
Preliminaries

Filled function . . .

Filled function . . .

Filled function . . .

Numerical examples

Home Page

Title Page

JJ II

J I

Page 1 of 46

Go Back

Full Screen

Close

Quit

Filled Function Methods for Global Optimization
Problems

Zhiyou Wu

School of Mathematics and Computer Science

Chongqing Normal University



Preliminaries

Filled function . . .

Filled function . . .

Filled function . . .

Numerical examples

Home Page

Title Page

JJ II

J I

Page 2 of 46

Go Back

Full Screen

Close

Quit

Outline
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• Filled function methods for unconstrained global
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• Filled function methods for constrained global
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• Filled function methods for nonlinear equa-
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1. Preliminaries

Consider the following global optimization problem:

(GP ) min f (x)

x ∈ X,

where f : Rn → R is continuous and X ⊂ Rn.

• If X = Rn, then problem (GP ) is an unconstrained

global optimization problem.

• If X ⊂ Rn, especially

X := {x ∈ Rn | gi(x) ≤ 0, i = 1, . . . ,m},

then problem (GP ) is a constrained global optimiza-

tion problem.
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• For problem (GP ), there exist many mature local op-

timization methods to obtain a local minimizer x∗ in

literature.

• Our aim is to find a global minimizer.

• Among all the different types of global optimization

algorithms available in the literature, one popular ap-

proach is called modified function method.

• Filled function method is a typical modified function

method.

• The main idea of filled function method is as follow-

ings.

Let x∗ be a local minimizer and not a global minimizer

of problem (GP ). Then construct a filled function

px∗(x) at x∗ such that
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1◦. the local minimizer x∗ of problem (GP ) is a strictly

local maximizer of function px∗(x) on X ;

2◦. we can escape the current point x∗ to obtain a

better point by solving the filled function prob-

lem minx∈X px∗(x) via using some local methods.

See the Figure.

• How to construct a good filled function to satisfy the

above conditions?

• This talk will introduce some new filled functions and

some new filled function methods for global optimiza-

tion problems and nonlinear equations.

• References:

[WLZY ]: Z.Y. Wu, H.W.J. Lee, L.S. Zhang and X. M.

Yang, A novel filled function method and quasi-
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filled function method for global optimization, Jour-

nal of Computational Optimization and Applica-

tions, 34(2), 249-272, 2005.

[WHBY ]: Z.Y. Wu, H.W.J. Lee, F.S. Bai and Y.J. Yang, A

filled function methods for constrained global op-

timization, Journal of Global Optimization,39(4),

495-507, 2007.

[WMBY ]: Z.Y. Wu, M. Mammadov, F.S. Bai and Y.J.

Yang, A Filled Function Method for Nonlinear Equa-

tions, Applied Mathematics and Computation, 189,

1196-1204, 2007.



Preliminaries

Filled function . . .

Filled function . . .

Filled function . . .

Numerical examples

Home Page

Title Page

JJ II

J I

Page 7 of 46

Go Back

Full Screen

Close

Quit

2. Filled function method for unconstrained global opti-

mization problems

Consider the following unconstrained programming prob-

lem:

(UGP ) min f (x)

s.t. x ∈ Rn,

where f (x) is continuously differentiable on Rn.

• Reference [WLZY ] propose a new filled function for

problem (UGP ). To introduce this new filled function,

we need two auxiliary functions.

O Let
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fr(t) =


t + r t ≤ −r

r − 2

r3
t3 +

r − 3

r2
t2 + 1, −r < t ≤ 0

1 t > 0

.

(2.1)

gr(t) =


0, t ≤ −r

− 2

r3
t3 − 3

r2
t2 + 1, −r < t ≤ 0

1, t > 0

.

(2.2)

– Functions fr(t) and gr(t) are continuously differ-

entiable on R, see Figure 2.1 and Figure 2.2.
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O Let

Hq,r,x∗(x) = q

(
exp(−‖x− x∗‖2

q
)gr

(
f (x)− f (x∗)

)
+fr

(
f (x)− f (x∗)

))
, (2.3)

where r > 0, q > 0 are parameters, x∗ is the

current local minimum and exp(.) is an exponential

function.

• Function Hq,r,x∗ has the following properties:

� Suppose x∗ is a local minimizer of problem (UGP ),

then x∗ is a strictly local maximizer of Hq,r,x∗(x)

on Rn for any r > 0, q > 0.

� Any local minimizer x̄ of Hq,r,x∗(x) on Rn satisfies

that f (x̄) < f (x∗).
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� Suppose that x∗ is not a global minimizer of prob-

lem (UGP ). Let

L = {x̄ | x̄ is local minimizer satisfying f (x̄) < f (x∗)}.

Then for any x̄ ∈ L, x̄ is a local minimizer of

Hq,r,x∗(x) on Rn when the parameters r satisfies

some conditions.

� From above properties, we know that: x∗ is a

strictly local maximizer of Hq,r,x∗(x) on Rn

and if x∗ is not a global minimizer of prob-

lem (UGP ), then any local minimizer x̄

of Hq,r,x∗(x) on Rn is a better point, i.e.,

f (x̄) < f (x∗). Thus, function Hq,r,x∗(x) is a filled

function of problem (UGP ) at x∗.

• Using the given filled function Hq,r,x∗(x), we can design
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a global optimization method for problem (UGP ).

Algorithm 1: Filled function method for

Problem (UGP ):

Step 0. Let k0 be a positive number and let ei, i = 1, · · · , k0

almost uniformly distribute over the unit sphere

B = {x ∈ Rn | ‖x‖ = 1}. Let M be a very large

number and µ be a very small number. Choose an

initial point x0
1 ∈ Rn. Set k := 1.

Step 1. Let x∗k be a local minimizer of problem (UGP )

starting from x0
k. Set i := 1 and take a positive

number δ0 > 0, let δ := δ0.

Step 2. Let x̄∗k = x∗k + δei. If f (x̄∗k) < f (x∗k), then set

x0
k+1 := x̄∗k, k := k + 1 and go to Step 1 ; other-

wise, go to Step 3.
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Step 3. Let

Hq,r,x∗k
(x) = q

(
exp(−‖x− x∗k‖2

q
)gr

(
f (x)− f (x∗k)

)
+fr

(
f (x)− f (x∗k)

))
,

where gr(t) and fr(t) are decided by (2.2) and

(2.1), respectively. Solve the problem:

min Hq,r,x∗k
(x) (2.4)

x ∈ Rn

by a local search method starting from the point

x̄∗k. If we can find a local minimizer y∗k, then we

have that f (y∗k) < f (x∗k), then let x0
k+1 := y∗k

and goto step 1; otherwise, goto Step 4. We have

two cases: one is that problem (2.4) has no local
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minimizer, then x∗k is already a global minimizer;

another one is that (2.4) has local minimizer, but

we can not find them, then we need to change the

direction ei,or change the parameters q or r.

Step 4. If i < k0, then let i := i + 1, go to Step 2 ;

otherwise, go to Step 5.

Step 5. If q < M and r > µ, increase q and decrease r;

otherwise, go to Step 6.

Step 6. Stop and x∗k is a global minimizer of problem (UGP ).
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Figure 2.1: The behavior of fr(t) with r = 0.5, 0.4 and 0.3, respectively
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Figure 2.2: The behavior of gr(t) with r = 0.5, 0.4 and 0.3, respectively
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3. Filled function method for constrained global

optimization problems

Consider the following constrained global optimization prob-

lems:

(CGP ) min f (x) (3.1)

s.t. gi(x) ≤ 0, i = 1, . . . ,m

x ∈ X,

where f : X → R, gi : X → R, i = 1, 2, . . . ,m, are

continuously differentiable on X , X is a box.

• Let

S = {x ∈ X | gi(x) ≤ 0, i = 1, . . . ,m},
S◦ = {x ∈ intX | gi(x) < 0, i = 1, . . . ,m},

where intA denotes the interior of set A.
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Assumption 1. Assume that S◦ 6= ∅, clS◦ = S,

where clA denotes the closure of set A.

� By Assumption 1, we know that for any x0 ∈ S, there

exists a sequence {xn} ⊂ S◦, such that lim
n→∞

xn = x0.

• Reference [WHBY ] proposes a filled function method

to solve problem (CGP ). Here we also need the fol-

lowing two auxiliary functions.

M For r > 0, c > 0, let

fr,c(t) =


c, t ≥ 0

−2c

r3
t3 − 3c

r2
t2 + c, −r < t ≤ 0

0, t ≤ −r

,

(3.2)
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hr(t) =


t + 2 t ≥ 0

r − 4

r3
t3 +

2r − 6

r2
t2 + t + 2 −r < t < 0

0 t ≤ −r

.

(3.3)

M Let

pr,c,q,x∗(x) =
1

‖x− x∗‖2 + 1
fr,c

(
hr

(
f (x)− f (x∗)

)
+

m∑
i=1

hr
q

(
gi(x)

)
− 2r

)
, (3.4)

where c > 0, r > 0 and q > 0 are parameters.

� The term
∑m

i=1 hr
q

(
gi(x)

)
is used to penalize the

unfeasible points. The term hr

(
f (x)− f (x∗)

)
is

used to penalize the points x which satisfy that
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f (x) ≥ f (x∗). So here the function pr,c,q,x∗(x) is

not only a filled function, but also a penalty func-

tion for problem (CGP ).

M Function pr,c,q,x∗(x) has the following properties.

∗ If x∗ is a local minimizer of problem (CGP ),

then for any c > 0, q > 0 and 0 < r ≤ 1, x∗ is

a strictly local maximizer of pr,c,q,x∗(x) on X.

∗ For any x ∈ X with x 6= x∗, if ∇pr,c,q,x∗(x) =

0, then f (x) < f (x∗) and x ∈ S.

∗ When r ≤ 1, any local minimizer x̄ of pr,c,q,x∗(x)

on X satisfies that

f (x̄) < f (x∗) and x̄ ∈ S,

or

x̄ is a vertex of X.

∗ If x∗ is not a global minimizer of problem (CGP ),
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then there exist r0 > 0, q0 > 0 and x̄ ∈ S◦,

such that x̄ is a local minimizer of pr,c,q,x∗(x) on

X and f (x̄) < f (x∗) when r ≤ r0 and q ≥ q0.

• By the given filled function pr,c,q,x∗(x), the local op-

timization methods for constrained problem (CGP )

and the local optimization methods for the uncon-

strained filled function problems(with only box con-

straint): minx∈X pr,c,q,x∗(x), we can obtain the follow-

ing global optimization method for problem (CGP ).

Algorithm 2: Filled function method for

Problem (CGP ):

Step 0. a). Choose a small positive numbers µ, and a large

positive number M . Choose a positive integer

number K and directions e1, . . . , eK . Choose the

initial values q1, c1, and r1 for the parameters q, c,
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and r, respectively.

b). Choose an initial point x0
1 ∈ X(here x0

1 may not be

a feasible point), then use penalty function meth-

ods to find the first local minimizer x∗1 of the orig-

inal problem (CGP ). Let k := 1, j := 1 and

λ := 1, and go to Step 1.

Step 1. Let

prk,ck,qk,x∗k
(x) =

1

‖x− x∗k‖2 + 1
frk,ck

(
grk

(
f (x)− f (x∗k)

)
+

m∑
i=1

grk
qk

(
gi(x)

)
− 2rk

)
,

(3.5)

where fr,c(t) and gr(t) are defined in (3.2) and (3.3)

respectively. Go to Step 2.
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Step 2. If j ≤ K, choose a nonnegative λ with λ ≤ 1 such

that yj
k := x∗k +λej ∈ X, and go to Step 3 ; otherwise,

go to Step 5.

Step 3. Search for a local minimizer of the following filled func-

tion problem starting from yj
k:

min
x∈X

prk,ck,qk,x∗k
(x). (3.6)

Let x̄∗k be an obtained local minimizer of problem (4.3).

If x̄∗k satisfies f (x̄∗k) < f (x∗k) and x̄∗k ∈ S, then let

x0
k+1 := x̄∗k, k := k + 1, and go to Step 4; otherwise,

let j := j + 1 and go to Step 2.

Step 4. Find a local minimizer x∗k of the original constrained

problem (CGP ) by local search methods starting from

x0
k. Go to step 1.

Step 5. If qk ≤ M , increase qk and let j := 1, go to Step 1 ;
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otherwise, go to Step 6.

Step 6. If ck ≤ M , increase ck and let qk := q1, j := 1, go to

Step 1 ; otherwise, go to Step 7.

Step 7. If rk ≥ µ, decrease rk and let let ck := c1, qk := q1,

go to Step 1 ; otherwise, stop and x∗k is a global min-

imizer or an approximate global minimizer of problem

(CGP ).
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4. Filled function method for Nonlinear Equa-

tions

Consider the following nonlinear equations:

(NE) F (x) = 0

x ∈ X,

where F : Rn → Rn is continuous and X ⊂ Rn.

• The typical methods for solving (NE) are optimization-

based methods in which (NE) is reformulated as an

optimization problem.

• The most popular optimization-based methods involve

solving the following optimization problem (OP ) to
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find solutions of equations (NE).

(OP ) min ϕ(x) :=
1

2
‖F (x)‖2

2

s.t. x ∈ X.

♥ If (NE) exists a solution in X, then x̄ ∈ X is

a solution of (NE) if and only if x̄ is a global

optimal solution of problem (OP ) with the zero

optimal value.

♥ Generally, the traditional optimization-based meth-

ods for solving nonlinear system (NE) are fre-

quently stuck at a stationary point or a local min-

imizer of the corresponding optimization problem,

which is not necessarily a solution of the original

system.

♥ Recently, great efforts have been made to over-

come the difficulty caused by non-global minimiz-
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ers.

♥ Reference: (C. Kanzow, “Global optimization tech-

niques for mixed complementarity problems,” Jour-

nal of Global Optimization, vol. 16, pp. 1-21,

2000) incorporated two well-known global optimiza-

tion algorithms, namely a tunneling method and

a filled function method, into a standard nons-

mooth Newton-type method to solve an uncon-

strained nonsmooth nonlinear system (NE) which

is a reformulation of the mixed complementarity

problem.

♥ Reference [WMBYE] proposes a new filled function

method to solve nonlinear equations (NE) with

box constraint. Here I will introduce this method.

First, we need several definitions.

N A point x ∈ X is said to be a vertex of box X
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if x = λx1 + (1 − λ)x2 with x1, x2 ∈ X and

λ ∈ (0, 1) implies that x = x1 = x2.

N Definition of Filled Function for (NE): A

continuously differentiable function Px∗(x) is said

to be a filled function of (NE) at a point x∗ with

ϕ(x∗) > 0, if:

1◦ x∗ is a strict local maximizer of Px∗(x) on X;

2◦ Any local minimizer x̄ of Px∗(x) on X satisfies

ϕ(x̄) <
ϕ(x∗)

2
or x̄ is a vertex of X ;

3◦ Any local minimizer x̄ of problem (OP ) with

ϕ(x̄) ≤ ϕ(x∗)
4 is a local minimizer of Px∗(x) on

X;

4◦ Any x̄ ∈ X with ∇Px∗(x̄) = 0 implies ϕ(x̄) <
ϕ(x∗)

2 .
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F Note that in the definition of filled function for

(NE), it is not necessary to require that x∗ is a

local minimizer of optimization problem (OP ). It

just needs that ϕ(x∗) > 0

N Construct a Filled Function for (NE): Using

the two auxiliary functions gr(t) and fr(t) defined by

(2.2) and (2.1), for a given x∗ ∈ X with f (x∗) > 0,

let

Ψq,x∗(x) =
1

‖x− x∗‖2 + 1

(
gϕ(x∗)

4

(
ϕ(x)− ϕ(x∗)

2

))
+ q fϕ(x∗)

4

(
ϕ(x)− ϕ(x∗)

2

)
. (4.1)

• Function Ψq,x∗(x) has the following proper-

ties:

M Let ϕ(x∗) > 0, q > 0. Then x∗ is a strict global
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maximizer of Ψq,x∗(x) on X.

M Let ϕ(x∗) > 0, q > 0. Any local minimizer x̄ of

Ψq,x∗(x) on X satisfies

ϕ(x̄) <
ϕ(x∗)

2
or x̄ is a vertex of X.

M Let ϕ(x∗) > 0, q > 0. Assume that system (NE)

has a solution. Then any local minimizer x̄ ∈ X of

problem (OP ) on X with ϕ(x̄) < ϕ(x∗)
4 is a local

minimizer of Ψq,x∗(x) on X.

M Let ϕ(x∗) > 0. Then any point x̄ ∈ X \{x∗} with

∇Ψq,x∗(x̄) = 0 implies that ϕ(x̄) < ϕ(x∗)
2 .

F Function Ψq,x∗(x) is a filled function of (NE). Us-

ing this filled function, we can obtain the following

method to solve (NE).
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Algorithm 3: Filled Function Method for

Nonlinear equations (NE):

Step 0. Choose small positive numbers µ, δ and a large

positive number M (such as, we take µ = 10−10, δ =
1
25 and M = 1010). Choose a positive integer num-

ber K and directions e1, . . . , eK (such as, we take

K = 2n and ei, i = 1, . . . , K, are the coordinate

directions). Choose an initial value q0 for the pa-

rameter q (such as, we take q0 = 10). Let x0 ∈ X

be a given initial point and let k := 0. If f (x0) ≤ µ,

then let x∗k := x0 and go to Step 6. Otherwise, let

q := q0 and go to Step 1.

Step 1. Solve problem (OP ) starting from xk using some

local optimization methods. Let x∗k be a local min-

imizer. If ϕ(x∗k) ≤ µ, go to Step 6; otherwise, set

i := 1 and take a positive number δ0 > 0, let
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δ := δ0.goto Step 2.

Step 2. Let x̄∗k = x∗k + δei. If f (x̄∗k) < f (x∗k), then set

xk+1 := x̄∗k, k := k + 1 and go to Step 1 ; other-

wise, go to Step 3.

Step 3. Construct the following filled function

Ψq,x∗k
(x) =

1

‖x− x∗k‖2 + 1

(
gf(x∗

k
)

4

(
ϕ(x)− ϕ(x∗k)

2

))
+q ff(x∗

k
)

4

(
ϕ(x)− ϕ(x∗k)

2

)
, (4.2)

where gr(t) and fr(t) are defined by (2.2) and

(2.1), respectively. Solve the problem

min
x∈X

Ψq,x∗k
(x). (4.3)

by a local search method starting from the point

x̄∗k. Let y∗k be a local minimizer. If f (y∗k) < f (x∗k),
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then let xk+1 := y∗k, k := k + 1, goto Step 1;

otherwise, goto Step 4.

Step 4. If i < K, then let i := i + 1, go to Step 2 ;

otherwise, go to Step 5.

Step 5. If q < M and r > µ, increase q and decrease r;

otherwise, go to Step 6.

Step 6. Stop. x∗k is a solution or a µ-approximate solution

of (NE).
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5. Numerical examples

EX1. Rastrigin (n = 2)

min fR(x) = x2
1 + x2

2 − cos(18x1)− cos(18x2)

(5.1)

s.t. −2 ≤ xi ≤ 2, i = 1, 2.

♦ From Figure 5.3, we see that there are many local

minima of this problem.

♦ Table 1 gives the numerical results obtained by Al-

gorithm 1 [2] for problem (5.1).

♦ From Table 1, we see that the first local mini-

mizer of problem (5.1) from the first initial point

x0
1 = (1, 1)T is x∗1 = (1.0408, 1.0408). By the

filled function, we find other several initial points:
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Table 1: Results for Rastrigin by QFFM

k x0
k x∗k f(x∗k) δ, ei, q, r x̄q,r,x∗

k
1 (1, 1) (1.0408, 1.0408) 0.1798

1/24, e1, 105, 1 (1.1241, 1.0408)
2 (1.1241, 1.0408) (0.3469, 1.0408) −0.7890

1/24, e1, 105, 1 (0.7132, 1.0407)
3 (0.7132, 1.0407) (−0.0000, 1.0408) −0.9101

1/24, e1, 105, 1 (0.7515, 1.0405)
4 (0.7515, 1.0405) (0.0000, 0.6938) −1.5156

1/24, e1, 105, 1 (0.7512, 0.6936)

5 (0.7512, 0.6936) 1.0× 10−6(0.1434,−0.3560) −2.0000
for any ei, i = 1, · · · , 2n

q ≤ 1010

and r ≥ 10−10
x̄q,r,x∗

k

x̄q,r,x∗
k

x∗k+1 f(x∗k+1) ≥ −2.0000

x0
2 − x0

5, then we obtain other several local min-

imizers x∗2 − x∗5 of problem (5.1). The x∗5 is the

approximate global minimizer of problem (5.1) ob-

tained by Algorithm 1 in request of the precision

µ = 10−10 (since for any ei, q, r, we can not find

better point, the point x∗5 is the global minimizer).

♦ Reference [R1974]: Rastrigin, L., Systems of Ex-

tremal Control, Nauka, Moscow, 1974. also ob-
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tained the same global minimizer.

EX2. Two-dimensions Shubert III function (n =

2) (Shubert, 1972)

min fS(x) =

(
5∑

i=1

i cos[(i + 1)x1 + i]

)

·

(
5∑

i=1

i cos[(i + 1)x2 + i]

)
+
[
(x1 + 1.42513)2 + (x2 + 0.80032)2

]
s.t. −10 ≤ xi ≤ 10, i = 1, 2. (5.2)

♦ From Figure 5.4, we see that there are many lo-

cal minima of this problem (there are about 760

minimums).
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Table 2: Results for Shubert III function by QFFM

k x0
k x∗k f(x∗k) δ, ei, , q, r x̄q,r,x∗

k
1 (1, 1) (−0.8017, 2.7818) −25.0600

1/24, e1, 105, 1 (−1.4136, 2.2210)
2 (−1.4136, 2.2210) (−1.4251, 2.2950) −28.0619

1/24, e1, 105, 1 (−1.4251,−0.8003)
3 (−1.4251,−0.8003) (−1.4251,−0.8003) −186.7309

for any ei, i = 1, · · · , 2n

q ≤ 1010

and r ≥ 10−10
x̄q,r,x∗

k

x̄q,r,x∗
k

x∗k+1 f(x∗k+1) ≥ −186.7309

♦ Table 2 gives the numerical results obtained by Al-

gorithm 1 [2] for the Two-dimensions Shu-

bert III function.

♦ From Table 2, we see that the first local mini-

mizer of problem (5.2) from the first initial point

x0
1 = (1, 1)T is x∗1 = (−0.8017, 2.7818). By the

filled function, we find other two initial points: x0
2

and x0
3, then we obtain other two local minimiz-

ers x∗2 and x∗3 of problem (5.2). The x∗3 is the



Preliminaries

Filled function . . .

Filled function . . .

Filled function . . .

Numerical examples

Home Page

Title Page

JJ II

J I

Page 37 of 46

Go Back

Full Screen

Close

Quit

global minimizer of problem (5.2) obtained by Al-

gorithm 1 in request of the precision µ = 10−10,

which is the same as the global minimizer given by

other references.

EX3. (Test Problem 14.1.1 in [1])

4x3
1 + 4x1x2 + 2x2

2 − 42x1 − 14 = 0

4x3
2 + 2x2

1 + 4x1x2 − 26x2 − 22 = 0

−5 ≤ x1, x2 ≤ 5 (5.3)

♦ There are 9 known solutions for this nonlinear equa-

tions as shown in [1] (Table 3):

Table 3: Known solutions for Example (5.3)

x1 -3.7793 -3.0730 -2.8051 -0.2709 -0.1280 0.0867 3.0 3.3852 3.5844
x2 -3.2832 -0.0814 3.1313 -0.9230 -1.9537 2.8843 2.0 0.0739 -1.8481



Preliminaries

Filled function . . .

Filled function . . .

Filled function . . .

Numerical examples

Home Page

Title Page

JJ II

J I

Page 38 of 46

Go Back

Full Screen

Close

Quit

♦ Table 4 records the numerical results of solving Ex-

ample (5.3) by Algorithm 3 [4].

Table 4: Numerical results for Example 5.3

k xk local minimizer x∗k f(x∗k) F (x∗k)

0
(

1.0000
3.0000

) (
−2.8046
3.1308

)
3.0123× 10−3

(
3.2415× 10−2

−4.4289× 10−2

)
1

(
−2.8049
3.1308

) (
−2.8051
3.1313

)
3.3845× 10−9

(
3.0661× 10−5

−3.0454× 10−5

)
0

(
−5.0000
−3.0000

) (
−0.2707
−0.9232

)
3.8212× 10−5

(
−5.9582× 10−3

1.6470× 10−3

)
1

(
−0.2708
−0.9232

) (
−0.2708
−0.9230

)
6.0267× 10−13

(
−3.1757× 10−7

7.0839× 10−7

)

♦ It is clear that two solutions are obtained by our

algorithm starting from two different initial points.
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EX4. (Test Problem 14.1.2 in [1])

x1x2 + x1 − 3x5 = 0

2x1x2 + x1 + 3R10x
2
2 + x2x

2
3 + R7x2x3

+R9x2x4 + R8x2 −Rx5 = 0

2x2x
2
3 + R7x2x3 + 2R5x

2
3 + R6x3 − 8x5 = 0

R9x2x4 + 2x2
4 − 4Rx5 = 0

x1x2 + x1 + R10x
2
2 + x2x

2
3 + R7x2x3 + x2

4

+R9x2x4 + R8x2 + R5x
2
3 + R6x3 − 1 = 0

0.0001 ≤ xi ≤ 100, i = 1, . . . , 5,

(5.4)

where

R = 10 R5 = 0.193

R6 = 4.10622× 10−4 R7 = 5.45177× 10−4

R8 = 4.4975× 10−7 R9 = 3.40735× 10−5

R10 = 9.615× 10−7.

♦ The known solution of Example (5.4) as shown in
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[1] is

(0.003431, 31.325636, 0.068352, 0.859530, 0.036963)T .

♦ Table 5 records the numerical results of solving Ex-

ample (5.4) by Algorithm 3 [4].

♦ Here, we find another different approximate solu-

tion for Example (5.4).

Table 5: Numerical results for Example (5.4)

k xk local minimizer x∗k f(x∗k) F (x∗k)

0

0BBB@
26.0000

10.0000× 10−5

6.0000
10.0000
10.0000

1CCCA
0BBB@

10.0000× 10−5

10.0000× 10−5

2.5706
4.7886
0.4109

1CCCA 1423.4870

0BBB@
−1.2325
−4.1078
−0.7338
29.4271
23.2078

1CCCA

1

0BBB@
10.0000× 10−5

10.0000× 10−5

2.5706
4.7888
0.5119

1CCCA
0BBB@

1.1153× 10−2

9.3500
0.1243
0.8579

3.6804× 10−2

1CCCA 3.3798× 10−5

0BBB@
5.0180× 10−3

−2.6706× 10−3

1.2161× 10−3

9.2324× 10−6

−8.4303× 10−5

1CCCA
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EX4. (Test Problem 14.1.3 in [1])

104x1x2 − 1 = 0

exp(−x1) + exp(−x2)− 1.001 = 0

5.49× 10−6 ≤ x1 ≤ 4.553

2.196× 10−3 ≤ x2 ≤ 18.21

(5.5)

♦ The known solution of Example (5.5) as shown in

[1] is (1.450× 10−5, 6.8933353).

♦ Table 6 records the numerical results of solving Ex-

ample (5.5) by Algorithm 3 [4].

♦ Another two different solutions for Example (5.5)

are obtained by Algorithm 3.
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Table 6: Numerical results for Example (5.5)

k xk x∗k f(x∗k) F (x∗k)

0
(

4.5000
18.0000

) (
5.7220× 10−6

16.8750

)
1.1847× 10−3

(
−3.4405× 10−2

−1.0057× 10−3

)
1

(
5.7873× 10−6

16.8692

) (
5.9893× 10−6

16.8692

)
1.0810× 10−4

(
1.0348× 10−2

−1.0060× 10−3

)
2

(
5.9474× 10−6

16.9709

) (
5.9158× 10−6

16.8700

)
5.0373× 10−6

(
−2.0063× 10−3

−1.0059× 10−3

)
3

(
5.9320× 10−6

16.8547

) (
5.9896× 10−6

16.6939

)
1.0206× 10−6

(
−9.2582× 10−5

−1.0060× 10−3

)
0

(
1.0000
1.0000

) (
2.1964× 10−3

2.1960× 10−3

)
1.8951

(
−0.9518
0.9946

)
1

(
3.2049× 10−5

3.1447

) (
3.0075× 10−5

3.3296

)
1.2113× 10−3

(
1.3975× 10−3

3.4776× 10−2

)
2

(
2.2287× 10−5

4.4847

) (
2.2132× 10−5

4.5175

)
9.7922× 10−5

(
−1.7902× 10−4

9.8939× 10−3

)
3

(
1.5358× 10−5

6.5332

) (
1.4184× 10−5

7.0500

)
2.1563× 10−8

(
−2.8178× 10−7

−1.4684× 10−4

)
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Figure 5.3: The behavior of Rastrigin
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Figure 5.4: The behavior of two-dimension Shubert III function
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