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1. INTRODUCTION

We call
[[P], [G1], [G2], [H]] (1)

a semialgebraic system (SAS, for short), where P, Gi, G2, and H denote
{pl(xla see 7$n) = 01 s 7Ps(117- .- ,.'I,'n) = 0}3

{g1(z1,...,2p) 2 0,...,9-(x1,...,2,) > 0},
{gr+1(x1, .-y Tn) > 0,...,0:(21,...,2n) > 0},

and

{hi(z1,...,2n) #0,..., hm(21,...,2,) # 0},
respectively. Here, n,s > 1, r,t,m > 0 and p;,g;, hx are all polynomials in z1,...,2, with
integer coefficients. Furthermore, we always assume that {p,...,ps} has only a finite number of

common zeros in C*.

Many problems in both practice and theory, such as the maximum number of limit cycles for
polynomial differential system [1-3], the stability of a large class of biological networks [4,5], solv-
ing geometric constraints, some problems in computer vision, and automated proving inequality-
type theorems [6], to name a few, can be reduced to finding real solutions of a certain SAS.
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Because exact computation is needed, numerical methods are not applicable to these kinds of
problems. Therefore, isolating the real solutions of semialgebraic systems becomes an important
aspect of research in the field of computational real algebra. There have been some works con-
cerning this issue, see, for example, [6-9]. The method in [6] is not a complete one and we have
been trying to improve it. In this paper, we propose a complete algorithm based on interval
arithmetic and show that it is faster than our earlier method on the examples in [6].

This paper is organized as follows. Section 2 devotes to some basic concepts of interval arith-
metic and some notations needed in this paper. The details of the algorithm Nrealzero for
isolating the real solutions of semialgebraic systems are given in Section 3. All the examples
in [6] are recomputed by our new method in Section 4 and the timings reported.

2. INTERVAL ARITHMETIC

All the concepts and results in this section are classical. We only use some new notation. A
subset of R, the real numbers, of the form

X =[z,22] = {z | 21 <z < 20}, z1,T2 € R,

is called an interval. The set of all intervals is denoted by I(R). If ; = zg, X is called a point
interval. A subset of R of the form

X =[-00,a] ={z | z < a}, a €R,
or
X = [b,4o0] ={z | b <z}, beR,

is called a semi-infinity interval. The set of all semi-infinity intervals is denoted by SI(R). Note
that I(R) and SI(R) are disjoint sets.

DEFINITION 2.1. For X = [a,b] € I(R), the width, the midpoint, and the sign of X are defined,
respectively, as W(X) = b —a, m(X) = (a +b)/2, and

-1, b<0,
sign(X)=4¢ 0, a<0<y,
1, a > 0.

DEFINITION 2.2. For X,Y € [(R)USI(R) and ¢ € {+,—,-}, we define X oY = {zoy |z € X,
y € Y}. For X = [a,b] € I(R), if sign(X) # 0, we define

1 11
1 _ (b1
X X [b’a}’

if sign(X) = 0 and W(X) # 0, we define

_Ooal ) b=07
a
X1 _ L = —i—oo- a=0 (2)
_X_ b) ) -
—oo,—l— ?1)-,+oo], a<0<b;
a

if X =[0,0], X~ ! is undefined. And Y/X is defined to be Y - X~!, where Y/X =Y -[—00,1/a]U
Y [1/b,+o0] ifa <0 <b.
Fora € R, X € I(R) and ¢ € {+,—,,/}, we define a o X = [a,a] ¢ X and X oa = X ¢ [qa,qa].
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DEFINITION 2.3. (See [10,11].) Let f be an arithmetic expression of a polynomial in R[zy, ..., z,].
We replace all operands of f as intervals and replace all operations of f as interval operations
and denote the result by F'. Then, F : I(R)™ — I(R) is called an interval evaluation.

Let F be an interval evaluation in D € I(R)"™. If for all X,Y C D, X C Y implies F(X) C

F(Y), we call F' a monotonic interval evaluation.

THEOREM 2.1. (See [10,11].) An interval evaluation of any polynomial in R[zy,...,z,] Iis a
monotonic interval evaluation. Especially, this is true for univariate polynomials.

3. THE ALGORITHM

Given a SAS in the form of (1), because the ideal generated by p1, . . ., ps is zero dimensional, we
can use the Ritt-Wu method, Grébner basis method or resultant methods to transform the system
of equations into one or more systems in triangular form. Therefore, a SAS, [[P], [G1], [G2), [H]],
in the form of (1) can be transformed into one or more systems in the form of

[[F], [G), [Gal, [H]], (3)

where
F ={fi(z1), fa(x1,22), ..., fs(x1,%2,...,25)}

is a normal ascending chain [12] (or a regular chain by [13] or a regular set by [14]). We call a
system in the form of (3) a triangular semialgebraic system (TSA, for short).

Let the leading coefficient and the discriminant of a polynomial, f, with respect to 2 be denoted
by le(f,z) and dis(f, z), respectively. A TSA is regular if

(a) le(f1,z1) # 0 and dis(f1,z1) #0,

(b) each zero of {fi =0,..., fi—1 = 0} is not a zero of le(fi, z;) - dis(fi, z:), fori = 2,...,s,

and
(c) each zero of {f1 =0,..., fs =0} is not a zero of any g; (1 < j <t) and hy (1 <k < m).

Obviously, a regular TSA can be viewed as a system in the following form:

{f1:O,...,fS=0,g1>0,...,gt>0}. (4)

Xia and Yang [6] gave an algorithm for decomposing any TSA (or SAS) into regular T'SAs.
So, in the following we only discuss how to isolate the real solutions of a regular TSA in the form

of (4).

Let a regular TSA T in the form of (4) be given. There exist some efficient methods to isolate
the real roots of a univariate polynomial [15]. To isolate the real solutions of T, a natural idea is
to isolate the real roots of the first equation of the system and substitute each resulting interval
in the rest of the equations and then repeat the above computation. Of course, we have to deal
with polynomials with “interval coefficients”.

DEFINITION 3.1. Let a polynomial ¢ € Z[z1,...,z;+1] be represented as
qg=aq(z1,... 7-Ti)$é+1 ++q(z, . T)Tie + (T, -, T,
where qi(z1,...,7;) # 0. For any X = ([a1,b1],...,[ai, b;]) € I(R)?, let Q; (0 < j <) be an
interval evaluation of ¢; in X and
Q = Qu(la1,b1],- .., [as, bzt + - + Qo(lar, bal, . .-, [as, bi))
= [Cl,dl]$2+1 + -+ [Co, do]

We call
—q:Cl$£+1+"'+Co and +q=dlx£+1+...+d0 (5)
the lower bound polynomial and upper bound polynomial of q in X, respectively.
Let [¢(z)]™ (n € N) denote the n-order derivative of g(z) with respect to z and [q(z)]® = q(z).
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ProposITION 3.1. Suppose X = ([a1,b1],--.,[ai,bs]) is an isolating cube of some zero, z*, of
{f1=0,...,fi =0} in the system T and _ f;+1 and *f;;1 are the lower bound and upper bound
polynomials of f;11 in X, respectively, then for alln € N and all ;41 € (0, +00)

i)™ < [fipa (@™ 2 )] ™ <[] ™. (6)

PROOF. Suppose _fit1 = b + - +co, Hip1 = digl ) + -+ + do, and fiy1(z*,zig1) =
elméH +---+ep. From Definition 3.1, it is easy to see that ¢; < e; < d; for 0 < j < I. Therefore,
the relations (6) hold for all z;1 € (0, +00). |

In fact, the relations (6) hold not only for 2* but also for any € X.

Now, suppose z* is a real solution of {f; =0,..., f; =0} and X is an isolating cube such that
z* € X. Let _fiy1(ziy1) and *f;1(xi41) be the lower bound and upper bound polynomials of
fir1 in X, respectively. By using Proposition 3.1, we want to obtain the isolating intervals of
fir1(z*, zix1) by isolating the real zeros of _ f;11 and Hfit1.

From Proposition 3.1 (by letting n = 0), we have

—fir1 < fira(e®, 1) < i

for z;4+1 > 0. So, we first shift the real roots of f;yi(z*,z;41) to the positive real roots of
fir1(x*,zi41) = fiz1(2*, 741 — B), where B satisfies that any real root of fit1(z*,ziy1) is
greater than B.

To determine the value of B, we let

fir1(z, ..z, zig1) = fir1(z1, ..o Tiy —Tig1)-

Then the negative zeros of f;y1(z*,z;+1) correspond to the positive zeros of ]?:1(33*, Zit+1), and
thus, the positive-root-bound of }?;;(x*,xi+1) is the negative-root-bound of f;11(z*,zi41). We
shrink X repeatedly until le(_ f;41) - le(*fi+1) > O (this inequality must hold at a certain step
because the TSA T being regular implies le(fit1,zi41)(z*) # 0) which guarantees that the
greatest real root of fi+1(z*) is smaller that that of _ fiy1(z*) or *fir1(z*). Then, let ﬁ:l and
f1+1 be the lower bound and upper bound polynomlals of fz+1 in X, respectively, and B > 0
the maximum of the root-bounds of _ fz—l—l and fz+1 We define

fir1(x1, ..y Tiy Tiv1) = fir1(z1, ... To, g1 — B).

Obviously, all the real zeros of f;y1(x*, z;+1) are shifted to the real zeros of fi1(z*, z;41), which
are all in (0,+o00). Therefore, without loss of generality, we only consider the positive roots of
fit1(z*,zi41) in our algorithm.

5= [[00,60],. [02.69]], 5=,

and Sy and S, isolate all positive zeros of _ fiy1(xix1) and ¥f;y1(zi41), respectively. Because T
is regular, fiz1(z*,2;41) = 0 has no repeated roots. So, by Proposition 3.1, if X is small enough,
mj = my and we can define that

Suppose

S = [[alvﬁl]""’[amwﬁmJ]’ (7)

where for 1 < k < my,

Q= min (a,(cl),a,(f)) , Br = max ( ,(61), ,(Cz)) . (8)
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If the widths of X, S; and Sy are all small enough, any two adjacent intervals of S do not
intersect. Furthermore, _ fi11(zit1), ¥fit1(zit+1) and fi41 are all monotonic in each [ay, B of S.
In this case, we write S = S1AS; and it is easy to prove that S isolates all positive zeros of f;;;.
REMARK 3.1. Whenever we use the notion S = S1AS; (or S — S1AS;), we mean that, given Sy
and Sa, S is defined by (7) and (8) and the following three conditions are satisfied:

1. mi1 = may;

2. fit1(zi+1) is monotonic when z;41 is in each (o, Bk);

3. any two adjacent intervals of S do not intersect.
To make the three conditions hold, we may have to shrink X repeatedly (finite many times, of
course).

Now, we can describe our algorithm as follows. The finiteness and correctness of the algorithm
are guaranteed by the above discussion.

Algorithm: NREALZERO

INPUT: A regular TSA T in the form of (4);
OUTPUT: A list of isolating cubes of the positive real solutions of T
STEP 0. Ly « 0, Ly +— 0, i « O.
STEP 1. (1 =0)
L1 « the isolating intervals of the positive zeros of fi; i «— i + 1;

STEP 2. (0<i<s)

FOR X = ([al, bl], ey [ai, b,}) € L; DO
Ly = Li\{X};
Compute _ fi+1 and *f; 41 in X;
S1 < the isolating intervals of the positive zeros of _ f;11;
Sy « the isolating intervals of the positive zeros of *f; 1;
S — SlASQ;
Ly «— Ly U {([al, b1], ey [ai, bl], [C, d]) | [C, d] € S},

END FOR;

If L1 = 0 and Ly = 0, then RETURN(0);

If Ly =0and Ly # 0, then Ly « Lo, Ly «— 0, 1 — i+ 1;

STEP 3. (i=3s)
For each X € L;, compute G;(X) (1 < j <t), where G, is an interval evaluation of g;.
If sign(Gj, (X)) < 0 for some jo (1 < jo < t), delete X from Ly; If sign(Gj, (X)) = 0 for
some j; (1 < 71 <t), shrink X repeatedly until either sign(Gj;, (X)) < 0 or sign(Gj, (X))
> 0. Return the remaining elements in L;.

In Step 3 and the loop of Step 2 (S « S1AS:), we may have to shrink X repeatedly. The
following subalgorithm is for this end.

Subalgorithm: NSHR

INPUT: A cube X = ([a1,b1],-..,[ai,b;]) from NREALZERO and the regular TSA T

OUTPUT: A cube X’ C X such that z* € X', where * = (z3,...,z}) is the only solution of
{fi=0,...,fi=0}in X.

STEP 0. j « 0.

STEP 1. (j =0)

By the intermediate value theorem, we obtain an interval [a},bd}] C [ai1,b1] such that
z} € [a}, ;] and W([al,b}]) < (1/2)W ([a1,b1]). Then, let j « j+ 1, X’ «— ([a], b]]).
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STEP 2. (0 <j <)

Compute _ f;+1 and 7,41 with respect to X',

By the intermediate value theorem, compute an interval [a,b] C [aj+1,b;+1] such that
[a,b] contains the zero of _ f; 11 in [ajt1,b;+1] and W([a,b]) = (1/8)W ([aj4+1,bj4+1]);
Similarly, compute an interval [c,d] C [aj41,b;j+1] such that [c,d] contains the zero of
41 in (a1, b541] and W (e, d]) = (1/8)W ([aj+1, bj41]);

aj, < min(a,c), b; ; « max(b,d);

X' — (X' (@)1, 054)), 5 3+ 1.

STEP 3. (j =1) Output X'

Let us prove the correctness of Algorithm NSHR. Only Step 2 of NSHR needs some further
description. Let us denote _fj+1 and *f;11 with respect to X’ by _fi+1(X’) and *f;41(X’),
respectively. By Definition 3.1 and Theorem 2.1, the following relations hold for all ;41 €
(0, 400):

_fis1(X) <2 fi(X) < fia(els 25 z50) < (X)) < (X)),
_fia(X) <2 Fa (XD < fiaE g zi) < (X)) < L (XD,

On the other hand, from NREALZERO, _ f;;+1(X) is monotonic on [a;j41,b;41] and has only one
zero in it. So does *fj;1(X). Then, by the above relations, _ f;4+1(X’) and *f;;1(X’) are both
monotonic on [a;j+1,b;+1] and each of them has only one zero in the interval. The correctness of
NSHR is thus proved.

REMARK 3.2. In Step 2 of Algorithm NSHR, we use an empirical factor 1/8. Theoretically speak-
ing, the factor can be any rational number between zero and one.

4. EXAMPLES

Xia and Yang [6] proposed an incomplete algorithm for isolating the real solutions of a given
SAS and the algorithm is implemented as a Maple program realzero. Our new algorithm,
NREALZERO, has also been implemented as a Maple program which is called Nrealzero. In
general, for a SAS, the computation of Nrealzero consists of three main steps. First, transform
the system of equations into one or more systems in triangular form. Second, transform each
component into regular TSAs if necessary. Third, apply NREALZERO to each resulting regular
TSA.

By the new program, we recomputed all the six examples in [6]. For readers’ convenience, we
list the six systems in the appendix but refer the reader to [6] for detail. The following table
reports the performance of Nrealzero on those six examples.

Table 1.
Example No. Ex. 2 Ex. 3 Ex. 4 Ex. 5 Ex. 6 Ex. 7
Triangular Form 0.151 0.571 2.855 0.621 0.040 0.231
Regular TSA 0. 7.470 3.655 2.424 0.010 1.161
NREALZERO 0.120 0.511 0. 0.020 0.260 14.571
REALZERO 0.396 15.382 2.889 3.07 0.45 33.840

The first two steps of Nrealzero and realzero are the same. So, the data in the fourth
and fifth rows of the table show the difference in efficiency of these two algorithms. Obviously,
Nrealzero is faster than realzero.
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APPENDIX

ExXAMPLE 2. (Chemical reaction)
hy=2—"7Tz; +x2z0 — %(933 —1z;) =0,
hy = 6x; — 239 — 5(x4 — T2) =0,
hs =2 —Txs + x2z4 — %(931 —z3) =0,
hy = 6z3 — 2324 + 1+ %(1'2 —1x4) =0.
ExampLE 3. (Neural network)

fi=1—czx—azy? — 222 =0,
fa=1—cy—ya® —yz" =0,
fa=1—cz— 222 — 242 =0,
fa=8c5 43783 —27 =0,
c>0, 1—c>0.
ExaMPLE 4. (Cyclic 5)
pr=a+b+c+d+e=0,
pa =ab+bc+ cd+ de+ea=0,
p3 = abc + bed + cde + dea + eab = 0,
p4 = abcd + bede + cdea + deab + eabe = 0,
ps = abede — 1 = 0.
EXAMPLE 5.
p1=2r12-21—y1) +z2 —21 =0,
p2 =212(2 — 22 —y2) + 21 — 22 =0,
p3=2y1(5 — 1 —2y1) +y2 —y1 =0,
P4 =Yy2(3 =212 —4y2) +y1 —y2 =0,
z1 20, z2 20, y1 =0, y2 > 0.

EXAMPLE 6. (Solving geometric constraints)

f1=%—43(3—1)(s—b)(s—c):0,

1
f2=g—bC:O,
fa=2s—1-b—c=0,

b >0, c>0, b+c—1>0, 1+c¢c—-0>0, 1+b—c>0.
EXAMPLE 7.

hi=2?+y*—azy—1=0,

hy =y? + 2% —yz—a® =0,

hy=22+2% 226 —b%2 =0,

hy=a?—-14b-0>=0,

hs = 365 4 56b* — 1226 4 56b> + 3 = 0,

z >0, y >0, z>0, a—12>0, b—a>0, a+1-b0>0,

which is a special case of the “P3P” problem in computer vision.
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