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ABSTRACT
In this paper we deal with the problem of computing Lya-
punov functions for stability verification of differential sys-
tems. We concern on symbolic methods and start the dis-
cussion with a classical quantifier elimination model for
computing Lyapunov functions in a given polynomial form,
especially in quadratic forms. Then we propose a new
semi-algebraic method by making advantage of the local
property of the Lyapunov function as well as its deriva-
tive. This is done by first using real solution classifica-
tion to construct a semi-algebraic system and then solving
this semi-algebraic system. Our semi-algebraic approach is
more efficient in practice, especially for low-order systems.
This efficiency will be evaluated empirically.
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1 Introduction

The computation of Lyapunov functions for dynamical sys-
tems plays a very important role in control system analysis
and design. On one hand, Lyapunov functions can be used
for verifying the stability. On the other hand, making use
of Lyapunov functions, one can further compute attraction
regions which give more details about the stability. In this
paper, we deal with the problem of computing Lyapunov
functions for verifying the asymptotic stability of polyno-
mial differential systems.

For a polynomial differential systems, the problem of
computing a Lyapunov function in a given polynomial form
can be naturally transformed into a quantifier elimination
(QE) problem, which is decidable [22, 4]. However, this
method has some well known disadvantages and is hard to
get an efficient implementation.

We propose a new method by making advantage of
the local advantage of the local properties of a Lyapunov
function in quadratic form as well as its derivative. That
is, we first use real solution classification to construct a
semi-algebraic system and then solve this resulting semi-
algebraic system. When doing this, we may ignore the
neighborhood of the origin and reduce the number of to-
tal variables. Further, our method can be extended to some
more general cases, and we will use a simple example to

explain the idea of this extension which will come out later
in our extended paper in details.

We implemented our algorithm based on the MAPLE
package DISCOVERER [27] and tested our implementa-
tion on some examples in literature.

The structure of the paper is as follows. In Section 2
we formalize our problem of computing Lyapunov func-
tions for verifying asymptotic stability. Section 3 describes
a classical quantifier elimination method for computing
Lyapunov functions and we propose a new method in Sec-
tion 4 by using a semi-algebraic system based approach.
In Section 5 some examples are shown with computation
results and timings by our algorithm. Section 6 devotes to
some related work and we conclude the paper in Section 7.

2 The Problem

Consider an autonomous polynomial system of differential
equations ~̇x = f(~x), where f(~x) is a polynomial from R

n

to R
n. We denote such a system by PSf .
For a given system PSf , a point ~x∗ is called an equi-

librium of this given system if f(~x∗) = ~0. Without loss of
generality, we suppose the origin to be an equilibrium of
this given system if its equilibria exist.

From now on, if not specified, a differential system
means an autonomous polynomial system of differential
equations with an equilibrium at the origin. Moreover,
for a given differential system, the asymptotic stability
means the asymptotic stability of the origin in the Lya-
punov sense [11].

A necessary and sufficient condition for verifying
asymptotic stability [11] is the existence of a Lyapunov
function (LF), which is defined as follows.

Definition 1 Given a differential system PSf and a neigh-
borhood U of the origin, a Lyapunov function is a differ-
entiable function V : U 7→ R such that

• V (~0) = 0 and V (~x) > 0 whenever ~x 6= ~0;

• d
dt

V (~0) = 0 and d
dt

V (~x) < 0 whenever ~x 6= ~0.

In this paper, we would like to have an algorithm that,
for a given differential system PSf , computes a Lyapunov
function (LF) for the verification of asymptotic stability. In
general, this is an undecidable problem [12]. So we aim



at an efficient algorithm for computing a polynomial Lya-
punov function such that its terms are all of degree 2, that is,
a polynomial in quadratic form, if such a polynomial Lya-
punov function exists. It seems that polynomial Lyapunov
functions in quadratic forms play important roles in the lit-
erature of the verification of hybrid systems [16, 2, 6, 3].

3 The Quantifier Elimination Method

In this section, we will describe a classical method for com-
puting a Lyapunov function (LF) in quadratic (or any poly-
nomial) form for the verification of asymptotic stability.

For a given differential system PSf and a neighbor-
hood U of the origin. Let V be a polynomial in quadratic
form with parametric coefficients, and d

dt
V be the deriva-

tive of V along f , represented as a polynomial whose coef-
ficients are linear combinations of the parameters that form
the coefficients of V . Set Cond(V ) to be

[

~x = ~0 ⇔ V (~x) = 0
]

∧ V (~x) ≥ 0

∧

[

~x = ~0 ⇔
d

dt
V (~x) = 0

]

∧
d

dt
V (~x) ≤ 0.

If we can find a solution to

∀~x ∈ U [Cond(V )]

for the parameters that form the coefficients of V ,then the
V formed by this solution is a Lyapunov function.

In general, U is an arbitrary neighborhood of the ori-
gin, and does not have an explicit algebraic expression.
However, we can view U as a ball {~x ∈ R :

∑n
i=1 x2

i <

r2} or a block {~x ∈ R : |xi| < r, 1 ≤ i ≤ n}. If we view
U as a block, we get the following constraint:

∃r > 0∀~x ∈ R
n [[∧1≤i≤n|xi| < r] ⇒ Cond(V )] . (1)

The constraint (1) is a formula in the first-order pred-
icate language over the real numbers. Due to decidability
of the theory over real-closed fields [22], one can always
check whether for a given polynomial with parametric co-
efficients, there are instantiations of these parameters re-
sulting in a Lyapunov function by applying the quantifier
elimination (QE) method. As a QE procedure, it eliminates
the quantified variables, gives some equivalent quantifier
free formula for the parameters and then samples values of
the parameters.

Here, we will employ a cylindrical algebraic decom-
position (CAD) based QE method [4] — the details for
CAD will come out later — and use an example to explain
how it works by executing QEPCAD B [5]—a CAD based
QE tool.

Example 1 Consider (ẋ, ẏ) = (y,−x − y + x2). Let
V (x, y) = x2 + axy + y2. The input to QEPCAD B is
(Er)(Ax)(Ay)[r > 0∧[x > r∨y > r∨x+r < 0∨y+r <

0 ∨ x = 0 ∨ [a > −2 ∧ a < 2 ∧ y(2x + ay) + (−x − y +

x2)(ax + 2y) < 0]]], which is equivalent to the Constraint
(1). After a computation of about 2000 seconds, we got an
equivalent quantifier free formula 0 < a < 8

5 . And this
implies that ∀a 0 < a < 8

5 , V = x2 + axy + y2 form a LF.

Clearly, the QE method functions in the same way
for computing polynomial Lyapunov functions in any given
forms. However, it is well known that the QE method is of
low efficiency in practice, and can hardly produce a result
when the number of total variables is greater than 5.

4 A Semi-Algebraic Systems based Remedy

There are two shortages of the QE method for computing
LFs introduced in the previous section: one is that we need
to compute Lyapunov functions as well as neighborhoods;
the other is that there are still too many total variables to
solve even though we only consider quadratic forms. In
this section, we will try to find a remedy for these prob-
lems. The idea is to compute a Lyapunov function in
quadratic form using its local property to first construct a
semi-algebraic system (SAS) — the formal definition will
appear in Subsection 4.3 — and then find a solution to this
resulting system.

4.1 Semi-Algebraic Systems based Compu-
tation of Lyapunov Functions

In this subsection, we will compute a Lyapunov function in
quadratic form by making advantage of the local properties
of a Lyapunov function as well as its derivative, that is,
they are locally either positive or negative. Specifically,
we will concentrate on the case that the Hessian Matrix of
a Lypunov function is positive definite and its derivative’s
Hessian Matrix is negative definite. Following this way,
we first use real solution classification to construct a semi-
algebraic system and then solve this system.

The Hessian matrix at the origin for a differential
function V is defined as follows:

Hess(V )|~x=~0 =
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Now, based on some local properties, we state a suffi-
cient condition for the existence of a Lyapunov function:

Theorem 1 For a given differential system PSf , and a
polynomial V (x) in quadratic form such that Hess(V )|~x=~0

is positive-definite and Hess( d
dt

V )|~x=~0 is negative-definite,
then V is a Lyapunov function.

Proof. Obviously, V = 1
2~xHess(V )|~x=~0~x

T . It is sufficient
to prove that there is a neighborhood U of the origin such
that d

dt
V (~x) < 0 for all ~x ∈ U \ {~0}.



Since ( ∂
∂x1

( d
dt

V ), . . . , ∂
∂xn

( d
dt

V ))|~x=~0 = ~0 and
Hess( d

dt
V )|~x=~0 is negative definite, due to the extremum

theory, there is a neighborhood U of the origin such that
d
dt

V ∗(~x) < d
dt

V ∗(~0) = 0 for all ~x ∈ U \ {~0}. ¥
Due to Theorem 1, we try to find a Lyapunov function

in quadratic form such that the conditions described in The-
orem 1 hold. Following this idea, we will first use the real
solution classification to construct a semi-algebraic system
and then solve it in a symbolic way by finding a solution to
this resulting semi-algebraic system.

Observing that the two Hessian matrices are both
symmetric, it is easy to know that their eigenvalues are all
real. On the other hand, a necessary and sufficient condi-
tion for a matrix to be positive-definite (negative definite)
is that its eigenvalues are all positive (negative). This leads
us to study its characteristic polynomial.

Definition 2 A univariate polynomial is totally real if its
roots are all real. A totally real polynomial is positive root-
ing if its roots are all positive.

For a given symmetric matrix H with parametric en-
tries, let h(λ) = λn + cn−1(~a)λn−1 + · · · + c0(~a) be its
characteristic polynomial, where the components of ~a are
the parameters that form H and ci(~a)’s are polynomials in
~a. Obviously, h is totally real. Moreover, H is positive-
definite if and only if h is positive rooting.

The following theorem — which can be deduced from
the Descartes rule of signs — gives the necessary and suffi-
cient condition for checking whether a totally real polyno-
mial is positive rooting or not.

Theorem 2 [23] For a totally real polynomial h(λ) =
λn + cn−1λ

n−1 + · · ·+ c0, it is positive rooting if and only
if for all 1 ≤ i ≤ n, (−1)icn−i > 0.

Due to Theorem 1, for a given differential system
PSf , if we can find a solution for the parameters that form
a symmetric Matrix H such that H is positive definite and
H∗ = Hess( d

dt
( 1
2~xH~xT ))|~x=~0 is negative definite, then

1
2~xH~xT is a Lyapunov function.

From Theorem 2, the symmetric matrix H is positive-
definite if and only if cn−1(~a) > 0, cn−2(~a) <

0, · · · , (−1)nc0(~a) > 0, where ci(~a)’s — which are poly-
nomials in parameters ~a — are the coefficients of the char-
acteristic polynomial of H . Thus, to find a solution for
the parameters such that H is positive definite is equivalent
to find a solution to the semi-algebraic system {cn−1(~a) >

0, cn−2(~a) < 0, · · · , (−1)nc0(~a) > 0}. Similarly, to find a
solution for the parameters such that −H∗ is positive def-
inite is equivalent to find a solution to the semi-algebraic
system {c∗n−1(~a) > 0, c∗n−2(~a) < 0, · · · , (−1)nc∗0(~a) >

0}, where c∗i (~a)’s are the coefficients of the characteristic
polynomial of −H∗.

Combining the above two discussions, to find a so-
lution for the parameters such that H and −H∗ are both
positive definite, is equivalent to find a solution to the
semi-algebraic system {cn−1(~a) > 0, · · · , (−1)nc0(~a) >

0, c∗n−1(~a) > 0, · · · , (−1)nc∗0(~a) > 0}. We denote this
resulting semi-algebraic system by SAS (H,−H∗). This
results in Algorithm 1, whose core algorithm is SASolver.
Note that for a given semi-algorithm system, SASolver ei-
ther returns a solution to this system or returns an empty
set when there is no solution to this system. The details for
SASolver will come out in Subsection 4.3.

Algorithm 1 Computing Lyapunov functions
Input: A given differential system PSf .
Output: A Lyapunov function or UNKNOWN.

1: choose a polynomial in quadratic form with parametric
coefficients.

2: Compute H = Hess(V )|~x=~0 and H∗ =
Hess( d

dt
V )|~x=~0.

3: compute the characteristic polynomials of H and
−H∗, respectively.

4: compute SAS (H,−H∗).
5: apply SASolver to SAS (H,−H∗).
6: if SASolver returns a solution then
7: set this solution to the parameters in V and return V .
8: else
9: return UNKNOWN.

10: end if

We use the following example to explain Algorithm 1
with comparison to the QE method.

Example 2 This is an example from [15] whose Lyapunov
function has been constructed by the sum of squares de-
composition.

{

ẋ = −x + y + xy

ẏ = −x − x2

Let V = ax2 + bxy + cy2, then d
dt

V = (2ax +
by)(−x + y + xy) + (bx + 2cy)(−x − x2). And the two
required characteristic polynomials are C(t) = t2 − 2at−
2ct + 4ac− b2 and D(t) = t2 − 4at− 4ab− 5b2 − 4a2 +
8ac − 4bc − 4c2. Applying Algorithm 1, SASolver found
a solution (a, b, c) = (1,−1, 1) within one second. Thus
V = x2 − xy + y2 is a Lyapunov function.

When using the QE method, we let V = x2+axy+y2

for simplicity. Then d
dt

V = (2x + ay)(−x + y + xy) +
(ax + 2by)(−x − x2). After applying QEPCAD B to the
Constraint (1), the program terminates abnormally after a
computation of about 4868 seconds.

Note that our semi-algebraic system based approach
is equivalent to first linearize the system and then apply
linear matrix inequalities (LMIs) based approach. That
is, each positive definite matrix found by LMIs based ap-
proach forms a solution to our semi-algebraic system and
each solution to our semi-algebraic system forms a positive
definite matrix which satisfies the LMIs. The proof for this
equivalence will be a very interesting issue for readers.



4.2 Discussion

In Subsection 4.1, we discussed how to ignore the neigh-
borhood of the origin and compute a Lyapunov function in
quadratic form by first constructing a semi-algebraic sys-
tem and then solving this system. In this way, we root
out the first shortage that occurs when we use the quan-
tifier elimination method. Moreover, we ease the second
shortage since our semi-algebraic approach requires less
variables. This is easily derived from the fact that, if us-
ing the general elimination method, we need to use at
most 1 + n + (n+1)n

2 total variables; if using the semi-
algebraic approach, we only use at most (n+1)n

2 total vari-
ables. Thus, due to the double-exponential complexity of
these two methods, our semi-algebraic approach is more ef-
ficient in practice, especially for the low-order (second and
third) systems. Note that the complexity analysis in details
will come out later in our extended paper. This efficiency
will also be evaluated empirically in Section 5.

Although our semi-algebraic approach focuses on
quadratic forms, it can be extended to any differentiable
forms. The following theorem gives a sufficient condition
on local properties of a function for it to be a LF.

Theorem 3 For a given differential system PSf , if there
exists a differentiable function V (~x) such that

• V (~0) = 0, ( ∂V
∂x1

, . . . , ∂V
∂xn

)|~x=~0 = ~0 and
Hess(V )|~x=~0 is positive-definite;

• Hess( d
dt

V )|~x=~0 is negative-definite,

then V is a Lyapunov function.

Proof. Since ( ∂V
∂x1

, . . . , ∂V
∂xn

) = ~0 and Hess(V )|~x=~0 is pos-
itive definite, due to the extremum theory, there is a neigh-
borhood U1 of the origin such that V (~x) > V (~0) = 0 for
all ~x ∈ U1 \ {~0}.

On the other hand, d
dt

V (~0) =
∑n

i=1
∂V
∂xi

· fi|~x=~0 =
0. And for any arbitrary but fixed j, 1 ≤ j ≤ n,
∂( d

dt
V )

∂xj
=
∑n

i=1(
∂2V

∂xj∂xi
· fi + ∂V

∂xi
· ∂fi

∂xj
)|~x=~0 = 0. Thus,

(
∂( d

dt
V )

∂x1

, . . . ,
∂( d

dt
V )

∂xn
)|~x=~0 = ~0. Since Hess( d

dt
V )|~x=~0

is negative-definite, due to the extremum theory, there is
a neighborhood U2 of the origin such that d

dt
V (~x) <

d
dt

V (~0) = 0 for all ~x ∈ U2 \ {~0}.
Set U = U1 ∩ U2. Obviously, V restricted to U is a

Lyapunov function. ¥
According to Theorem 3, if V (~x) is a Lyapunov func-

tion obtained from Algorithm 1, then V ∗(~x) = V (~x) +
P≥3(~x) is also a Lyapunov function, where P≥3(~x) is a
polynomial such that its terms are all of degree ≥ 3.

Moreover, we can extend Theorem 2 and our algo-
rithm to compute a Lyapunov-like function, that is, a poly-
nomial such that its Hessian matrix at the origin is positive
definite and its derivative’s Hessian matrix at the origin is
negative semi-definite. Then, the QE method is used to
check whether this resulting Lyapunov-like function is a

LF or not. The detail will come out in our extended paper.
Here, we simply use an example to explain this idea.

Example 3 Consider (ẋ1, ẋ2) = (−x2 − x3
1, x1 − x3

2).
Assume that V (x1, x2) = x2

1 + ax2
2. Then, a = 1 is

a solution such that Hess(V )|~x=~0 is positive definite and
Hess( d

dt
V )|~x=~0 is negative semi-definite. Applying the

quantifier elimination, it is easy to check that V (x1, x2) =
x2

1 + x2
2 is a Lyapunov function.

4.3 SASolver

In this subsection we come to semi-algebraic systems and
study how to solve them.

A semi-algebraic system is a set of polynomial equa-
tions and inequalities over the real number field. A semi-
algebraic set is the solution set of a semi-algebraic system
in R

n. For simplicity, we denote them both by SAS.
To solve a SAS has diverse meanings due to differ-

ent applications: sometimes we want to have real solution
classification based on the parameters; sometimes we want
to find solutions of the SAS. The core of Algorithm 1 is
SASolver, which can find one solution of a given semi-
algebraic system (i.e., a sample point in the semi-algebraic
set) or return ∅ if no solution exists. Note that the current
version of SASolver is based on a Partial-CAD process.

To arrive at Partial-CAD, we start with CAD [4, 1].
CAD plays a very important role in both the QE method
and our SASolver. It is a data structure to express the SAS
in R

n. Every CAD relates to a polynomial F , which is
the product of all elements in a set of polynomials F , and
divides the R

n space into finitely many ordered connected
sets such that F is ordered and sign-invariant in such sets.
Each connected set in a CAD is called a cell and a point in
the cell is called a sample point of the cell. Moreover, the
CAD is a recursive structure, that is, we first define a cell
in R

1 as an open intervals or a point; and a cell in Rk+1

then has the form {(x, y) : x ∈ C , f(x) < y < g(x)} or
{(x, y) : x ∈ C , y = f(x)}, where C is a cell in R

k, and f

and g are both continuous function on C such that for some
polynomials F and G, F (x, f(x)) = 0 and G(x, g(x)) =
0, or ±∞ and f(x) < g(x) for all x ∈ C .

Due to the recursive structure, a CAD algorithm [4, 1]
generally includes three basic processes: projecting, lifting
and definition formula constructing. However, since we are
only interested in finding a sample point in the SAS, we
can simplify these processes by using Partial-CAD, which
origins from [5].

The Partial-CAD we process [26, 27] here is to first
consider the open cells of the highest dimension, leaving
all the lower dimensional ones, which are defined as bound-
aries. If we cannot find a solution in such cells, we add the
boundaries as equality constraints, and process triangular
decomposition with these equality constraints to get a reg-
ular triangular system. If no solution found, we proceed in
the same way for lower dimensional cells until we can get
one solution or we can assert there is no solution. And it’s



even lucky that we can ignore the boundaries all the time
safely in SASolver here since the SAS we got includes only
strict inequalities.

5 Examples

In this section, we will use five examples to show the effi-
ciency of our Algorithm 1. Note that we used a computer
with an Intel Pentium 2.60 GHz CPU with 1024 Mbytes of
main memory running Maple10 .

Example 4 An example of the simplified model of a chem-
ical oscillator in [14]. The original system is:

{

u̇ = a − u + u2v

v̇ = b − u2v

Let (a, b) = (0.5, 0.5), then the equilibrium is
(1, 0.5). Substituting u and v with u + 1 and v + 0.5
respectively, we got a new system (u̇, v̇) = (v + 1

2u2 +
2uv + u2v,−u − v − 1

2u2 − 2uv − u2v). Letting V =
au2 + buv + cv2, we got a solution (a, b, c) = (1, 1, 1)
within 2 seconds which implies that V = u2 + uv + v2 is a
Lyapunov function of the new system.

Example 5 An example in [10]:
{

ẋ1 = −2x1 + x2 + x3
1 + x5

2

ẋ2 = −x1 − x2 + x2
1x

3
2

We assume that V (x1, x2) = ax2
1 + bx1x2 + cx2

2.
Algorithm 1 returned V (x1, x2) = x2

1 − x1x2 + x2
2 as a

Lyapunov function within 0.1 seconds.

Example 6 An example whose Lyapunov function has
been computed by Gröbner basis [8]:











ẋ1 = −x1 + 2x2
2

ẋ2 = −x2 + x2
1 + x2

3

ẋ3 = −x3 − x2
1

Letting V (x1, x2, x3) = x2
1 + a12x1x2 + a13x1x3 +

a22x
2
2 + a23x2x3 + a33x

2
3, we find 20 solutions for

(a12, a13, a22, a23, a33). Taking (a12, a13, a22, a23, a33) =
(3, 1, 3, 0, 2) among them, then V (x1, x2, x3) = x2

1 +
3x1x2 + x1x3 + 3x2

2 + 2x2
3 is a Lyapunov function.

Example 7 An example from a classical ODE’s textbook:










ẋ = −x − 3y + 2z + yz

ẏ = 3x − y − z + xz

ż = −2x + y − z + xy

Assume that V (x, y, z) = x2 + axy + xz + cy2 +
dyz+ez2. Within about 1900 seconds, we got 500 solutions
for the parameters that form the coefficients of V . We take
(a, c, d, e) = (2, 2, 2, 2) among them and then V (x, y, z) =
x2 + 2xy + xz + 2y2 + 2yz + 2z2 is a Lyapunov function.

Example 8 Another example from an ODE’s textbook:










ẋ = −2x + y − z + 2xy

ẏ = x − y + y3

ż = x + y − z + x2y

Let V (x, y, z) = x2+bxz+cy2+dyz+ez2. Running
about 840 seconds, we got 250 solutions for the param-
eters. Taking (b, c, d, e) = (1, 1,−1, 1) from them, then
V = x2 + xz + y2 − yz + z2 is a Lyapunov function.

Note that, when using QE method, QEPCAD B failed
to find Lyapunov functions for all the above examples be-
cause of the extreme time cost, memory cost, etc.

6 Related Work

The idea of using Lyapunov functions to verify asymptotic
stability is not new. The difference is which approach to
use for efficiently computing a Lyapunov function.

To our knowledge, there are two methods in the liter-
ature that can directly compute non-linear Lyapunov func-
tions in an automatic way. One is a method based on sum of
squares decomposition which can be efficiently computed
by using semi-definite programming [18, 14, 15]. The other
method is to use Gröbner bases to choose the parameters in
Lyapunov functions in an optimal way [7, 8]. This requires
the computation of a Gröbner basis for an ideal with a large
number of variables, and requires some manual interven-
tion to distinguish critical points from optima.

For verifying the asymptotic stability, another choice
is to first linearize the original system and then study the
linearization system. For doing this, there are two well-
known methods. One method is to check the real parts of
the eigenvalues of the Jacobian matrix at the origin by us-
ing Routh-Hurwitz’s criterion [24]. However, we cannot
verify the asymptotic stability if there are purely imaginary
eigenvalues. Thus, for such cases, we still have to com-
pute Lyapunov functions. The other method is to compute
a Lyapuov function in quadratic form which results in lin-
ear matrix inequalities [16, 2, 6, 3].

7 Conclusion

In this paper we focus on computing Lyapunov functions in
quadratic forms by a semi-algebraic system based approach
for the verification of asymptotic stability of a PSf . This
approach can be easily implemented and is more efficient
in practice. And it can be applied to non-quadratic forms
or extended to compute some Lyapunov-like functions.

An interesting problem is to compute attraction re-
gions [21, 9, 25]. A further interesting problem is to par-
tition the state space into finite many regions and compute
piecewise Lyapunov-like functions over these regions [16].

Our long term goal is to verify the stability of
switched and hybrid systems [6] in the Lyapunov sense



by computing multiple Lyapunov functions [2], or in the
practical sense [13] by computing multiple Lyapunov-like
functions [20] or by computing transition systems [19, 17].
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