [1/b, +∞] if a < 0 < b.

For a ∈ R, X ∈ I(R) and � ∈ {+,−, ·, /}, we define a � X = [a, a] � X and
X � a = X � [a, a].

Let f be an arithmetic expression of a polynomial in R[x1, . . . , xn]. We replace
all operands of f as intervals and replace all operations of f as interval operations
and denote the result by F . Then,

F : I(R)n → I(R)

is called an interval evaluation of f . Different expressions of one polynomial may
result in different interval evaluations. For example, if we replace x by [1, 2], the
interval evaluations of x2 − 2x + 1,(x − 1)2 and (x − 2)x + 1 are [−2, 3], [0, 1] and
[−1, 1], respectively. Let f(x) =

∑n
i=0 aix

i be a polynomial. We use
((

(anx + an−1)x + an−2

)
x + · · · + a1

)
x + a0
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to calculate an interval evaluation of f(x) in our algorithm.
Let f(x) be a polynomial in R[x] and X an interval, the interval Newton

operator [3] is defined as

N(X) = m(X) − f
(
m(X)

)

F ′(X)
(2.2)

where F ′ is an interval evaluation of f ′ and m(X) is the midpoint of X .
The above defined Newton operator satisfies the following properties [3, 10].

1. If x∗ ∈ X is a zero of f(x), x∗ ∈ N(X).
2. If X ∩ N(X) = ∅, f(x) does not have zeros in X .
3. If N(X) ⊂ X , f(x) has zeros in X .
4. If N(X) is contained in the interior of X , f(x) has a unique zero in X .

3. Interval algorithm based on exact calculation

Let f(x) ∈ Z[x] be a polynomial and X = X0 an initial interval, setting X =
N(X) ∩ X , repeating this interval Newton iteration for all resulting intervals and
discarding empty sets, we will obtain a set of intervals possibly containing zeros of
f(x) on X0. Naturally, one can propose an algorithm for real root isolation using
interval Newton iteration and exact interval arithmetic. Let us describe the main
steps of such algorithm as follows.

For a square-free polynomial f(x) ∈ Z[x] and an initial interval X0, first,
setting X = X0, we compute the interval evaluation of f ′ on X , i.e., F ′(X). If the
sign of F ′(X) is not zero, F is monotonic on X and thus it is sufficient to check
the signs of f(x) at the endpoints of X to determine whether or not there is a root
in X .

Second, if the sign of F ′(X) is zero, we compute N(X) by the definition
of (2.2). If N(X) satisfies the 2nd or 4th property listed at the end of Section 2,
we are done. Otherwise, N(X)∩X can be one or two intervals, say X1 (and X2).

Third, letting X be X1 and X2, respectively, repeat the first two steps for
the new X .

Obviously, the procedure terminates within a finite number of steps because
f(x) being square-free guarantees that the monotonicity will occur as the intervals
get smaller and smaller. About the correctness of the procedure, please note first
that each output interval contains only one zero and second, the 1st property of
interval Newton operator ensures that we do not miss any zeros.

We will discuss on the weak point of such naive algorithm and on how to
improve it later. The strongpoint of such naive algorithm is that it avoids Taylor
shifts which is expensive if polynomials have high degrees. For example,

f(x) = −10x93925 + 62x82660 − 82x76886 + 80x69549 − 44x68273 (3.1)

+ 71x55578 − 17x53739 − 75x30731 − 10x22679 − 7
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is a polynomial randomly generated by Maple. Expanding f(x + 1) is a challenge,
so isolating real roots of f(x) is a challenge to those algorithms based on Taylor
shift, such as REL and CF. We use the following “pseudo-codes” to describe the
above procedure more accurately.

Algorithm: Nrealroot
Input: A square-free polynomial f ∈ Z[x] with f(−1)f(0)f(1) �= 0.
Output: OutL, a list of isolating intervals for the real zeros of f(x).

1. Set OutL = [ ], n = degree(f, x).
2. For every interval I in SNrealroot(f(x)) (a sub-algorithm to be described

below), add I to OutL.
3. For every interval I in SNrealroot(f(−x)), add [−1,−1] · I to OutL.
4. For every interval I in SNrealroot(xnf(1/x)), add 1/I to OutL.
5. For every interval I in SNrealroot(xnf(−1/x)), add 1/([−1,−1] · I) to OutL.

We use a data structure [h, u, v, r, s, k] in the description of the sub-algorithm,
where h is a polynomial and u, v, r, s, k are integers. The zeros of h(x) in (u, v)
correspond to the zeros of g(x) in (r/2k, s/2k) one to one.

Sub-algorithm: SNrealroot
Input: A square-free g ∈ Z[x] with g(0)g(1) �= 0.
Output: OutL, a list of isolating intervals for the zeros of g(x) in (0, 1).

1. Set OutL = [ ]; L = [[g, 0, 1, 0, 1, 0]]. Repeat the following steps until L is
empty.

2. Fetch the first element of L, say [h, u, v, r, s, k], and delete it in L.
3. If h((u + v)/2) = 0, include

[
(r + s)/2k+1, (r + s)/2k+1

]

in OutL and replace h(x) by h(x)/(x − (u + v)/2). Include
[
2mh(x/2), 2u, u + v, 2r, r + s, k + 1

]

and [
2mh(x/2), u + v, 2v, r + s, 2s, k + 1

]

in L as the first two elements where m is the degree of h(x), then go to Step 2.
4. If H ′((u, v))(the interval evaluation of h′(x) on (u, v)) does not contain 0, then

check the signs of h(u) and h(v). If h(u)h(v) < 0, then include (r/2k, s/2k)
in OutL.

5. If H ′((u, v)) contains 0, apply interval Newton operator to h and (u, v), i.e.,
set

N(h, u, v) = (u + v)/2 − h
(
(u + v)/2

)

H ′(u, v)
.

(a) If N(h, u, v) ∩ ((u + v)/2, v) is not empty, then include
[
2mh(x/2), u + v, 2v, r + s, 2s, k + 1

]

in L as the first element.
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(b) If N(h, u, v) ∩ (u, (u + v)/2) is not empty, then include
[
2mh(x/2), 2u, u + v, 2r, r + s, k + 1

]

in L as the first element.

4. Improved algorithm

Our implementation of Nrealroot under Maple isolates the three real roots of f(x)
in (3.1) within 601 seconds on a notebook PC IBM T23 (Pentium 1.13GHz CPU,
512M Memory, Windows XP, Maple 9). However, the limitation of Nrealroot is
obvious. For instance, it takes about 290 seconds to isolate the zeros of

f15(x) =
15∑

i=1

(x + i)

and the loop count is 216904. Obviously, the number of real zeros of input poly-
nomial is the main factor affecting the performance of Nrealroot.

Another main factor is that, for a polynomial f(x) and an interval X , F (X)
(the interval evaluation of f(x) on X) is often much more wider than f(X). So,
those intervals not containing zeros cannot be recognized quickly and thus a great
number of redundant iterations occur.

We found that the interval evaluation of a polynomial g(x) on (0, 1) has little
difference to g((0, 1)) and is easy to be computed. Note that Taylor shifts can map
the zeros of one polynomial f in (a, a + 1) to (0, 1), and thus simplify the interval
evaluation F ([a, a + 1]) to F ([0, 1]). Therefore, we combine the Newton iteration
with Taylor shifts. As a result, the efficiency has been improved dramatically. For
example, after using Taylor shifts in Step 3, Step 5(a) and Step 5(b) of Nrealroot,
the timing and loop count for isolating the real zeros of f15 are 0.9s and 79, respec-
tively. However, as we stated before, Taylor shifts may be very costly when the
degrees of polynomials are large. So, we use some criterion to determine whether
or not we need to perform Taylor shift at next step (see the Remark below).

We can further improve the efficiency of Nrealroot by combining some other
techniques. For example, if we use Budan–Fourier’s theorem to check sign changes
before Step 3 of Nrealroot, isolating the real zeros of f15 just needs 0.4s and 45
loops. Based on the above observation, we designed an algorithm Trealroot which
is much more efficient than Nrealroot.

Algorithm: Trealroot
Input: A square-free polynomial f ∈ Z[x] with f(−1)f(0)f(1) �= 0.
Output: OutL, a list of isolating intervals for the real zeros of f(x).

1. Set OutL = [ ], n = degree(f, x).
2. For every interval I in kiteflying(f(x)) (a sub-algorithm to be described

below), add I to OutL.
3. For every interval I in kiteflying(f(−x)), add [−1,−1] · I to OutL.
4. For every interval I in kiteflying(xnf(1/x)), add 1/I to OutL.
5. For every interval I in kiteflying(xnf(−1/x)), add 1/([−1,−1]·I) to OutL.
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Before we describe the sub-algorithm, we would like to give the following
remark for better understanding of the idea of the algorithm.

Remark 3. In Step 3, we hope Budan–Fourier’s theorem could help to decrease
the number of intervals to be bisected. Similarly, lower bounds computed in Step 4
could help to decrease the time of bisection under some cases. Step 5 handles the
case that the midpoint of an interval is a zero. In Step 7, we compute interval
Newton iteration. However, if the width of the result interval is small (less than
(1− 1

b )v−u
2 ) or the loop count is small (less than c), we do not perform Taylor shift

as we do in Nrealroot. The values of the two parameters b and c are alterable
and are set to be some empirical values in our algorithm.

We use a data structure [h, u, v, r, s, k, v1, v2] in the following description,
where h is a polynomial and u, v, r, s, k, v1, v2 are integers. The zeros of h(x) in
(u, v) correspond to the zeros of g(x) in (r/2k, s/2k) one to one. The number of
zeros of h in (u, v) is less than or equals to v1−v2 . Also, we use V(p(x)) to denote
the sign changes of the coefficients of a polynomial p(x). The two parameters b and
c used in Step 7 are called the performance parameter, whose values are based on
experience. In the following sub-algorithm, we set b = degree(g), c = iquo(b, 30).

Sub-algorithm: kiteflying
Input: A square-free polynomial g ∈ Z[x] with g(0)g(1) �= 0.
Output: OutL, a list of isolating intervals for the real zeros of g(x) in (0, 1).

1. Set v1 = V(g(x)), v2 = 0, OutL = [ ], and

L = [ [g, 0, 1, 0, 1, 0, v1, v2] ] .

Repeat the following steps until L is empty.
2. Fetch the first element of L, say [h, u, v, r, s, k, v1, v2], and delete it in L.
3. If v1 − v2 = 0 then go to Step 2.

If v1 − v2 = 1 and h(u)h(v) < 0, then include (r/2k, s/2k) in OutL and go to
Step 2.
If v1 − v2 > 1 then go to next step.

4. If u = 0 and v = 1, calculate a lower bound a of zeros of xmh(1/x) in (1, +∞),
where m is the degree of h(x). If a > 1, then let

h = h(ax) , r = ra , s = ra + s − r , k = k + log2a .

5. If h((u + v)/2) = 0, then include [(r + s)/2k+1, (r + s)/2k+1] in OutL and
replace h(x) by h(x)/(x − (u + v)/2).

Set v1 = V(h(x)) and v0 = V(2mh((x + u + v)/2)). Include
[
2mh(x/2), 2u, u + v, 2r, r + s, k + 1, v1, v0

]

and [
2mh

(
(x + u + v)/2

)
, 0, v − u, r + s, 2s, k + 1, v0, v2

]

in L as the first two elements where m is the degree of h(x). Go to Step 2.
6. If H ′((u, v)) (the interval evaluation of h′(x) on (u, v)) does not contain 0,

and h(u)h(v) < 0, then include (r/2k, s/2k) in OutL. Go to Step 2.
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7. If H ′((u, v)) contains 0, apply interval Newton operator to h and (u, v), i.e.,
set

N(h, u, v) = (u + v)/2 − h
(
(u + v)/2

)

H ′(u, v)
.

Set v0 = v2.
(a) If N(h, u, v) ∩ ((u + v)/2, v) is not empty then

if the width of N(h, u, v) ∩ ((u + v)/2, v) is less than (1 − 1
b )v−u

2
or the loop count is less than c or u = 0

then include
[
2mh(x/2), u + v, 2v, r + s, 2s, k + 1, v1, v2

]

in L as the first element
else set v0 = V(2mh((x + u + v)/2)) and include

[
2mh

(
(x + u + v)/2

)
, 0, v − u, r + s, 2s, k + 1, v0, v2

]

in L as the first element.
(b) If N(h, u, v) ∩ (u, (u + v)/2) is not empty then

if the width of N(h, u, v) ∩ (u, (u + v)/2) is less than (1 − 1
b )v−u

2
or the loop count is less than c

then include
[
2mh(x/2), 2u, u + v, 2r, r + s, k + 1, v1, v2

]

in L as the first element
else set v1 = V(2mh((x + 2u)/2)) and include

[
2mh

(
(x + 2u)/2

)
, 0, v − u, 2r, r + s, k + 1, v1, v0

]

in L as the first element.

5. Experiments and analysis

We have no results about the complexity of our algorithm so far. Therefore, it is
impossible for us to compare our algorithm with others in theory. We have im-
plemented our algorithm Trealroot by Maple and done experiments on a large
number of examples in the literature. We hope these data can illustrate the be-
havior of our algorithm.

All the examples in this paper were computed on a notebook PC IBM T23
(Pentium 1.13GHz CPU, 512M Memory, Windows XP) with Maple 9 and the
timings are obtained by using the time function in Maple.

For randomly generated polynomials, the timings are average timings on 5
polynomials1. For ChebyShev polynomials (which are generated by the functions
ChebyShevT and ChebyShevU in Maple), only positive roots are isolated as in the

1To compare with other tools, we also compute 5 randomly generated polynomials as in the
literature.
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literature. We take a = 5 for Mignotte polynomials (xn − 2(ax − 1)2). Wilkinson
polynomials have the form fn(x) =

∏n
i=1(x + i).

Here is a description of data we collected.
F1 bits of coefficients
F2 terms
F3 degree
F4 number of samples
F5 loop count
F6 Taylor shift count
F7 count when a > 1 at Step 4
F8 count of termination at Step 3 when v1 − v2 = 0
F9 count of termination at Step 3 when v1 − v2 = 1 and h(u)h(v) < 0
F10 count of termination at Step 3 when v1 − v2 = 1 and h(u)h(v) > 0
F11 count of termination at Step 6 when h(u)h(v) < 0
F12 count of termination at Step 6 when h(u)h(v) > 0
F13 count of termination at Step 7 when N(h, u, v) ∩ (u, v) is empty
F14 count at Step 7 when N(h, u, v) ∩ ((u + v)/2, v) is empty
F15 count at Step 7 when N(h, u, v) ∩ (u, (u + v)/2) is empty
F16 count of termination at Step 5
F17 average number of real zeros
F18 timing (in second)

TYPE CT=ChebyShevT, CU=ChebyShevU, L=Laguerre,
W=Wilkinson, M=Mignotte

T1-1: Randomly generated polynomials. Continued in T1-2.
ID F1 F2 F3 F4 F5 F6 F17 F18
1 10 10 100 5 18.4 0.0 1.8 0.1
2 10 10 500 5 38.4 0.0 3.0 0.2
3 10 10 1000 5 46.4 0.0 3.4 0.3
4 10 10 2000 5 36.4 0.0 3.4 0.4
5 10 101 100 5 29.4 3.6 3.6 0.9
6 10 501 500 5 42.6 0.0 2.8 6.3
7 10 1001 1000 5 64.4 0.0 6.4 26.0
8 10 2001 2000 5 74.4 0.0 6.0 118.3
9 1000 10 100 5 18.0 1.8 2.6 0.2
10 1000 10 500 5 27.2 0.0 3.8 0.1
11 1000 10 1000 5 35.0 0.0 2.6 0.2
12 1000 10 2000 5 37.6 0.0 2.8 0.5
13 1000 101 100 5 30.6 4.0 2.8 1.0
14 1000 501 500 5 48.6 0.0 4.4 7.7
15 1000 1001 1000 5 62.6 0.0 3.2 27.6
16 1000 2001 2000 5 86.0 0.0 5.6 145.1
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T2-1: Randomly generated monic polynomials. Continued in T2-2.
ID F1 F2 F3 F4 F5 F6 F17 F18
1 10 10 100 5 18.4 2.8 4.4 0.3
2 10 10 500 5 41.2 0.0 4.2 0.2
3 10 10 1000 5 35.8 0.0 3.8 0.3
4 10 10 2000 5 53.0 0.0 3.8 0.6
5 10 101 100 5 25.2 5.8 4.4 1.1
6 10 501 500 5 49.2 0.0 4.4 6.5
7 10 1001 1000 5 58.8 0.0 4.8 22.7
8 10 2001 2000 5 70.0 0.0 5.6 102.7
9 1000 10 100 5 16.8 2.4 3.2 0.2
10 1000 10 500 5 30.2 0.0 4.4 0.2
11 1000 10 1000 5 41.4 0.0 4.2 0.3
12 1000 10 2000 5 35.6 0.0 3.2 0.5
13 1000 101 100 5 30.0 3.6 4.0 1.1
14 1000 201 200 5 44.6 1.2 4.4 2.6
15 1000 501 500 5 56.4 0.0 5.6 8.8
16 1000 1001 1000 5 64.4 0.0 5.6 30.3

T3-1: Special polynomials. Continued in T3-2.
ID TYPE F3 F4 F5 F6 F17 F18
1 CT 100 1 214 55 50 4.7
2 CT 500 1 1884 197 250 387.0
3 CT 1000 1 4014 371 500 3681.5
4 CT 1200 1 5534 415 600 7383.1
5 CU 100 1 209 51 50 4.6
6 CU 500 1 1635 200 250 373.3
7 CU 1000 1 4256 365 500 3997.9
8 CU 1200 1 6090 394 600 7834.9
9 L 100 1 302 97 100 7.7
10 L 500 1 2241 448 500 1098.3
11 L 900 1 4738 737 900 9592.0
12 L 1000 1 5450 815 1000 14822.9
13 M 100 1 238 1 4 0.6
14 M 300 1 704 0 4 9.4
15 M 400 1 936 0 4 24.7
16 M 600 1 1401 0 4 106.1
17 W 100 1 282 89 100 6.0
18 W 200 1 648 173 200 42.5
19 W 500 1 2422 430 500 1047.7
20 W 800 1 4407 647 800 6226.3
21 W 1000 1 5824 800 1000 15299.7
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We collect the data on the numbers of loops and Taylor shifts because they
are the most important factors for bisection methods. As in the literature, we also
collect data on the terms, the degrees, the bits of coefficients, the average numbers
of real roots and the timings. For our algorithm, the data on F7–F16 are also
very important. A careful study and analysis on these data may help improve the
algorithm. For the reason of concision, we list the data on F7–F16 in the appendix
to this paper.

We try to compare our timings with those of the REL [12] and CF [2] methods
but such comparison may be not suitable since the three implementations are real-
ized by different languages2 and the timings are obtained on different machines3.

Compared with CF and REL.
CF REL Trealroot

TYPE F3 F18 F18 F18
ChebyShev 1000 2172 1305 3682
Laguerre 900 3790 2079 9592
Laguerre 1000 6210 3325 14823
Wilkinson 1000 256 815 15230
Mignotte 300 0.12 565 9.36
Mignotte 400 0.22 2421 24.7
Mignotte 600 0.54 >2h 106

Compared with the CF method4.
Trealroot Trealroot CF CF

TYPE F1 F2 F3 F17 F18 F17 F18
RANDOM 10 501 500 2.80 6.26 3.60 0.78
RANDOM 10 1001 1000 6.40 26.00 4.40 6.67
RANDOM 10 2001 2000 6.00 118.29 5.60 215.00
RANDOM 1000 501 500 4.40 7.74 3.20 0.56
RANDOM 1000 1001 1000 3.20 27.60 3.60 12.70
RANDOM 1000 2001 2000 5.60 145.09 6.00 329.00

RANDOM,MONIC 10 501 500 4.40 6.49 5.20 1.43
RANDOM,MONIC 10 1001 1000 4.80 22.68 4.80 7.12
RANDOM,MONIC 10 2001 2000 5.60 102.69 6.80 263.00
RANDOM,MONIC 1000 101 100 4.00 1.08 4.40 0.01
RANDOM,MONIC 1000 201 200 4.40 2.58 6.00 0.09
RANDOM,MONIC 1000 501 500 5.60 8.82 5.60 0.57
RANDOM,MONIC 1000 1001 1000 5.60 30.35 6.00 25.50

2We do not know exactly which languages REL and CF use but can guess they use C or C++
since REL may invoke MPFI package and CF is in the kernal of Mathematica.
3AMD Athlon 1GHz CPU and 1.5GB memory for REL, AMD Athlon 850MHz CPU and 256M

memory for CF, and Pentium 1.13GHz CPU and 512M memory for Trealroot.
4We do not have corresponding data of REL.
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Remark 4. The possible reason for CF to be very efficient on Wilkinson polynomi-
als and Mignotte polynomials is that CF uses a method different from bisection.

Remark 5. We compute lower-bounds for real zeros in Step 4 of Trealroot as
CF does [2]. Lower-bound skill suits monic polynomials which have very large real
zeros as well as very small real zeros.

Now, let us analyze the performance of our program based on the above data.
To simplify the description, we use Ti-j-k to represent the row of table Ti-j labeled
by k, and Ti-j-k-Fm to represent the value of Fm in Ti-j-k.

First of all, we analyze the data on randomly generated polynomials (monic
or not). Because the greatest average number of real roots (F17) is less than 6.5,
the effect of F17 can be omitted.

• (F1 and F18). If the terms and the degrees are fixed, the effect of F1 (size of
coefficients) on F18 (timings) is tiny. See, for example, T1-1-3-18 and T1-1-
11-18 (or T2-1-3-18 and T2-1-11-18).

• (F2 and F18). If the degree and the size of coefficients are fixed, the timings
(F18) increase linearly as the terms (F2) increase. More concretely, if the
terms increase by k times, the timings increase almost by k times, too.

• (F3 and F18). If the terms and the size of coefficients are fixed, the effect of F3
(degree) on F18 (timings) is very little. See, for example, T1-1-1-F18, T1-1-2-
F18, T1-1-3-F18 and T1-1-4-F18 (or T1-1-9-F18, T1-1-10-F18, T1-1-11-F18
and T1-1-12-F18).

• (F6 and F18). Taylor shifts are expensive when degrees of polynomials are
large. If we can find a suitable way to control the number of Taylor shifts, we
can get better timings. See, for example, T1-1-9 and T1-1-10 (or T2-1-9 and
T2-1-10).
Second, because we use interval Newton iteration as the main steps in our

algorithm, it is nature that the main factor affecting the efficiency of our algorithm
is the number of real zeros of the input polynomial. One can see this point from
the data in T3-1. To get more information on the relation between the number of
real roots (F17) and the timing (F18), we isolate the real zeros of polynomials in
the following form [8] by our program,

r∏

i=1

(aix + bi)
s∏

j=1

(
c2
jx

2 − 2djcjx + d2
j + e2

j

)
, (5.1)

where ai,bi,cj ,dj and ej are random integers between −210 + 1 and 210 − 1. The
data on such polynomials of degree 1000 is reported in Table T4.

More or less surprisingly, the program is very fast on such polynomials. To
compare the data in Table T4 with the data in [8] is not suitable because that
work was carried out more than 10 years ago under a different environment5 and
only the data on the case r + s = 20 was reported there. From Table T4, one

5SPARCstation 1+, with 64M memory and rated at 15.8 mips.
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can see that the timing increases linearly as the number of real zeros increases, as
showed in Figure 1.

T4: Polynomials with varying number of real roots.
r s F3 F4 F5 F6 F17 F18
0 500 1000 1 193 30 0 590
10 495 1000 1 275 42 10 789
50 475 1000 1 622 77 50 1456
100 450 1000 1 620 113 99 1886
200 400 1000 1 1415 203 200 3610
400 300 1000 1 3081 335 400 6518
800 100 1000 1 6975 624 798 12997

2000

4000

6000

8000

10000

12000

0 200 400 600 800

x-- no. of roots, y--timing

Figure 1

6. Conclusion

We propose a new algorithm, called Trealroot, for real root isolation, which
is based on interval arithmetic and bisection. Generally speaking, for randomly
generated polynomials, the current implementation of Trealroot is slower than
the CF method for polynomials of degrees less than 1500 but is faster for those
with higher degrees. Usually, polynomials generated randomly have few real roots
as showed in Tables T1-1 and T2-1. To study the behavior of our method on
random polynomials with many real roots, we apply Trealroot to polynomials
defined by (5.1). From the data reported in Table T4, one can see that the timing
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increases linearly as the number of real roots increases. Moreover, Trealroot is
super efficient for sparse polynomials with large degrees and few real zeros. For ex-
ample, our program isolates the three real roots of the polynomial defined by (3.1)
within 350 seconds. Based on the data collected, we believe that the performance
of Trealroot can be further improved by a new implementation.
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Appendix

T1-2: Randomly generated polynomials.
ID F7 F8 F9 F10 F11 F12 F13 F14 F15 F16
1 3.6 0.0 0.0 0.0 1.0 7.8 1.8 0.2 1.0 0.0
2 3.8 0.0 0.0 0.0 2.0 15.6 2.0 2.2 1.0 0.0
3 3.4 0.0 0.2 0.2 2.2 18.4 2.6 2.0 1.2 0.0
4 3.6 0.0 0.0 0.0 2.4 15.2 1.6 0.8 1.2 0.0
5 5.8 0.2 0.6 0.0 3.0 9.6 2.2 1.6 0.6 0.0
6 4.0 0.0 0.0 0.0 2.8 13.6 5.0 2.2 1.6 0.0
7 3.8 0.0 0.0 0.0 6.4 19.8 5.6 3.4 1.4 0.0
8 3.6 0.0 0.0 0.0 6.0 23.4 7.6 3.6 0.8 0.0
9 4.8 0.4 0.2 0.0 1.4 7.0 1.4 1.0 0.2 0.0
10 3.4 0.0 0.2 0.2 2.6 10.8 0.8 1.0 1.0 0.0
11 3.6 0.0 0.0 0.0 1.6 15.2 1.0 2.2 1.2 0.0
12 3.4 0.0 0.0 0.0 1.8 17.0 1.0 1.2 0.8 0.0
13 6.0 0.6 0.2 0.0 2.6 8.4 3.0 2.8 2.2 0.0
14 3.8 0.0 0.0 0.0 4.4 14.2 6.2 1.4 1.6 0.0
15 3.8 0.0 0.0 0.0 3.2 18.8 9.4 2.0 1.8 0.0
16 3.4 0.0 0.0 0.0 5.6 24.6 11.8 3.2 2.8 0.0

T2-2: Randomly generated monic polynomials.
ID F7 F8 F9 F10 F11 F12 F13 F14 F15 F16
1 4.6 0.2 1.2 0.4 2.2 5.8 1.0 0.4 0.4 0.0
2 3.8 0.0 0.0 0.0 3.2 16.0 2.2 1.6 0.8 0.0
3 3.8 0.0 0.0 0.0 2.8 14.8 1.6 1.0 0.4 0.0
4 3.8 0.0 0.0 0.0 2.8 21.8 2.4 2.0 1.0 0.0
5 7.8 0.4 0.4 0.0 4.0 8.2 0.6 1.4 0.6 0.0
6 3.8 0.0 0.0 0.0 4.4 13.8 6.8 1.0 2.2 0.0
7 4.0 0.0 0.0 0.0 4.8 17.0 7.4 1.8 2.6 0.0
8 3.6 0.0 0.0 0.0 5.6 18.6 11.2 1.6 1.6 0.0
9 4.0 1.0 0.6 0.0 1.8 6.0 0.4 0.6 0.6 0.0
10 3.2 0.0 0.0 0.0 3.4 11.0 1.4 1.6 1.0 0.0
11 3.6 0.0 0.2 0.2 3.0 15.4 2.0 2.4 1.4 0.0
12 3.8 0.0 0.0 0.0 2.2 15.2 1.8 0.8 0.4 0.0
13 6.2 0.2 0.4 0.0 3.6 7.2 4.0 2.0 1.2 0.0
14 4.8 0.0 0.4 0.0 4.0 14.2 3.6 2.4 1.8 0.0
15 3.8 0.0 0.0 0.0 5.6 15.6 7.0 2.6 1.4 0.0
16 4.0 0.0 0.0 0.0 5.6 16.6 9.4 3.4 1.8 0.0
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T3-2: Special polynomials.
ID F7 F8 F9 F10 F11 F12 F13 F14 F15 F16
1 8 11 31 0 19 22 13 17 7 0
2 59 21 84 2 166 183 355 152 112 0
3 124 31 154 2 346 366 821 340 236 0
4 160 35 141 2 459 495 1225 449 373 0
5 11 9 30 0 20 16 20 15 6 0
6 58 23 94 0 155 154 276 134 99 1
7 129 29 153 2 347 389 901 346 270 0
8 156 27 123 4 477 578 1371 501 431 0
9 16 10 74 0 26 14 17 15 9 0
10 102 34 292 4 208 151 320 137 90 0
11 196 39 463 1 437 398 761 326 218 0
12 216 43 508 4 492 472 883 379 271 0
13 2 1 1 1 3 114 1 0 0 0
14 1 0 1 1 3 348 1 0 0 0
15 1 0 1 1 3 464 1 0 0 0
16 1 0 1 1 3 697 0 0 1 0
17 8 8 74 0 19 18 16 8 8 6
18 26 9 136 2 56 34 66 30 16 7
19 90 34 281 1 210 162 397 157 99 8
20 164 38 404 4 386 337 783 295 212 9
21 212 53 471 7 519 493 1009 423 301 9
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