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Abstract

Real solution classification of parametric polynomial systems is a crucial problem in real quantifier
elimination which interests Volker Weispfenning and others. In this paper, we present a stepwise
refinement algorithm for real solution classifications of a class of parametric systems consisting
of polynomial equations, inequalities and inequations. For an input system, the algorithm outputs
the necessary and sufficient conditions (in terms of quantifier-free formulae) on the parameters for
the system to have a given number of real solutions. Although the algorithm makes use of a pcad
algorithm, it is different from any existing methods.

1 Introduction

Let us begin with a simple example [MPV89]: Give the necessary and sufficient conditions
for the existence of a triangle with elemeat$, andR, wherea, hy andR are the side-length,
altitude, and circumradius, respectively. lbeaindc be the other two side-lengths aadhe

half perimeter, the problem is reduced to finding the necessary and sufficient conditions for
the following system to have real solutiorsst{ andc are viewed as variables aadch, andR
parameters).

py = a?h2 — 4s(s—a)(s—b)(s—c) =0,
p2 = 2Rh, —bc=0,

(AHR) : pz3=2s—a—b-c=0,
a>0b>0c>0a+b-c>0b+c—a>0,
c+a—b>0,R>0h; >0.

This is a problem of real quantifier elimination and the method of cylindrical algebraic
decomposition (cad) [Col75, McC88, CH91, Hong92, CJ98, McC99, Br00, Br01] is a well-
known tool for this kind of problems. Also, it is well-known that real quantifier elimination
is one of the main interests of Volker Weispfenning. He has made many contributes to this
field. See, for example, [Weis94, Weis97, DSW98a, DSW98b, DW00, SWO02].
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We want to obtain a quantifier-free solution formula which only consists of the signs of
polynomials ina,R andh,. So, we solve this problem in a different way as follows. First,
we compute the so-callgabrder polynomialsee next section for the definitioBP, of the
system. For this example,

BPaHr = aRhy(2R— a)(2R+ a)(8Rhy — 4h2 — a2) (8Rh, + 4h2 + a2).

An essential property of this polynomial is that the number of distinct real solutions of the
system (AHR) is invariant in each connected component of the complem&k/\gk = 0

in R3. If we discard the factors dPyur Which have no real roots under the constraints, we
need only to consider two factong; = 2R— a andg, = 8Rh, — 4h3 — a.

Generally speaking, the signs of the factor88fonly determine some necessary but not
sufficient conditions for the system under discussion to have real solutions. For this example,
on one handy; > 0is a necessary condition for the system (AHR) to have real solutions. On
the other hand, ih=1,R=1,h; = 2, thenqg; > 0 andg, < 0 and the system (AHR) has no
real roots. And, ifa=1,R=1hy = 1/10, theng; > 0 andg, < 0 also hold but the system
has four distinct real solutions. That is to say the necessary and sufficient conditions we want
can not be determined by the signs of the factorBRf,r.

Second, we multiphBP by some other polynomials to construct a new polynorRial
(see next section for details). For this example, we obtain

PSaHr = BPaHR - (a-+2ha) (a— 2h,) (4Rhy — &%) (4R + 8%).

And the signs of the factors &#S\yr determine the answer to the problem. In fact, letting
0z = 4Rhy — &, we obtained that the system (AHR) has real solutions if and only if

(A1 >0AG2>0) V (g1 >0A02 <0AG3<0).

Actually, because the number of distinct real solutions of the system is invariant in each
connected component of the complemerBBf= 0, we can obtain the so-calledal solution
classificatiorof the system, i.e., the necessary and sufficient conditions for the system to have
a given number of real solutions.

The rest of this paper is organized as follows. Section 2 introduces the definitions of
border polynomialanddiscrimination polynomiabf a given semi-algebraic systeraAs).

The idea of Section 2 suggests naturally an algorithm for real solution classificatiansf a
which will be described in Section 3. Section 4 comments on our present work.

2 Main ldea
we call
[[P], [Gal, [G2], [H]] 1)

a semi-algebraic syster(sAs for short), whereP,G1,G, andH denote{pi(x1,...,%n) =
0,...,ps(X1, .-, %) = 0}, {91(X1,.--;%n) > 0,....0r(X1,...,%) > O}, {Qr+1(X1,....%1) > O, ...,
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Ot (X1, ..,%) > 0} and {h1(Xq,...,Xn) # O,...,hm(Xa,...,%n) # O}, respectively. Heren,s >
1, r,t,m>0andpj, gj, h¢ are all polynomials irxy, ..., X, with integer coefficients. AAsis
called aparametricsAs if s< n (sindeterminates are viewed as independent variables and
the othem — sindeterminates parameters).

There exist several famous methods, such as the Ritt-Wu method, Grobner basis method
or subresultant method [Wu78, Buch85, YZH92, Wang98], which enable us to transform a
given equations into equations with special structures. Throughout this paper, we assume that
the parametrisas in the form of (1) can be transformed into one or more systems in the
form of

[[F],[Ga],[Ge],[H]] )

whereF = {f1(u,x1), fa(u,x1,X2), ..., fs(U, X1, X2, ..., Xs) } is anormal ascending chaify ZH92]
(or aregular chainby [Ka93] and aregular setby [Wang00]). We call a system in the form
of (2) aparametricTsA. In a future paper, we will discuss how to deal with generats in
the form of (1) by a method similar to that given in this paper.

For a given parametrisas defined by (1), letxs;1, ..., Xn) be denoted by = (uy, ..., ug)
and be viewed as parameters. @Ft= {qi(u) € Z[uy,---,uq]|1 <i <1} be a finite set of
polynomials in parameters ar@ denote the product of all the elements@f. For each
i (L<i<I)and each connected componéntf the complement of = 0 in RY, sign(q;)
is invariant inC and is not zero. Fon € C, we call [sign(gs(u)), ..., sign(q; (u))] the sign of
C. Obviously, each connected component of the compleme@t-ef0 has a unique sign but
two different components may have the same sign (Scositireof a component is generally
different from thedefining formuleaof the component).

Theorem 1 Let a parametricSAS S be given. Suppose a polynomial Q in u satisfies that

(a) the number of distinct real solutions of S is invariant in each connected component of
the complement of @ 0in RY and

(b) if two components, £and G, have the same sign, the number of distinct real solutions
of SinG equals thatof Sing

If we only consider the complement of=€0 in the parametric space, the necessary and
sufficient conditions for S to have exactly N distinct real solution(s) can be expressed by the
signs of the factors of Q. If Q satisfies item (a) only, then some necessary conditions for S to
have exactly N distinct real solution(s) can be expressed by the signs of the factors of Q.

Although Theorem 1 seems obvious, it provides an idea for determining the real solution
classification of asAs. In the rest of this section, we discuss how to construct a polynomial
in parameters satisfying the two conditions of Theorem 1 for a given pararsasic

Given a polynomiaf and a triangular seftfy, fo, ..., fs}, we define

regq; fi,..., f1) =req--- (reqreqq, fi,x), fi—1,%-1),...), f1,x1),

whereregp,q,X) is the Sylvester resultandf p and g with respect tox. Let the leading
coefficient and the discriminant of a polynomifalwith respect tox be denoted byc(f,x)
anddis(f,x), respectively.
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Definition 2 For a parametricsA T, we define

BPr =BP= |C(f1,X1) . dIS( fl,X1)~
Ma<i<sresle(fi,x) - dis(fi,x); fi_1,..., f1)- 3)
Mi<j<tresg;; fs, ..., f1)-
Mi<k<mresh; fs, ..., f1),

and call it theborder polynomiabf T. A TsA is regularif BP # 0.

Remark 3 For aregulamsa T, if we only consider the complementBP=0in RY, T can
be regarded as a system in the fornj[&f,[ ], [G],[]], i.e.,

f1(u,x1) =0, ..., fs(U, xq, ..., Xs) =0, @)
gl(u7X17"'3XS) > 0; "'7gt(u7xlv"'aXS) > 0
becauseeqgj; fs, ..., f1) # 0 andregh; fs, ..., f1) # 0 imply thatg; # 0 andhy # 0 at the
solutions of{ f; = 0,...., fs = 0}.

Remark 4 We gave an algorithm [YHX01] for decomposing angA (or SAS) into regular
TSAs based on the so-called RSD algorithm [YZH92]. So, we mainly discuss on raguaar
in the form of (4).

Supposdy : [[FY],[1,[G],[]] and T, : [[F@],[],[G],[]] are two regular parametritsAs

in the form of (4). Ifr; = reg fl(l), fl(z),xl) is a nonzero integeil; andT, have no common
solutions. Otherwise;,; = 0 is a necessary and sufficient condition fé?') and f1<2) to have

common roots irC. Let
ri= gcd(res(fi<1); fi(z), s f1<2>),res(fi(2>; fim,..., f1(1>)) (2<i<y)

andCPi2 = ged(ry, ..., rs). Without loss of generality, we can assume @&, # 0 because
that case can be removed by the RSD algorithm [YZH92C R, £ 0, T, and T, have no
common solutions.

Suppose a parametrigAs Sis transformed equivalently to regulasas Ti,...,T;, for
every pair of(T;,T;) (i # j), we can comput&R; analogously and then defir@Rs =

Mi<i<j<1 CRj.

Definition 5 If a parametricsAs Sis transformed equivalently to regutesAs Ty, ..., Ty, then
BRs=CRs-[]\_, BP;, is called theborder polynomiabf S.

Theorem 6 If T is a regularTsa, then BP satisfies item (a) in Theorem 1 for the system T.

BR; satisfies item (a) in Theorem 1 for a parameies S.
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Supposey(x) and f(x) = agx" +a;x"1 4 --- 4 a, are two real polynomials angx) =
rem(f'g, f,x) = box" 1 4+ byx""2 4 ... 4 by_1. The following 2n x 2n matrix is called the
generalized discrimination matriof f(x) with respect tay(x) and denoted bPiscr(f,g).

a a a -+ an
0 bp by -+ by
4 a1 -+ @n-1 an
0 b0 bn—2 bn—l
aQ a a - 8n
0 bp by - bpg |

Let Do = 1 and denote by1,Dy,- - - ,Dy, the even order principal minors Bfiscr(f,g).
We call[Dg,Dy,--- ,Dp] the generalized discriminant sequenegf (x) with respect tag(x)
and denote it bysDL(f,Q).

Theorem 7 [GLRR89, YHZ96, Yang99] et two real polynomials () and gx) be given.

(&) The number of distinct real zeros of f is determined by the signs of polynomials in
GDL(f,1);

(b) The number of distinct real solutions of = 0,g > 0} is determined by the signs of
polynomials inGDL(f,1) andGDL(f,q).

The above theorem can be obtained from the theory of subresultants. The main idea of
the proof is to establish the relations between the elemen®@Dif(f,g) and the leading
coefficients of polynomials in standard Sturm sequenciearid fg'. According to the above
theorem, the real root classification{of = 0,g > 0} is determinedxplicitly by the signs of
polynomials inGDL(f,1) andGDL(f,Q).

LetA={A|1 <i <} be a nonempty, finite set of polynomials. We define

msetA) = {1} U{A A, A J1<k<1<ii<ip<---<ig <1}
Given aregularsa T in the form of (4), we define
Psi1={01,02,---.a}; Pi= |J GDL(fi,q), fori=s--- 1,
qemsetPi 1)
whereP; is the set consisting of all the polynomials in e&&BL(f;,q) for g € msefPi1).

Definition 8 We denote the product of all element$inby DPr or DP if the meaning is clear
and call it thediscrimination polynomiadf T. Itis clear thaBPr dividesDPy. If a parametric
SAs Sis transformed equivalently to regul@sas Ty, ..., T, thenDPs = CRs- ﬂ!:l DFPy. is
called thediscrimination polynomiabf S.

Theorem 9 If T is a regularTsA in the form of(4), then DR satisfies the two conditions of
Theorem 1 for the system T. P&atisfies the two conditions of Theorem 1 for a parametric
SASS.
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3 The Algorithm

By Theorems 6 and 9, it is natural to propose a stepwise refinement algorithm as follows for
real solution classification of a given paramesics S.

Step 1. We discuss the complemenB&t = 0 of the parametric space. LES= BRs. It
is natural to employ a PCAD algorithm to obtain sample points in each connected component
of the complement oPS= 0 and compute the number of distinct real solutionSeat each
sample point. Then, we compute thignof each component. Note that thefining formula
of a cell by PCAD may be very complex while tisegn of the cell is usually simple. If the
second property of Theorem 1 are not satisfied by the pré&®mthoose some polynomials
(factors) fromDPs, multiply PSby these polynomials and repeat the above procedure. Obvi-
ously, the procedure will terminate within a finite steps (at most wi®#a: DPs) and output
the real solution classification &when the parameter is in the complemenB&§ = 0.

Step 2. LeBF% be the set of irreducible factors B andR(uy, ..., ug) € BR%. We denote
by SRthe new parametrisAs formed by addingR = 0 into S. Regarding(uz, X1, ...,Xs) as
variables anduy, ...,uq) parameters, we can compute the border polynoBfak(us, ..., Ug).
Thus, we can take use of a procedure similar to Step 1 to obtain the real solution classifica-
tion of Swhen the parameters satidR= 0 andBRsg# 0. We can call this procedure again,
inputting the systensRand a new “boundaryQ € BR, to obtain the real solution classi-
fication of Swhen the parameters are Bn= 0 andQ = 0 providedBRsro# 0. It is easy to
see that we can repeat this procedure, adding a new “boundary” each time, until the complete
classification of real solutions &on R= 0 is obtained. Note that, at the final stage, if the
equations in the parametefs;, ...,uq) give only a finite points ifRY, we need to call an
isolation algorithm [XY02] to isolate the real solutions of the system.

Now, combining Steps 1 and 2, we have a stepwise refinement algorithm for the complete
classification of real solutions of a parametsies in RY. For the complement d8P = 0 in
the parametric space, Step 1 is enough and the solution formula only consists of the signs of
some parametric polynomials. BfP = 0 need to be considered, the real root8&f= 0 is
needed of course.

The algorithm has been implemented as a Maple program “DISCOVERER” which com-
puted many examples including the one in Section 1 of the present paper. Interested readers
may request the code from the second author.

4 Conclusions

For a semi-algebraic systersAs) satisfying some conditions, we define the border poly-
nomial and discrimination polynomial and present an effective algorithm for real solution
classification of the system. It is not difficult to generalize the algorithm to deal with other
types ofsass such as the Whiteney Umbrella problem and the Solotareff problem. That will
be clarified in a future paper.
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