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ABSTRACT
This paper presents a new and general approach for ana-
lyzing the stability of a large class of biological networks,
modeled as autonomous systems of differential equations,
using real solving and solution classification. The proposed
approach, based on the classical technique of linearization
from the qualitative theory of ordinary differential equations
yet with exact symbolic computation, is applied to analyz-
ing the local stability of the Cdc2-cyclin B/Wee1 system and
the Mos/MEK/p42 MAPK cascade, two well-known models
for cell and protein signaling that have been studied ex-
tensively in the literature. We provide rigorous proofs and
generalizations for some of the previous results established
experimentally and report our new findings.

Categories and Subject Descriptors
I.1 [Symbolic and Algebraic Manipulation]: Applica-
tions, Algorithms; J.3 [Life and Medical Sciences]: Biol-
ogy and Genetics

General Terms
Algorithms

Keywords
Biological network, differential equations, equilibrium, sta-
bility, polynomial system, real root, solution classification,
Cdc2-cyclin B/Wee1, Mos/MEK/p42 MAPK cascade

1. INTRODUCTION
Computational studies of biological systems, also called

bioinformatics, have emerged as a major area of research on
the frontiers of mathematics, biology, and computer science
in the last decade. Biological networks may be modeled
mathematically by dynamical systems. The analysis of the
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local and global behaviors of such systems is crucial and
challenging. It is extremely difficult to detect and analyze
equilibria, stability, bifurcations, and chaos of biological dy-
namical systems using standard mathematical methods.

Consider, for example, the class of plane autonomous poly-
nomial differential systems, which are the simplest contin-
uous dynamical systems. The problem of determining the
number of limit cycles and their relative configurations is
the second part of Hilbert’s 16th problem, which was posed
105 years ago and on which there is little progress. There-
fore, the analysis of stability remains a challenge even for
polynomial differential systems. In the research of biological
systems, stability behaviors and bifurcations are often ana-
lyzed by means of numerical simulation and visualization. It
is desirable that the results of such numerical analysis may
be confirmed by formal mathematical reasoning.

In this paper, we consider biological networks that may
be modeled by autonomous systems of differential equations
of the form
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:

ẋ1 = F1(u, x1, . . . , xn),

ẋ2 = F2(u, x1, . . . , xn),
· · · · · ·

ẋn = Fn(u, x1, . . . , xn),

(1)

where F1, . . . , Fn are rational functions of u, x1, . . . , xn with
real coefficients and u is one or several real parameters. As
usual, xi = xi(t), ẋi = d xi/d t, and the parameters u are
independent of the derivation variable t. For differential sys-
tems (1), we propose a new and general approach to detect
their real equilibria by solving the rational-function equa-
tions F1 = 0, . . . , Fn = 0 symbolically and to analyze the
stability of the equilibria by means of linearization and real
solution classification. All the involved computations are
performed symbolically and we are not aware of any existing
work in this direction. The class of biological networks we
consider is large enough to cover many complex systems, in-
cluding biological positive-feedback loops for cell and protein
signaling. We will use the well-known Cdc2-cyclin B/Wee1
system [11, 12] and the Mos/MEK/p42 MAPK cascade [1,
6], which have been studied extensively and experimentally
in the literature, to illustrate the features, originality, and
performance of our approach. We will also report on our
computational results and new findings. The detection of
bistability or multistability of such systems is an essential
step for understanding how the systems function. Systems
are bistable when they toggle between two discrete, alter-
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native stable steady states without being able to rest in
intermediate states. We refer to [1, 12] for technical dis-
cussions on the behavior and importance of bistability and
multistability in the biological context.

The rest of the paper is structured as follows. In the
next section, we shall recall some preliminary notions and
results from the qualitative theory of ordinary differential
equations and present the linearization technique and some
stability criteria for our purpose. In Section 3 is provided a
brief review on the existing methods dealing with systems
of polynomial equations and inequalities. Emphasis will be
placed on the techniques that will be used in later sections
of this paper. In Section 4, we will present the details of the
stability analysis for a simple yet nontrivial example: the
Cdc2-cyclin B/Wee1 system. It will show how our method
works step by step with symbolic computation. Our general
approach to stability analysis for the considered class of bio-
logical systems will be described in Section 5. The practical
value and potential of our approach will be demonstrated
by several experimental results reported in Section 6: some
of the previous results established with numerical simula-
tion and visualization may be rigorously proved, refined,
and generalized by our program using real solution classifi-
cation. The paper will be concluded with a few remarks on
the novelty, applicability, and limitation of our approach,
the encountered computational difficulties, and our future
work.

A classical and widely used method for analyzing the
stability of biological systems is based on phase plane or
space diagrams, which plot the trajectories of the differen-
tial system around equilibria by numerical computation [1,
11]. This method is limited to plane and spatial differen-
tial systems. A more powerful and theoretical approach for
analyzing stability behaviors together with a simple graphi-
cal method for deducing bifurcation diagrams for biological
positive-feedback systems is described in [1]. The visualiza-
tion technique is very useful in practice, but its theoretical
rigor cannot be easily guaranteed. Our symbolic approach
provides a mathematically rigorous framework for the stabil-
ity analysis of a large class of biological systems of arbitrary
dimension. The effectiveness of this approach comes from
the novelty of using advanced techniques of symbolic real
solving and real solution classification.

2. EQUILIBRIA AND STABILITY
OF DIFFERENTIAL EQUATIONS

Let R denote the field of real numbers. For any real
parametric value ū of u, a point x̄ = (x̄1, . . . , x̄n) in the
n-dimensional real Euclidean space Rn is called an equilib-

rium (or a singular point, critical point, or steady state) of
a system of differential equations of the form (1) if

F1(ū, x̄) = · · · = Fn(ū, x̄) = 0.

Therefore, the problem of computing equilibria amounts to
finding the real solutions of the system of rational-function
equations F1 = 0, . . . , Fn = 0 depending on the parame-
ters u; the latter may be reduced to solving a system of n
polynomial equations in n unknowns x1, . . . , xn. We shall
discuss how to solve such systems of equations as well as the
involved computational difficulties in the following section.

For an arbitrary but fixed real value ū of u, let x̄ be an
equilibrium of (1). We want to analyze the stability of x̄. To

do so, we use Lyapunov’s first method with the technique of
linearization, that is, by considering the Jacobian matrix

J =

0
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Then system (1) may be written in the following matrix
form:

ẋ
T = J(ū, x̄)(x− x̄)T + G,

where the superscript T denotes matrix transpose and

G = [F1(ū, x), . . . , Fn(ū, x)]T − J(ū, x̄)(x− x̄)T

is o(|x − x̄|) as x → x̄. The following theorem serves to
determine the stability of the equilibrium x̄.

Theorem 1. (a) If all the eigenvalues of the matrix J(ū,
x̄) have negative real parts, then x̄ is asymptotically stable.

(b) If the matrix J(ū, x̄) has at least one eigenvalue with

positive real part, then x̄ is unstable.

It is more difficult to determine the stability of x̄ when
some of the eigenvalues of J(ū, x̄) have zero real parts, but
none of them has positive real part. In this case, if the
eigenvalues with zero real parts correspond to a simple zero
of the characteristic polynomial of J(ū, x̄), then x̄ is stable;
otherwise, it may be unstable.

In the case n = 2, we may have a more precise classifica-
tion of the equilibria. Let the Jacobian matrix evaluated at
(ū, x̄) for n = 2 be

J2(ū, x̄) =

„

a b
c d

«

and λ1, λ2 the two eigenvalues of J2(ū, x̄). More concretely,
λ1, λ2 are the two roots of the characteristic polynomial

˛

˛

˛

˛

a − λ b
c d − λ

˛

˛

˛

˛

= λ2 + pλ + q,

where p = −(a + d) and q = ad − bc. Set ∆ = p2 − 4 q. We
have the following criteria:

C1. when q > 0, p > 0, and ∆ ≥ 0 (in this case, λ1, λ2 are
real and λ1 < 0, λ2 < 0), x̄ is a stable node;

C2. when q > 0, p < 0, and ∆ ≥ 0 (in this case, λ1, λ2 are
real and λ1 > 0, λ2 > 0), x̄ is an unstable node;

C3. when q < 0 (in this case, λ1, λ2 are real and λ1λ2 < 0),
x̄ is an (unstable) saddle;

C4. when q > 0, p > 0, and ∆ < 0 (in this case, λ1, λ2 are
complex conjugates and Re λ1 = Re λ2 < 0, where Re
denotes the real part), x̄ is a stable focus (or spiral);

C5. when q > 0, p < 0, and ∆ < 0 (in this case, λ1, λ2 are
complex conjugates and Re λ1 = Reλ2 > 0), x̄ is an
unstable focus;
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C6. when q > 0 and p = 0 (in this case, λ1, λ2 are complex
conjugates and Reλ1 = Reλ2 = 0), x̄ is a center of
ẋ

T = J2(ū, x̄)(x− x̄)T and the stability of the equilib-
rium x̄ of (1) depends on G (higher-order approxima-
tion);

C7. when q = 0, the Jacobian matrix J2(ū, x̄) is singular
and the first approximation ẋ

T = J2(ū, x̄)(x − x̄)T of
(1) has infinitely many critical points.

For n > 2, whether all the eigenvalues of the Jacobian
matrix J(ū, x̄) have negative real parts can be determined
according to Routh–Hurwitz’s criterion. This will be ex-
plained at the end of Section 5.

The method presented above is classical in the qualita-
tive theory of ordinary differential equations and may be
found in standard textbooks (e.g., [10, 23]). However, for
practical application, there are several difficulties one must
overcome. First of all, one has to compute the equilibria of
the differential system (1), which are real solutions of a sys-
tem of polynomial equations. Even in the simpler case when
the parameters u are not present, in general the real solu-
tions may not be given analytically. The components of the
solutions are usually determined as real roots of some poly-
nomials with rational coefficients. The approximate values
of such real roots may be computed by numerical methods.
Symbolically, the real roots may be isolated by rational in-
tervals of arbitrarily small width, but real solution isolation
for general systems of polynomial equations is still an out-
standing problem of research in symbolic computation.

In the presence of parameters u, one has to identify for
what parametric values ū of u the system of equations

F1(ū, x) = 0, . . . , Fn(ū, x) = 0

has real solutions, and how many, for the unknowns x. How
to describe or represent the real solutions in terms of the
parameters u ? These are simple questions that cannot be
easily answered. In order to decide the stability of the equi-
libria, one also has to determine rigorously the signs of the
real parts of the eigenvalues of the Jacobian matrix at these
equilibria. For instance, in the case n = 2, one needs to de-
termine the signs of q, p, and ∆ in the above criteria. Even
for a given value ū of u, as the equilibrium x̄ may be de-
termined only as real roots of polynomials and represented
symbolically by means of isolating intervals, the sign deter-
mination is computationally nontrivial. It is clearly more
difficult to derive the conditions on the parameters u for the
real parts of the eigenvalues to have prescribed signs.

The approach proposed in the present paper may solve
most of these problems. We will present the details in the
following sections.

3. REAL SOLVING AND SOLUTION
CLASSIFICATION OF POLYNOMIAL
SYSTEMS

Solving systems of polynomial equations has been one of
the central topics in computer algebra. It is required and
used in many scientific and engineering applications. There
are several methods based on resultants, Gröbner bases [3],
and triangular sets [7, 8, 13, 17] which may be used to
transform such systems into certain triangular form. What

we need here is to find exact (number of) real solutions of
polynomial systems and to establish conditions for paramet-
ric polynomial systems to have a prescribed number of real
solutions, which are computationally difficult. There exist
general methods such as the method of cylindrical algebraic
decomposition (CAD) [4, 5] that may be applied to some
of our problems in principle. However, it is well known
that the CAD method and its variants have high compu-
tational complexity. Much of the recent research on real
solving has focused on using the techniques of triangular
sets and Gröbner bases to transform the involved systems
of polynomial equations and introducing specialized devices
to handle the projection and lifting process for restricted
classes of systems of polynomial equations and inequalities.
Extensive work in this direction includes [2, 9, 18, 21].

The authors of this paper have been much involved in the
design and implementation of triangular-set-based decom-
position algorithms [13, 14, 15] and real solving based on
discrimination systems [18, 19, 21], and we have the neces-
sary software packages in hand for different kinds of experi-
ments. Therefore, we base this initial analysis of stability of
biological systems on the work using triangular sets and dis-
crimination systems [14, 15, 19, 21]. It is apparent that other
methods such as the CAD method [4, 5], quadratic quantifier
elimination [16], and the method using Gröbner bases and
discriminant varieties [9] for real solving may also be applied
to the same problem of stability analysis according to our
general approach. We hope to explore such application and
observe and compare the performances of different methods
in the near future.

In what follows, we present very briefly the method we
will use for symbolic real solving and solution classification
of (parametric) polynomial systems. Consider the following
system of n equations

P1(u, x) = 0, P2(u, x) = 0, . . . , Pn(u, x) = 0, (2)

where P1, . . . , Pn are polynomials in u and x = (x1, . . . , xn)
with rational coefficients and u is one or several real param-
eters. Let P be any polynomial in u and x with rational
coefficients. We are concerned with the following problems.

P1. Assume that the parameters u are not present. De-
termine the number of real solutions of (2) for x and
isolate all the isolated real solutions of (2) by rational
intervals.

P2. For any integer s ≥ 0, determine the conditions on u

for system (2) to have exactly s distinct real solutions
for x.

P3. Assume that the parameters u are not present. De-
termine the sign of P at each isolated real solution of
(2).

P4. Determine the conditions on u for P to be 0, positive,
or negative at the isolated real solutions of (2).

The method for solving these problems works by first
transforming the set P = {P1, . . . , Pn} of polynomials into
finitely many regular sets T1, . . . , Te [7, 14, 22] such that

Zero(P) =
e

[

i=1

Zero(Ti/Ji), (3)

where Zero(P) denotes the set of all common zeros (in some
extension of the field of rational numbers) of P1, . . . , Pn,
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Zero(Ti/Ji) = Zero(Ti) \ Zero({Ji}), and Ji is the product
of initials of the polynomials in Ti for each i (see [15] for
the definition and computation of regular sets and other
relevant concepts). Furthermore, we may assume that each
Ti is simplicial [22] with respect to P (i.e., P is either zero
at all the real zeros of Ti, or nonzero at every real zero of
Ti) and no two of the regular sets have common zeros [21].

Without loss of generality, we only consider one regular
set

T = Ti = [T1(u, x1), . . . , Tn(u, x1, . . . , xn)].

If the parameters u are not present, we first isolate the real
roots of T1 for x1 by rational intervals. For each isolating
interval I, substitute the two endpoints for x1 in T2, re-
spectively, and obtain two polynomials in x2. From these
two polynomials, one can obtain the isolating intervals for
the real zeros of [T1, T2] when x1 is on I, provided that I
is sufficiently small. In this way, we can isolate all the real
zeros of T. To determine the sign of P at each isolated real
zero of T, one substitutes the intervals for the variables in
P and determines the sign of P by interval arithmetic. If
the algorithm proposed in [18] is used, we only need to take
a point in the isolating interval arbitrarily and to determine
the sign of P at this point. For algorithmic details, we refer
to [18].

If the parameters u are present, we compute a so-called
border polynomial B(u) of (2) according to the regular sets
Ti [20, 21]. For each regular set Ti = [T1, . . . , Tn], the border
polynomial contains the resultant of the leading coefficient
of Tj and [T1, . . . , Tj−1] as well as the resultant of the dis-
criminant of Tj and [T1, . . . , Tj−1] as its factors. If the sign
of P is to be determined, then B(u) also contains the resul-
tants of P and Ti. The border polynomial has the property
that the number of distinct real solutions of the system (2)
is invariant in each connected component (called cell) of
the complement of B(u) = 0 in the parametric space. It is
closely related to the notion of discriminant variety intro-
duced by Lazard and Rouillier [9]. Thus, to determine the
number of distinct real solutions of (2) in each cell, it suf-
fices to check the situation at one point of this cell. So one
may take a sample point from each cell and isolate the real
solutions of (2) at the sample point. Finally, the signs of the
factors of B(u) together with the numbers of real solutions
of (2) at the sample points form a real solution classification
of (2), from which the conditions for problem P4 above may
be easily obtained. The interested reader may consult [20,
21] for details.

4. STABILITY ANALYSIS OF THE CDC2-
CYCLIN B/WEE1 SYSTEM

As an example to illustrate our general approach, in this
section we analyze the stability of the Cdc2-cyclin B/Wee1
system. It is a bivariate system that describes the interplay
between two proteins: the Cdc2-cyclin B complex and the
Wee1 protein (see [1, 11, 12] and Figure 1). Its stability be-
havior may be determined numerically by the classical phase
plane analysis [11] and another graphical method proposed
by Angeli and others in [1].

We refer to [1] for the setting details of this example. Un-
der certain assumptions, the system of differential equations
that model the two-component, mutually inhibitory feed-

Figure 1: The Cdc2-cyclin B/Wee1 system and its
phase plane diagram under unitary feedback (v = 1),
reproduced from [1]

back loop is reduced to the following form
8

>

>

<

>

>

:

ẋ1 = α1(1 − x1) −
β1x1(vy1)

γ1

K1 + (vy1)γ1

,

ẏ1 = α2(1 − y1) −
β2y1x

γ2

1

K2 + xγ2

1

,

(4)

where α1, α2, β1, β2 are rate constants, K1, K2 are Michaelis
(saturation) constants, γ1, γ2 are Hill coefficients, and v is
a coefficient (feedback) that reflects the strength of the in-
fluence of Wee1 on Cdc2-cyclin B. For easy reference and
comparison, we take the same numerical values for the bio-
logical constants as in [1]:

γ1 = γ2 = 4, α1 = α2 = 1,

β1 = 200, β2 = 10, K1 = 30, K2 = 1.

For simplicity of notation, let x = x1 and y = y1. Then
system (4) becomes

ẋ =
P

30 + v4y4
, ẏ =

Q

1 + x4
, (5)

where

P = 30 − 30 x + v4(1 − 201 x) y4,

Q = 1 + x4 − (1 + 11 x4) y,

and v is a real parameter. Our problem is to detect the
stability of (5). In particular, we want to know for what
parametric value of v bistability may arise in this system,
i.e., for what value of v system (5) may have two stable
steady states. This amounts to determining the number of
equilibria of (5), or equivalently, finding the number of real
solutions of P = 0, Q = 0 for x, y in terms of v.

In general, one can apply the methods of triangular sets,
Gröbner bases, and resultants to triangularize the polyno-
mial system in equation. However, the system P = 0, Q = 0
for this example is too simple for any of these methods and
the triangularization process is trivial: solving Q = 0 for y
and substituting the solution to P , we obtain an irreducible
polynomial of degree 17 in x with parameter v:

H = (439230 + 201 v4)x17 − (439230 + v4)x16

+ (159720 + 804 v4) x13 − (159720 + 4 v4) x12

+ (21780 + 1206 v4) x9 − (21780 + 6 v4) x8

+ (1320 + 804 v4) x5 − (1320 + 4 v4) x4

+ (30 + 201 v4)x − 30 − v4.

Now the problem is to derive the conditions on v for H to
have 0, 1, 2, . . . real roots for x. This can be done by using the
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method of real root classification sketched in the previous
section. Our implementation of the method allows us to
establish the conditions automatically. More concretely, the
program may find a polynomial R = vR̄ (which in fact is
the discriminant of H with respect to x), where R̄ is of
degree 32 in v and has 9 terms and 4 real roots and is a
little bit too large to be reproduced here. Denote the 5
real roots of R by v̄2 < v̄1 < v0 = 0 < v1 < v2 (where
v1 = −v̄1 ≈ 0.8315735076, v2 = −v̄2 ≈ 1.796868764), which
may be isolated as follows:

»

−2,−
3

2

–

,

»

−1,−
1

2

–

, [0, 0],

»

1

2
, 1

–

,

»

3

2
, 2

–

.

These intervals can be made arbitrarily small if we wish.
As v is for the strength of the influence of Wee1 on Cdc2-
cyclin B (or in view of the symmetry), we may assume that
v ≥ 0. From the output of the program, we get directly the
following results:

E1. when 0 < v < v1 or v2 < v < +∞, system (5) has only
one steady state (or equilibrium);

E2. when v1 < v < v2, system (5) has three steady states;

E3. when v = 0, system (5) has a unique steady state;

E4. when v = v1 or v = v2, system (5) has two steady
states.

Finally, we need to determine the stability of the steady
states, i.e., to determine whether the steady states are stable
or not. To this end, we consider the Jacobian matrix of (5),
whose entries are the partial derivatives of

F =
P

30 + v4y4
, G =

Q

1 + x4

with respect to x and y, i.e.,

a =
∂F

∂x
= −

3 (10 + 67 v4y4)

30 + v4y4
, b =

∂F

∂y
= −

24000 v4xy3

(30 + v4y4)2
,

c =
∂G

∂x
= −

40 x3y

(1 + x4)2
, d =

∂G

∂y
= −

1 + 11x4

1 + x4
.

Let

p = −(a + d) =
2 p̄

(30 + v4y4) (1 + x4)
,

q = ad − bc =
3 q̄

(30 + v4y4)2 (1 + x4)2
,

∆ = p2 − 4 q =
100 ∆̄

(30 + v4y4)2 (1 + x4)2
,

where

p̄ = 30 + 180 x4 + 101 v4y4 + 106 v4x4y4,

q̄ = 67 y8 (1 + 11 x4) (1 + x4) v8

+ 20 y4 (101 − 14788 x4 + 1111 x8) v4

+ 300 (1 + 11 x4) (1 + x4),

∆̄ = x8 (19 v4y4 − 30)2 + 40 v4x4 (930 + 19 v4y4) y4

+ 400 v8y8.

It is easy to see that a < 0, d < 0, p > 0, ∆ ≥ 0 always
hold. As output, our program gives the following results:

S1. when 0 < v < v1 or v2 < v < +∞, q > 0 and ∆ > 0
hold at the only steady state, so this steady state is a
stable node;

S2. when v1 < v < v2, one of the three steady states, at
which q < 0, is an (unstable) saddle and the other two
steady states (at which q > 0 and ∆ > 0) are stable
nodes;

S3. when v = 0, p > 0, q > 0, and ∆ > 0 hold at the
unique steady state, so this steady state is a stable
node;

S4. when v = v1 or v = v2, q > 0 and ∆ > 0 hold at
one of the two steady states, so this steady state is a
stable node, and q = 0, a < 0, d < 0, and bc > 0 hold
at the other steady state. In the latter case, because
q = 0 (i.e., the Jacobian matrix of (5) is singular),
the method of linearization is inapplicable, but it is
not difficult to see that the steady state in this case is
unstable.

Therefore, it is rigorously proved that the system exhibits
bistability when v1 < v < v2. This completes our analysis
of the stability of (5).

5. DESCRIPTION OF THE GENERAL
APPROACH

In this section, we provide a short description of the algo-
rithmic steps of our general approach for the stability anal-
ysis of biological systems. It is a formulation of the main
steps shown in the above illustrative example.

We are given an autonomous system of ordinary differen-
tial equations of the form (1) that models a biological net-
work. In the case when the parameters u are not present,
our problem is to compute the real steady states of the sys-
tem symbolically, in the sense that the coordinates of each
steady state may be given as rational intervals of arbitrarily

small width, and to determine the stability of each steady
state. In the presence of parameters u, our problem is to
determine the conditions on u for the system to have pre-
scribed numbers of stable and unstable steady states. The
following steps provide solutions to these problems.

M1. Equate the numerators of the rational functions on
the right-hand side of (1) to 0, yielding a system of
polynomial equations of the form (2). In view of the
background of the problem, there may be additional
constraints on the system. For example, the denomi-
nators of the rational functions on the right-hand side
of (1) should be nonzero and some variables may be
positive.

M2. Decompose the polynomial set P = {P1, . . . , Pn} into
regular sets T1, . . . , Te using any of the algorithms de-
scribed in [7, 14, 22] (or more concretely, using the
function RegSer available in the Epsilon library [15]),
such that (3) holds. Make Ti and Tj have no common
zero for all i 6= j and simplicial with respect to all
constraints according to [21, 22].

M3. If the parameters u are present, then go to step M4.
Otherwise, isolate the real zeros of each Ti according to
the algorithms presented in [18] (see the second para-
graph from the end of Section 3). These real zeros are
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all the steady states of (1). Take any value for ū (as u

are not present) and go to step M7.

M4. Compute the border polynomial B(u) of system (2)
with all possible constraints (from T1, . . . , Te) accord-
ing to the algorithm proposed in [21]. The real part of
the hypersurface B(u) = 0 gives a topological decom-
position of the parametric space. If, for example, u is a
single parameter, then all the real numbers are decom-
posed into a finite number of open intervals and points
by the real roots of B(u). Any two points in one such
interval have the following property: the number and
the stability of the steady states of (1) are invariant
respectively at these two points.

M5. Take a sample point from each connected component
(cell) of the complement of B(u) = 0 in the parametric
space. This can be done by applying a partial CAD

algorithm. If u is a single parameter, one only needs
to take a sample point between ui and ui+1 for all
i (0 ≤ i ≤ r) by isolating all the distinct real roots
u1, . . . , ur of B(u), where u0 = −∞ and ur+1 = ∞.

M6. For each sample point ū, substitute ū for u in Ti (not-
ing that ū does not make the vanishing of the initial of
any polynomial in Ti) and isolate the real solutions of
the resulting regular sets, yielding the steady states of
system (1) at u = ū. Because of the property of B(u),
the number of steady states of (1) at u = ū is also the
number of steady states of (1) when u is in the same
cell.

At the same time, one may obtain the signs of the
factors of B(u) at ū. If the conditions on u for system
(1) to have a prescribed number of steady states are
desired, we output the signs of the factors of B(u) at
the sample points of those cells in which the system
has exactly the prescribed number of steady states.

M7. Suppose that x̄ is a steady state of system (1) at u =
ū. We want to determine the stability of (1) at x̄.
By the technique of linearization explained in Sec-
tion 2, we compute the Jacobian matrix J(u, x) of
(1) and its characteristic polynomial H(u, x, λ). Now
the problem is reduced to determining the stability of
H(ū, x̄, λ), which can be done by computing the signs
of the Hurwitz determinants of H(ū, x̄, λ) according to
the method described below. Finally, we output the
signs of those cells in which system (1) has exactly the
number of stable (or unstable) steady states as desired.

A standard method to determine the stability of a poly-
nomial is Routh–Hurwitz’s criterion [10, pp. 184–186]. Let

P = a0λ
m + b0λ

m−1 + a1λ
m−2 + b1λ

m−3 + · · · (a0 6= 0)

be a real polynomial in λ and consider the m × m matrix

P =

0

B

B

B

B

B

B

B

@

b0 b1 b2 · · · bm−1

a0 a1 a2 · · · am−1

0 b0 b1 · · · bm−2

0 a0 a1 · · · am−2

0 0 b0 · · · bm−3

...
...

...
...

1

C

C

C

C

C

C

C

A

,

where we take ai = 0 when i > m/2, and bj = 0 when
j ≥ m/2. The Hurwitz determinants Γ1, . . . , Γm of P are

defined to be the minors of P. According to the Routh–
Hurwitz criterion, the real parts of all the roots of P are
negative if and only if V(a0, Γ1, Γ3, . . .) = V(1, Γ2, Γ4, . . .) =
0, where V(. . .) means the number of sign changes of the
sequence.

6. EXPERIMENTS
In this section, we report on some of our experiments with

the proposed approach for stability analysis of biological sys-
tems. Our experiments have been made on the Cdc2-cyclin
B/Wee1 model without taking values for some of the bio-
logical constants and on a more complicated modular, five-
variable example: the Mos/MEK/p42 MAPK cascade. As in
our approach the obtained results are exact and rigorous,
the involved symbolic computations are heavy in general.
The occurring polynomials may be of very high degree with
large integer coefficients. However, as shown by our exper-
iments the symbolic methods underlying our approach are
powerful enough as to be used for the stability analysis of
reasonably complex biological systems.

The condition on v derived in Section 4 for the Cdc2-cyclin
B/Wee1 system to exhibit bistability is for the given values
of the biological constants α1, α2, β1, β2, K1, K2, γ1, γ2. Esti-
mation of the constant values are very difficult: some of the
values may be determined experimentally and others may
be chosen so that the model can simulate the type of bio-
logical behavior that is observed or expected. Our symbolic
approach allows us to establish conditions on some constant
parameters for the system to exhibit certain desired behav-
ior such as bistability or multistability.

To fix the idea, let us consider the Cdc2-cyclin B/Wee1
system as in Section 4, but without taking values for the
Michaelis constants K1, K2. We want to know for what
values of K1, K2 and v the system exhibits bistability.

From the meanings of the biological constants and vari-
ables, we know that K1 > 0, K2 > 0 and v, x1, y1 are non-
negative. Our program may compute a polynomial R1 of
degree 32 in v and degree 8 in either of K1 and K2 with
81 terms. Under the above assumption, we have a < 0, d <
0, p > 0, r ≥ 0, b ≤ 0, c ≤ 0. Then we can conclude that

N1. when R1 < 0, the system has three steady states, of
which two are stable (in this case q > 0) and the other
is unstable (in this case q < 0);

N2. when R1 > 0, the system has only one steady state
which is stable.

It follows that the system exhibits bistability if and only if
R1 < 0. This generalizes the result given in [1] and Section
4. The computation in the case R1 = 0 is too heavy and
could not be completed within three hours in Maple 9 on
a notebook computer (Pentium 1.13 Ghz CPU with 256 M
memory). From the results in the cases with specialized
values of K1, K2, we guess that the system has two steady
states, of which one is stable and the other is unstable, when
R1 = 0.

To determine the range of K1, K2 for the system to exhibit
bistability, we may compute a polynomial R2 of K2:

R2 = 1123963607439473175421875 K4
2

− 9244704652117591783090536 K3
2

− 5088828365064957511326382 K2
2

− 62301929415679096 K2 + 51046875.
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Let the two positive real roots of R2 be k1 ≈ 0.77 · 10−9 and
k2 ≈ 8.74. Our computation shows that the system exhibits
bistability for some range of the feedback gain v when K1 >
0 and k1 < K2 < k2, or no bistability otherwise. It follows
that the system always exhibits bistability for some range
of v, no matter what value K1 takes. This conclusion is
related to a question in [1]. The computation of the above
results took less than three minutes in Maple 9 on the above-
mentioned machine.

Now we discuss our experiments on a three-tier MAPK

cascade, based on the Mos/MEK/p42 MAPK cascade present
in Xenopus oocytes, which has been studied extensively in
the literature (see, e.g., [1, 6]). This system is modeled by
the following five equations [1]:
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>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ẋ = −
xV2

K2 + x
+ vz3V0 + V1,

ẏ1 =
(1200 − y1 − y3)V6

K6 + 1200 − y1 − y3

−
xy1V3

K3 + y1

,

ẏ3 =
x(1200 − y1 − y3) V4

K4 + 1200 − y1 − y3

−
y3V5

K5 + y3

,

ż1 =
(300 − z1 − z3) V10

K10 + 300 − z1 − z3

−
y3z1V7

K7 + z1

,

ż3 =
y3(300 − z1 − z3)V8

K8 + 300 − z1 − z3

−
z3V9

K9 + z3

.

(6)

For this five-dimensional system, the graphical technique of
phase plane or space analysis does not work and it is highly
nontrivial to detect its multistability. According to [1], we
take numerical values for the biological constants as follows:

V0 = 3/2000, V1 = 1/500000, V2 = 6/5, K2 = 200,

V3 = 8/125, K3 = 1200, V4 = 8/125, K4 = 1200,

V5 = 5, K5 = 1200, V6 = 5, K6 = 1200,

V7 = 3/50, K7 = 300, V8 = 3/50, K8 = 300,

V9 = 5, K9 = 300, V10 = 5, K10 = 300.

Then equating the numerators of the rational functions on
the right-hand side of (6) to 0, we obtain a system of five
equations

8
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>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

P1 = 150000 vz3 + 750 vz3x − 599999 x + 200 = 0,

P2 = 625 y2
1 + 750000 y3 + 625 y3y1 + 19200 xy1

− 8 xy2
1 − 8 xy1y3 − 900000000 = 0,

P3 = −11520000 x + 9600 xy1 + 8 xy1y3 + 8 xy2
3

+ 1500000 y3 − 625 y3y1 − 625 y2
3 = 0,

P4 = 250 z2
1 + 75000 z3 + 250 z3z1 + 1800 y3z1

− 3 y3z
2
1 − 3 y3z1z3 − 22500000 = 0,

P5 = −270000 y3 + 900 y3z1 + 3 y3z1z3 + 3 y3z
2
3

+ 150000 z3 − 250 z3z1 − 250 z2
3 = 0.

(7)
Because of the background of the problem, the above system
should satisfy the following constraints:

x ≥ 0, y1 ≥ 0, y3 ≥ 0, z1 ≥ 0, z3 ≥ 0,

1200 − y1 − y3 ≥ 0, 300 − z1 − z3 ≥ 0.

Determining the steady states of (6) with the above-specified
constant values is equivalent to finding the real solutions of
the polynomial system (7) under these constraints.

Table 1: Steady states of the Mos/MEK/p42 MAPK

cascade and their stability

labels 1–10 11, 12 13 14–16 17 18 19, 20 21
steady
states 1 1 3 3 3 2 2 0

stable
states 0 1 0 2 0 1 0 0

Our program computed a polynomial B of degree 93 in v
(the feedback strength) with 93 terms and 41 distinct real
roots. Let vi (i = 1, . . . , 41) denote the 41 roots in ascending
order, where v21 = 0. Because v is the feedback strength,
we may assume that v ≥ 0; thus only 21 open intervals
(v21, v22), . . . , (v40, v41), (v41, +∞) need be considered. Our
program has then isolated the real solutions of system (7) in
these 21 intervals and returned the following results. In any
of the first 12 open intervals, i.e., (v21, v22), . . . , (v32, v33),
system (7) has only one steady state. In each of the next
five intervals, i.e., (v33, v34), . . . , (v37, v38), the system has
three steady states. The system has two steady states in
(v38, v39), (v39, v40), or (v40, v41) and no steady states in the
interval (v41, +∞).

The characteristic polynomial of the Jacobian matrix of
(6) is

H = −λ5 + c4λ
4 + c3λ

3 + c2λ
2 + c1λ + c0,

where the ci are rational functions in v, x, y1, y3, z1, z3, whose
numerators are very large polynomials. For instance, the nu-
merator of c1 is a polynomial of total degree 16 in v, x, y1, y3,
z1, z3 with 4165 terms. Let Γ1, . . . , Γ5 be the Hurwitz de-
terminants of H. For each of the 21 intervals, we need to
check the signs of the Γi at each of the steady states. Let
the 21 intervals be labeled with 1 through 21 in ascending
order. The numbers of (stable) steady states of system (7)
determined by our program are shown in Table 1.

Moreover, when

v = v34 =
14999911

20025000
≈ 0.749 or v = v37 ≈ 2.585,

where v37 is the unique positive root of

4251528000000000000000 v3+12802676662170000000000 v2

−28309648634268638175000 v− 85804058978275037002757,

system (7) has three steady states and none of them is sta-
ble. Thus, it is rigorously proved that system (7) exhibits
bistability when v34 < v < v37. This confirms the result for
unitary feedback (i.e., v = 1) given in [1]. However, our
result contradicts the conclusion in [1] that the system is
bistable for any value of v between ≈ 0.7 and a very large

real number. The upper bound of v we have obtained for
the system to be bistable is only ≈ 2.585, which is not large.
We hope that this upper bound can be confirmed by other
theoretical and experimental studies.

7. CONCLUDING REMARKS
The general symbolic approach proposed in this paper

has been applied to two well-known biological models, the
Cdc2-cyclin B/Wee1 system and the Mos/MEK/p42 MAPK

cascade. We have rigorously proved and generalized the re-
sult given in [1] for the Cdc2-cyclin B/Wee1 system and
confirmed some of the results in [1] for the Mos/MEK/p42
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MAPK cascade. Moreover, we have found an exact upper
bound near 2.585 on the feedback gain v for the MAPK cas-
cade to exhibit bistability that is much smaller than an up-
per bound which is unknown but was claimed to be very
large in the recently published paper [1].

Our approach uses exact symbolic computation and thus
ensures that all the results obtained are mathematically rig-
orous. However, it is limited to the case when the Fi on the
right-hand side of (1) are rational functions and it may be
inapplicable when the Jacobian matrix is singular or some
of its eigenvalues have zero real parts but none of them has
positive real part (a much more complicated case in differen-
tial equations). The computations involved in our method
may also be expensive and some of the polynomials repre-
senting the exact real values in our results are very large and
cannot be reproduced in the paper. The interested reader
may request those polynomials and the isolating intervals of
their real roots from the authors.

In this initial study, we have focused our attention mainly
to the analysis of local stability for two concrete biological
models. Our approach may be applied to many other models
in biology and biochemistry. It may also be used and refined
for the study of several relevant problems such as global sta-
bility and bifurcation of limit cycles. How to solve a large
system of (parametric) polynomial equations and inequali-
ties coming from biological networks, represent and classify
their exact real solutions, and determine the sign of a ratio-
nal expression evaluated at these solutions more efficiently,
how to generalize our approach for other biological or non-
biological systems, and how to develop a practical software
tool to automate the process of stability analysis are some
examples of questions for our future research. We believe
that investigations on these questions will make our sym-
bolic approach a promising and powerful tool for the qualita-
tive study of such biological networks that may be modeled
by systems of ordinary differential equations. It may become
a good alternative to the experimental approach based on
numerical simulation and visualization.
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