
A New Method for Real Root Isolation of Uni-
variate Polynomials

Ting Zhang and Bican Xia

Abstract. A new algorithm for real root isolation of univariate polynomials
is proposed, which is mainly based on exact interval arithmetic and bisection
method. Although exact interval arithmetic is usually supposed to be ineffi-
cient, our algorithm is surprisingly fast because the termination condition of
our algorithm is different from those of existing algorithms which are mostly
based on Descartes’ rule of signs or Vincent’s theorem and we decrease the
times of Taylor Shifts by exact interval arithmetic.

Keywords. Real root isolation, interval arithmetic, interval Newton operator,
bisection method, continued fractions method.

Extended Abstract

Real root isolation of univariate polynomials with integer coefficients plays a sig-
nificant role in many algorithms concerning computational real algebra and real
algebraic geometry. In many computer algebra systems (CAS), one can find imple-
mentations of algorithms based on different principles for real root isolation. The
realroot function in Maple and the RealRootIntervals function in Mathematica
are such examples.

Many algorithms for real root isolation have been proposed in literature,
see, for example, [4, 6, 5, 1, 9, 12, 2], which can be classified into two kinds of
methods: bisection and non-bisection methods. For example, algorithms proposed
in [4, 6, 5, 9, 12] are essentially based on bisection strategy, taking use of different
principles to rule out intervals with no roots and to pick out intervals containing
exactly one root and the algorithm proposed in [1, 2] is based on Vincent’s theorem
which does not bisect intervals.

This work is supported by NKBRPC-2004CB318003, NKBRPC-2005CB321902 and NSFC-

60573007 in China.

2 Ting Zhang and Bican Xia

The idea of bisection method is natural and easy to understand. Suppose B is
the root bound of f(x), a univariate polynomial with integral coefficients, and we
have an effective rule M to determine the number of roots of f(x) in an interval,
then we may bisect (−B,B) (or (0, B)) repeatedly and apply M each time to
rule out intervals not containing roots. We will call such rules as root-rules in
this abstract. Some examples of root-rules are Sturm’s theorem, Budan-Fourier’s
theorem and Descartes’ rule of signs. It is well known that bisection algorithms
based on Descartes’s rule of signs are most efficient in general [6, 8, 12]. All the
known algorithms for real root isolation based on Descartes’ rule of signs and the
bisection strategy are described in [12] in a unified framework, and a new algorithm
REL is presented in [12], which is proved to be very efficient and can works with
huge polynomials, including orthogonal polynomials of degree 1000 and more.

The CF method proposed in [1] does not perform bisection. It is directly
based on Vincent’s theorem and is more tricky. A comparative study of the CF
method and the REL method through timings on some special and randomly
generated polynomials is reported in [2].

One main computation involved in algorithms based on Descartes’ rule of
signs and bisection is computing Taylor shifts. This is also true for the CF algo-
rithm. Because computing Taylor shifts may be very costly especially for poly-
nomials of high degrees, fast algorithms for Taylor shifts [7] are employed in the
REL and CF methods. Moreover, some special technics are implemented in REL
for fast Taylor shifts [11] while CF computes lower bounds of positive roots of
polynomials to decrease the number of Taylor shifts [2].

In this extended abstract, we briefly describe a new method for real root iso-
lation, which is also a bisection method using however a modified interval Newton
iteration as root-rule.

The set of all intervals is denoted by I(R). Let f be an arithmetic expression
of a polynomial in R[x1, ..., xn]. We replace all operands of f as intervals and
replace all operations of f as interval operations and denote the result by F . Then,
F : I(R)n → I(R) is called an interval evaluation of f . Let f(x) be a polynomial
in R[x] and X an interval, the interval Newton operator [3] is defined as

N(X) = m(X)− f(m(X))
F ′(X)

where F ′ is an interval evaluation of f ′ and m(X) is the midpoint of X.
The above defined Newton operator satisfies the following properties [3, 10].

1. If x∗ ∈ X is a zero of f(x), x∗ ∈ N(X).
2. If X ∩N(X) = ∅, f(x) does not have zeros in X.
3. If N(X) ⊂ X, f(x) has zeros in X.
4. If N(X) is contained in the interior of X, f(x) has a unique zero in X.

Let an initial interval X = X0 be given, setting X = N(X) ∩X, repeating
this interval Newton iteration for all resulting intervals and discarding empty sets,
we will obtain a set of intervals possibly containing zeros of f(x) on X0. Naturally,

A New Method for Real Root Isolation 3

one can propose an algorithm for real root isolation using interval Newton iteration
and exact interval arithmetic. However, direct use of the original interval Newton
iteration with exact interval arithmetic leads to inefficiency. One main reason is
that, for a polynomial f(x) and an interval X, F (X) (the interval evaluation of
f(x) on X) is often much more wider than f(X). So, those intervals not containing
zeros cannot be recognized quickly and thus a great number of redundant iterations
occur. We found that the interval evaluation of a polynomial g(x) on (0, 1) is easy
to be computed and has little difference to g((0, 1)). Therefore, we modify the
Newton iteration and combine the interval Newton operator with the bisection
method. As a result, the efficiency has been improved dramatically.

The sketch of our algorithm can be described as follows. For a squarefree
polynomial f(x) ∈ Z[x], we only consider its positive roots.

Algorithm: TRealroot
Input: a squarefree polynomial f(x) ∈ Z[x].
Output: L, a list of isolating intervals for the positive zeros of f(x).

1. Let B ≥ 1 be a positive root bound of f(x). Set g(x) = f(Bx).
2. By the subalgorithm described below, compute the list of isolating intervals

of real zeros of g(x) in (0, 1) and denote it by L′.
3. Replace every interval (ai, bi) in L′ by (Bai, Bbi) and call the resulting list

L.

In the following description of subalgorithm Kiteflying, we use a data struc-
ture [h, u, v, r, s, k] where h is a polynomial and u, v, r, s, k are integers. The zeros
of h(x) in (u, v) correspond to the zeros of g(x) in (r/2k, s/2k) one to one. In the
subalgorithm, (u, v) = (0, 1) and s = r + 1.

Subalgorithm: Kiteflying
Input: a squarefree polynomial g(x) ∈ Z[x] with all positive zeros in (0, 1) and

g(0)g(1) 6= 0.
Output: OutL, a list of isolating intervals for the zeros of g(x) in (0, 1).

1. Set OutL = [];L = [[g, 0, 1, 0, 1, 0]]. Repeat the following steps until L is
empty.

2. Fetch the first element of L, say [h, u, v, r, s, k], and delete it in L.
3. If h((u + v)/2) = 0, include [(r + s)/2k+1, (r + s)/2k+1] in OutL and replace

h(x) by h(x)/(x − (u + v)/2). Include [2mh(x/2), 2u, u + v, 2r, r + s, k + 1]
and [2mh(x/2), u + v, 2v, r + s, 2s, k + 1] in L as the first two elements where
m is the degree of h(x), then goto Step 2.

4. If H ′((u, v)) (the interval evaluation of h′(x) on (u, v)) does not contain 0,
check the signs of h(u) and h(v). If h(u)h(v) < 0, include (r/2k, s/2k) in
OutL.

5. If H ′((u, v)) contains 0, apply interval Newton operator to h and (u, v), i.e.,
set

N(h, u, v) = (u + v)/2− h((u + v)/2)
H ′((u, v))

.

4 Ting Zhang and Bican Xia

5.1 If N(h, u, v) ∩ ((u + v)/2, v) is not empty, set h2(x) = 2mh((x + v)/2)
where m is the degree of h and include [h2, u, v, r + s, 2s, k + 1] in L as
the first element.

5.2 If N(h, u, v) ∩ (u, (u + v)/2) is not empty, set h1(x) = 2mh((x + u)/2)
where m is the degree of h and include [h1, u, v, 2r, r + s, k + 1] in L as
the first element.

Remark 1. The above algorithm is much more efficient than the original interval
Newton iteration. However, as stated above, Taylor shifts in Step 5.1 and Step
5.2 may be very costly. So, we use some technics to modify the subalgorithm
Kiteflying for decreasing the number of Taylor shifts. For example, we may
compute an upper bound for the difference of H ′((u, v)) and h′((u, v)). If the
bound is less than an empirical value given before, we do not perform Taylor
shift in Step 5.1 (or Step 5.2) but include [2mh(x/2), u + v, 2v, r + s, 2s, k + 1]
(or [2mh(x/2), 2u, u + v, 2r, r + s, k + 1]) in L as the first element. Moreover, we
may use Budan-Fourier’s theorem to accelerate the subalgorithm. We would like
to explain the details in our full paper later.

Remark 2. We do not analyze the complexity of our algorithm in this abstract.
Thus, it is difficult to compare our algorithm with others theoretically. Instead,
we have implemented our algorithm TRealroot by Maple and done experiments
on many examples in literature. We hope the timings can illustrate the behavior
of our algorithm.

Randomly generated polynomials
coefficients (digits) terms degrees timings loops shifts roots

10 10 100 0.184 17.40 3.8 3.40
10 10 500 0.513 32.80 0.6 2.40
10 10 1000 0.187 49.20 0 3.60
10 10 2000 0.279 34.40 0 2.20
10 100 100 0.785 27.40 7.8 3.60
10 500 500 4.281 52.40 1.4 3.60
10 1000 1000 11.380 61.80 0 4.80
10 2000 2000 47.718 77.40 0 6.00

1000 10 100 0.191 23.80 2.4 2.60
1000 10 500 0.153 24.00 0.2 2.80
1000 10 1000 0.166 39.40 0 3.20
1000 10 2000 0.350 46.80 0 3.20
1000 100 100 0.837 26.80 7.4 2.60
1000 500 500 4.713 52.00 1 3.60
1000 1000 1000 13.316 65.80 0 4.80
1000 2000 2000 54.697 80.20 0 5.20

The three tables report our experiments. The columns entitled “loops” gives
the numbers of loops executed (i.e., the numbers of bisections) and the “shifts”
columns show the numbers of Taylor shifts performed. We think these two numbers

A New Method for Real Root Isolation 5

are the most essential data for bisection based methods. The “roots” columns are
the average numbers of roots.

Randomly generated monic polynomials
coefficients (digits) terms degrees timings loops shifts roots

10 10 100 0.240 22.40 4.2 4.00
10 10 500 0.094 30.20 0 2.80
10 10 1000 0.159 35.80 0 3.00
10 10 2000 0.431 60.80 0 4.80
10 100 100 0.719 24.80 7.8 4.00
10 500 500 5.288 60.40 2.2 5.20
10 1000 1000 9.734 59.40 0 4.40
10 2000 2000 46.646 82.60 0 7.60

1000 10 100 0.372 25.80 4.2 3.00
1000 10 500 1.528 39.40 2.4 4.20
1000 10 1000 3.516 48.80 0.8 3.20
1000 10 2000 0.378 42.00 0 3.40
1000 100 100 0.822 31.00 8.2 5.20
1000 200 200 2.250 37.80 7.2 3.60
1000 500 500 5.594 58.20 1.4 5.60
1000 1000 1000 15.343 73.80 0 6.00

Polynomials degrees timings loops shifts roots
ChebyShevT 100 1.656 154 60 50
ChebyShevT 500 149.299 977 249 250
ChebyShevT 1000 1467.589 2365 437 500
ChebyShevT 1200 3082.505 3189 534 600
ChebyShevU 100 1.578 148 59 50
ChebyShevU 500 140.171 920 240 250
ChebyShevU 1000 1461.933 2272 446 500
ChebyShevU 1200 2902.301 3270 508 600

Laguerre 100 2.891 223 104 100
Laguerre 500 417.743 1258 493 500
Laguerre 900 4281.166 2768 874 900
Laguerre 1000 6652.326 3071 958 1000
Mignotte 100 0.25 242 1 4
Mignotte 300 2.921 708 0 4
Mignotte 400 8.204 940 0 4
Mignotte 600 37.811 1405 0 4
Wilkinson 100 2.407 205 96 100
Wilkinson 500 402.113 1266 468 500
Wilkinson 800 2636.266 2289 761 800
Wilkinson 900 4378.753 2763 853 900
Wilkinson 1000 7130.022 3158 946 1000

6 Ting Zhang and Bican Xia

All examples are computed on a PC (Pentium IV/3.0GHz CPU, 1 G memory,
Windows XP) with Maple 10 and the timings are obtained by using the time
function in Maple. For randomly generated polynomials, the timings are average
timings on 5 polynomials 1. For ChebyShev polynomials (which are generated
by the functions ChebyShevT and ChebyShevU in Maple), only positive roots are
isolated. We take a = 5 for the Mignotte polynomials (xn − 2(ax − 1)2) in the
third table.

We try to compare our timings with those of the REL [12] and CF [2] methods
but such comparison may be not suitable since the three implementations are
realized by different languages and the timings are obtained on different machines
(AMD Athlon 1GHz CPU and 1.5GB memory for REL and AMD Athlon 850MHz
CPU and 256M memory for CF). The following table gives such comparison on
some special polynomials.

polynomials degree CF REL TRealroot
Chebyshev 1000 2172 1183 1467
Laguerre 900 3790 2116 4281
Laguerre 1000 6210 3055 6652
Wilkinson 1000 256 840 7130
Mignotte 300 0.12 33 3
Mignotte 400 0.22 122 8
Mignotte 600 0.54 428 38

For randomly generated polynomials, TRealroot is much faster than CF
and we do not have corresponding data of REL. Timings of TRealroot increase
smoothly as the degrees of polynomials increase. Generally speaking, the current
implementation of TRealroot is slower than CF and REL for polynomials with
low degrees but is faster for those with high degrees. Moreover, TRealroot is su-
per efficient for sparse polynomials with large degrees. For example, our program
isolates the three real roots of

f(x) = −10x93925 + 62x82660 − 82x76886 + 80x69549 − 44x68273 + 71x55578

−17x53739 − 75x30731 − 10x22679 − 7

within 318 seconds.

References

[1] A. G. Akritas, A. V. Bocharov, A. W. Strzeboński, Implementation of real root iso-
lation algorithms in Mathematica. In: Abstracts of the International Conference on
Interval and Computer-Algebraic Methods in Science and Engineering (Interval94),
St. Petersburg, Russia, March 7C10, 23–27, 1994.

[2] A. G. Akritas, A. W. Strzeboński, A Comparative Study of Two Real Root Isolation
Methods. Nonlinear Analysis: Modelling and Control 10 (2005), 297–304.

1In order to compare our results with others, we use only 5 randomly generated polynomials as

in literature.

A New Method for Real Root Isolation 7

[3] G. Alefeld, J. Herzberger, Introduction to interval analysis. Academic Press, 1983.

[4] G. E. Collins, A.G. Akritas, Polynomial real root isolation using Descartes rule of
signs. In: Proceedings of the 1976 ACM Symposium on Symbolic and Algebraic Com-
putations, Yorktown Heights, N.Y., 272–275, 1976.

[5] G. E. Collins, J. R. Johnson, Quantifier elimination and the sign variation method
for real root isolation. In: Proceedings of the ACM-SIGSAM 1989 International Sym-
posium on Symbolic and Algebraic Computation, ACM Press, 264–271, 1989.

[6] G. E. Collins, R. Loos, Real Zeros of Polynomials. In: Computer Algebra: Symbolic
and Algebraic Computation (Buchberger, B., Collins, G. E., Loos, R., eds.), Springer-
Verlag, Wien New York, 83–94, 1983.

[7] J. von zur Gathen, J. Gerhard, Fast Algorithms for Taylor Shifts and Certain Differ-
ence Equations. In: Proceedings of ISSAC’97, Maui, Hawaii, 40–47, 1997.

[8] J. R. Johnson, Algorithms for polynomial real root isolation. Technical Report OSU-
CISRC-8/91-TR21, Ohio State University, 1991.

[9] J. R. Johnson, W. Krandick, Polynomial real root isolation using approximate arith-
metic. In: Proceedings of ISSAC’97, Maui, Hawaii, 225–232, 1997.

[10] G. Mayer, Epsilon-inflation in verification algorithms. J. of Computational and Ap-
plied Mathematics 60 (1995), 147–169.

[11] F. Rouillier, personal communication, 2006.

[12] F. Rouillier, P. Zimmermann, Efficient isolation of polynomial’s real roots. J. of
Computational and Applied Mathematics 162 (2004), 33–50.

Ting Zhang
Accounting Centre of China Aviation
Beijing, China
e-mail: ztfriend@tom.com

Bican Xia
LMAM & School of Mathematical Sciences
Peking University
Beijing 100871, China
e-mail: xbc@math.pku.edu.cn

