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Abstract

Real solution classification of parametric polynomial systems is a crucial problem in real quantifier
elimination which interests Volker Weispfenning and others. In this paper, we present a stepwise
refinement algorithm for real solution classifications of a class of parametric systems consisting
of polynomial equations, inequalities and inequations. For an input system, the algorithm outputs
the necessary and sufficient conditions (in terms of quantifier-free formulae) on the parameters for
the system to have a given number of real solutions. Although the algorithm makes use of a pcad
algorithm, it is different from any existing methods.

1 Introduction

Let us begin with a simple example [MPV89]: Give the necessary and sufficient conditions
for the existence of a triangle with elementsa,ha andR, wherea,ha andRare the side-length,
altitude, and circumradius, respectively. Letb andc be the other two side-lengths ands the
half perimeter, the problem is reduced to finding the necessary and sufficient conditions for
the following system to have real solutions (s,b andc are viewed as variables anda,ha andR
parameters).

(AHR) :





p1 = a2h2
a−4s(s−a)(s−b)(s−c) = 0,

p2 = 2Rha−bc= 0,
p3 = 2s−a−b−c = 0,
a > 0,b > 0,c > 0,a+b−c > 0,b+c−a > 0,
c+a−b > 0,R> 0,ha > 0.

This is a problem of real quantifier elimination and the method of cylindrical algebraic
decomposition (cad) [Col75, McC88, CH91, Hong92, CJ98, McC99, Br00, Br01] is a well-
known tool for this kind of problems. Also, it is well-known that real quantifier elimination
is one of the main interests of Volker Weispfenning. He has made many contributes to this
field. See, for example, [Weis94, Weis97, DSW98a, DSW98b, DW00, SW02].
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We want to obtain a quantifier-free solution formula which only consists of the signs of
polynomials ina,R andha. So, we solve this problem in a different way as follows. First,
we compute the so-calledborder polynomial(see next section for the definition),BP, of the
system. For this example,

BPAHR = aRha(2R−a)(2R+a)(8Rha−4h2
a−a2)(8Rha +4h2

a +a2).

An essential property of this polynomial is that the number of distinct real solutions of the
system (AHR) is invariant in each connected component of the complement ofBPAHR = 0
in R3. If we discard the factors ofBPAHR which have no real roots under the constraints, we
need only to consider two factors:q1 = 2R−a andq2 = 8Rha−4h2

a−a2.
Generally speaking, the signs of the factors ofBPonly determine some necessary but not

sufficient conditions for the system under discussion to have real solutions. For this example,
on one hand,q1≥ 0 is a necessary condition for the system (AHR) to have real solutions. On
the other hand, ifa = 1,R= 1,ha = 2, thenq1 > 0 andq2 < 0 and the system (AHR) has no
real roots. And, ifa = 1,R= 1,ha = 1/10, thenq1 > 0 andq2 < 0 also hold but the system
has four distinct real solutions. That is to say the necessary and sufficient conditions we want
can not be determined by the signs of the factors ofBPAHR.

Second, we multiplyBP by some other polynomials to construct a new polynomialPS
(see next section for details). For this example, we obtain

PSAHR = BPAHR · (a+2ha)(a−2ha)(4Rha−a2)(4Rha +a2).

And the signs of the factors ofPSAHR determine the answer to the problem. In fact, letting
q3 = 4Rha−a2, we obtained that the system (AHR) has real solutions if and only if

(q1 ≥ 0∧q2 ≥ 0) ∨ (q1 ≥ 0∧q2 ≤ 0∧q3 ≤ 0).
Actually, because the number of distinct real solutions of the system is invariant in each

connected component of the complement ofBP= 0, we can obtain the so-calledreal solution
classificationof the system, i.e., the necessary and sufficient conditions for the system to have
a given number of real solutions.

The rest of this paper is organized as follows. Section 2 introduces the definitions of
border polynomialanddiscrimination polynomialof a given semi-algebraic system (SAS).
The idea of Section 2 suggests naturally an algorithm for real solution classification of aSAS,
which will be described in Section 3. Section 4 comments on our present work.

2 Main Idea

we call
[[P], [G1], [G2], [H]] (1)

a semi-algebraic system(SAS for short), whereP,G1,G2 and H denote{p1(x1, ...,xn) =
0, ..., ps(x1, ...,xn) = 0}, {g1(x1, ...,xn) ≥ 0, ...,gr(x1, ...,xn) ≥ 0}, {gr+1(x1, ...,xn) > 0, ...,
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gt(x1, ...,xn) > 0} and {h1(x1, ...,xn) 6= 0, ...,hm(x1, ...,xn) 6= 0}, respectively. Here,n,s≥
1, r, t,m≥ 0 andpi , g j , hk are all polynomials inx1, ...,xn with integer coefficients. ASAS is
called aparametricSAS if s< n (s indeterminates are viewed as independent variables and
the othern−s indeterminates parameters).

There exist several famous methods, such as the Ritt-Wu method, Gröbner basis method
or subresultant method [Wu78, Buch85, YZH92, Wang98], which enable us to transform a
given equations into equations with special structures. Throughout this paper, we assume that
the parametricSAS in the form of (1) can be transformed into one or more systems in the
form of

[[F ], [G1], [G2], [H]] (2)

whereF = { f1(u,x1), f2(u,x1,x2), ..., fs(u,x1,x2, ...,xs)} is anormal ascending chain[YZH92]
(or a regular chainby [Ka93] and aregular setby [Wang00]). We call a system in the form
of (2) aparametricTSA. In a future paper, we will discuss how to deal with generalSASs in
the form of (1) by a method similar to that given in this paper.

For a given parametricSAS defined by (1), let(xs+1, ...,xn) be denoted byu = (u1, ...,ud)
and be viewed as parameters. LetQ∗ = {qi(u) ∈ Z[u1, · · · ,ud]|1≤ i ≤ l} be a finite set of
polynomials in parameters andQ denote the product of all the elements ofQ∗. For each
i (1≤ i ≤ l) and each connected componentC of the complement ofQ = 0 in Rd, sign(qi)
is invariant inC and is not zero. For̄u∈C, we call [sign(q1(ū)), ...,sign(ql (ū))] thesignof
C. Obviously, each connected component of the complement ofQ = 0 has a unique sign but
two different components may have the same sign (So, thesignof a component is generally
different from thedefining formulaof the component).

Theorem 1 Let a parametricSAS S be given. Suppose a polynomial Q in u satisfies that

(a) the number of distinct real solutions of S is invariant in each connected component of
the complement of Q= 0 in Rd and

(b) if two components, C1 and C2, have the same sign, the number of distinct real solutions
of S in C1 equals that of S in C2.

If we only consider the complement of Q= 0 in the parametric space, the necessary and
sufficient conditions for S to have exactly N distinct real solution(s) can be expressed by the
signs of the factors of Q. If Q satisfies item (a) only, then some necessary conditions for S to
have exactly N distinct real solution(s) can be expressed by the signs of the factors of Q.

Although Theorem 1 seems obvious, it provides an idea for determining the real solution
classification of aSAS. In the rest of this section, we discuss how to construct a polynomial
in parameters satisfying the two conditions of Theorem 1 for a given parametricSAS.

Given a polynomialq and a triangular set{ f1, f2, ..., fs}, we define

res(q; fi , ..., f1) = res(· · ·(res(res(q, fi ,xi), fi−1,xi−1), ...), f1,x1),

whereres(p,q,x) is the Sylvester resultantof p and q with respect tox. Let the leading
coefficient and the discriminant of a polynomialf with respect tox be denoted bylc( f ,x)
anddis( f ,x), respectively.
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Definition 2 For a parametricTSA T, we define

BPT = BP= lc( f1,x1) ·dis( f1,x1)·
∏2≤i≤sres(lc( fi ,xi) ·dis( fi ,xi); fi−1, ..., f1)·
∏1≤ j≤t res(g j ; fs, ..., f1)·
∏1≤k≤mres(hk; fs, ..., f1),

(3)

and call it theborder polynomialof T. A TSA is regular if BP 6≡ 0.

Remark 3 For a regularTSA T, if we only consider the complement ofBP= 0 in Rd, T can
be regarded as a system in the form of[[F ], [ ], [G], [ ]], i.e.,

{
f1(u,x1) = 0, ..., fs(u,x1, ...,xs) = 0,
g1(u,x1, ...,xs) > 0, ...,gt(u,x1, ...,xs) > 0

(4)

becauseres(g j ; fs, ..., f1) 6= 0 andres(hk; fs, ..., f1) 6= 0 imply that g j 6= 0 andhk 6= 0 at the
solutions of{ f1 = 0, ..., fs = 0}.

Remark 4 We gave an algorithm [YHX01] for decomposing anyTSA (or SAS) into regular
TSAs based on the so-called RSD algorithm [YZH92]. So, we mainly discuss on regularTSAs
in the form of (4).

SupposeT1 : [[F(1)], [ ], [G], [ ]] andT2 : [[F(2)], [ ], [G], [ ]] are two regular parametricTSAs

in the form of (4). Ifr1 = res( f (1)
1 , f (2)

1 ,x1) is a nonzero integer,T1 andT2 have no common

solutions. Otherwise,r1 = 0 is a necessary and sufficient condition forf (1)
1 and f (2)

1 to have
common roots inC. Let

r i = gcd(res( f (1)
i ; f (2)

i , ..., f (2)
1 ), res( f (2)

i ; f (1)
i , ..., f (1)

1 )) (2≤ i ≤ s)

andCP12 = gcd(r1, ..., rs). Without loss of generality, we can assume thatCP12 6≡ 0 because
that case can be removed by the RSD algorithm [YZH92]. IfCP12 6= 0, T1 andT2 have no
common solutions.

Suppose a parametricSAS S is transformed equivalently to regularTSAs T1, ...,Tl , for
every pair of(Ti ,Tj) (i 6= j), we can computeCPi j analogously and then defineCPS =
∏1≤i< j≤l CPi j .

Definition 5 If a parametricSASS is transformed equivalently to regularTSAsT1, ...,Tl , then
BPS = CPS·∏l

i=1BPTi is called theborder polynomialof S.

Theorem 6 If T is a regularTSA, then BP satisfies item (a) in Theorem 1 for the system T.
BPS satisfies item (a) in Theorem 1 for a parametricSAS S.
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Supposeg(x) and f (x) = a0xn + a1xn−1 + · · ·+ an are two real polynomials andr(x) =
rem( f ′g, f ,x) = b0xn−1 + b1xn−2 + · · ·+ bn−1. The following 2n× 2n matrix is called the
generalized discrimination matrixof f (x) with respect tog(x) and denoted byDiscr( f ,g).




a0 a1 a2 · · · an

0 b0 b1 · · · bn−1

a0 a1 · · · an−1 an

0 b0 · · · bn−2 bn−1

· · · · · ·
· · · · · ·
a0 a1 a2 · · · an

0 b0 b1 · · · bn−1




Let D0 = 1 and denote byD1,D2, · · · ,Dn the even order principal minors ofDiscr( f ,g).
We call [D0,D1, · · · ,Dn] thegeneralized discriminant sequenceof f (x) with respect tog(x)
and denote it byGDL( f ,g).

Theorem 7 [GLRR89, YHZ96, Yang99]Let two real polynomials f(x) and g(x) be given.
(a) The number of distinct real zeros of f is determined by the signs of polynomials in

GDL( f ,1);
(b) The number of distinct real solutions of{ f = 0,g > 0} is determined by the signs of

polynomials inGDL( f ,1) andGDL( f ,g).
The above theorem can be obtained from the theory of subresultants. The main idea of

the proof is to establish the relations between the elements ofGDL( f ,g) and the leading
coefficients of polynomials in standard Sturm sequence off and f g′. According to the above
theorem, the real root classification of{ f = 0,g > 0} is determinedexplicitlyby the signs of
polynomials inGDL( f ,1) andGDL( f ,g).

Let A = {Ai |1≤ i ≤ l} be a nonempty, finite set of polynomials. We define

mset(A) = {1}∪{Ai1Ai2 · · ·Aik|1≤ k≤ l ,1≤ i1 < i2 < · · ·< ik ≤ l}.
Given a regularTSA T in the form of (4), we define

Ps+1 = {g1,g2, · · · ,gt}; Pi =
⋃

q∈mset(Pi+1)

GDL( fi ,q), for i = s, · · · ,1,

wherePi is the set consisting of all the polynomials in eachGDL( fi ,q) for q∈mset(Pi+1).

Definition 8 We denote the product of all elements inP1 byDPT orDP if the meaning is clear
and call it thediscrimination polynomialof T. It is clear thatBPT dividesDPT . If a parametric
SAS S is transformed equivalently to regularTSAs T1, ...,Tl , thenDPS = CPS ·∏l

i=1DPTi is
called thediscrimination polynomialof S.

Theorem 9 If T is a regularTSA in the form of(4), then DPT satisfies the two conditions of
Theorem 1 for the system T. DPS satisfies the two conditions of Theorem 1 for a parametric
SAS S.
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3 The Algorithm
By Theorems 6 and 9, it is natural to propose a stepwise refinement algorithm as follows for
real solution classification of a given parametricSAS S.

Step 1. We discuss the complement ofBPS = 0 of the parametric space. LetPS= BPS. It
is natural to employ a PCAD algorithm to obtain sample points in each connected component
of the complement ofPS= 0 and compute the number of distinct real solutions ofSat each
sample point. Then, we compute thesignof each component. Note that thedefining formula
of a cell by PCAD may be very complex while thesignof the cell is usually simple. If the
second property of Theorem 1 are not satisfied by the presentPS, choose some polynomials
(factors) fromDPS, multiply PSby these polynomials and repeat the above procedure. Obvi-
ously, the procedure will terminate within a finite steps (at most whenPS= DPS) and output
the real solution classification ofSwhen the parameter is in the complement ofBPS = 0.

Step 2. LetBP∗S be the set of irreducible factors ofBPS andR(u1, ...,ud)∈BP∗S. We denote
by SRthe new parametricSAS formed by addingR= 0 into S. Regarding(u1,x1, ...,xs) as
variables and(u2, ...,ud) parameters, we can compute the border polynomialBPSR(u2, ...,ud).
Thus, we can take use of a procedure similar to Step 1 to obtain the real solution classifica-
tion of Swhen the parameters satisfyR= 0 andBPSR 6= 0. We can call this procedure again,
inputting the systemSRand a new “boundary”Q∈ BP∗SR, to obtain the real solution classi-
fication ofSwhen the parameters are onR= 0 andQ = 0 providedBPSRQ 6= 0. It is easy to
see that we can repeat this procedure, adding a new “boundary” each time, until the complete
classification of real solutions ofS on R= 0 is obtained. Note that, at the final stage, if the
equations in the parameters(u1, ...,ud) give only a finite points inRd, we need to call an
isolation algorithm [XY02] to isolate the real solutions of the system.

Now, combining Steps 1 and 2, we have a stepwise refinement algorithm for the complete
classification of real solutions of a parametricSAS in Rd. For the complement ofBP= 0 in
the parametric space, Step 1 is enough and the solution formula only consists of the signs of
some parametric polynomials. IfBP= 0 need to be considered, the real roots ofBP= 0 is
needed of course.

The algorithm has been implemented as a Maple program “DISCOVERER” which com-
puted many examples including the one in Section 1 of the present paper. Interested readers
may request the code from the second author.

4 Conclusions
For a semi-algebraic system (SAS) satisfying some conditions, we define the border poly-
nomial and discrimination polynomial and present an effective algorithm for real solution
classification of the system. It is not difficult to generalize the algorithm to deal with other
types ofSASs such as the Whiteney Umbrella problem and the Solotareff problem. That will
be clarified in a future paper.
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