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1. The Problem
• Given h(x) = 0/f(x, y) = 0/f(x, y, z) = 0, to determine the topology of the point-

set/curve/surface.

• Give trustworthy meshing or approximation to the point-set/curve/surface.

• Trustworthy: correct topology and with arbitrary precision.

A degree six algebraic curves
Challenge: Deal with singularities
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Examples of Topology Determination
•h(x)=0: Real root isolation.

•f(x,y)=0: Meshing/Polygonization

•g(x,y,z)=0: Meshing/Polyhedronization
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Related Work
CAD(Cylindrical Algebraic Decomposition) + Adjacency ⇒ Topology
(Collins G., Arnon P., McCallum S., Hong H., et al)
(Adjacency: Kozen and Yap, 1985; Prill, 1988; McCallum, 2002)

• Curves:

– Hong, H., (MCS) 1996: plane curves

– Gonzalez-Vega, L. and El Kahoui, M. (CAGD) 2002: plane curves

– Gatellier G. et all, (MEGA) 2004: spatial curves

– Alcazar J.G. and Sendra J.R., (JSC) 2005: spatial curves

– Eigenwillig A., Kerber M. and Wolpert N., (ISSAC) 2007: plane algebraic curves.
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Related Work (continued)
• Surfaces:

– Marching cube: non-singular. Snyder, 1992; Plantinga and Vegter, 2004.

– Morse theory: non-singular and orientable. Ni & Hart, 1998, 2004; Fortuna et al,
2004.

– Delaunay triangulation: non-singular. Boissonnat and Oudot, 2003, Cheng, Dey et
al, 2004.

– Projection: general surface. Mourrain B. and Tecourt J.P., 2005.
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2. Algebraic Curves
Main Steps of Projection Method

Projection. Project the “critical points” f(x, y) = fy(x, y) = 0 to the x-axis.

Compute resultant h = Resl(f, fz).

Isolate roots of h(x) = 0: α0 < α1 < · · · < αs.

Lifting. Find the “critical points” Pi,j = (αi, βj).

Isolate roots for triangular systems: h(x) = 0, f(x, y) = 0.

Adjacency Determination. Determine whether Pi,j connects Pi+1,k: ei,j,k = Pi,jPi+1,k.

Determine the topology graph: {Pi,j, ei,j,k}.
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Key Issues

• Root Isolation for triangular sys-
tems: part 4.

• Adjacency determination: a new
approach is given.

Existing algorithms:
generic position, Habit-Sturm
like sequence computation.

How near is enough? (Hong, 96)
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Determining the Adjacency
Segregating Box: B = [a, b]× [c, d]:

• B is an isolating box for P .

• Line segments {a ≤ x ≤ b, y = c} and {a ≤ x ≤
b, y = d} have intersections with f(x, y) = 0.

Lemma. B = [a, b]× [c, d] is a segregating box. Then
L#(P ) = # of roots f(a, y) = 0 inside (c, d).
R#(P ) = # of roots f(b, y) = 0 inside (c, d).
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Segregating Box
Segregating Box: B = [a, b]× [c, d]:

• B is an isolating box for P .

• Line segments {a ≤ x ≤ b, y = c} and {a ≤ x ≤
b, y = d} have intersections with f(x, y) = 0.

• Notation: f(B)

• an interval containing {f(x, y) | a ≤ x ≤
b, c ≤ y ≤ d}.

• f(B) → 0 when |B| → 0.

• The Algorithm

• Fix c and d.

• While f([a, b], c) contains zero, refine the iso-
lation interval (a, b) of the root α of f(x) = 0.

• Since f(α, c) 6= 0, this procedure will end.
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Determining topology without changing to
generic positions
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Application: Rational Quadratic Approxima-
tion of Algebraic Curves
Implicitization: rational curves =⇒ implicit curves.

Methods: Groebner base, CS, resultant and moving curves and surfaces

Problems: large coefficients, self-intersecion, etc

Solution: approximate implicitization

Parametrization: implicit curves =⇒ rational curves.
Possible only for genus g = 0.
Solution: approximate parametrization

Rational Conics: low degree and well known.

Our Approach. Rational (Quadratic) Approximation with correct topology.
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I. Curve Division
To divide the curve into triangle convex segment

Triangle convex: (P0P2, S) is convex.
Shoulder point SP : maximal distance to P0P2.

P2

P1

P0 P2

P1

P0 P2P0
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1. Topology Determination

2. Segments Combination
Delete Simple Points and Ordinary Singularities

3. Further Division at Flexes
Flex: non-singular, H(f) = 0.

4. Tangent Directions Computation
Flexes, Vertical Points, Singularities: (Zeng, 2003)
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II. Segments Approximation with RQBC
Approximation Triangle Convex Segments with RQBC

1. Shoulder point computation (Newton method)
2. Shoulder point approximation

Triangle convex curve segmentS[P0, T0, P2, T2]

2.1 P1 = (P0, T0)
⋂

(P1, T1)

2.2 B(t) = P0φ0(t)+ωP1φ1(t)+P2φ2(t)
φ0(t)+ωφ1(t)+φ2(t)

, 0 ≤ t ≤ 1

2.3 ω : minω d(Sp, B(1/2) (close form solution)

2.4 if e(C, B(t)) > δ, divide at SP and repeat.
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III. Curve Tracing and B-spline Generation
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Tracing order: V5V0V4V7V5V2V4V9V5

B-spline generation: knot selection, global C1
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Experimental Results

x4 + x2y2 − 2x2y − xy2 + y2 = 0
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y8 + y7 − (8 + 7x)y6 − (7− 21x2)y5 − (−20− 35x + 35x3)y4−
(−14 + 70x2 − 35x4)y3 − (16 + 42x− 70x3 + 21x5)y2−
(7− 42x2 + 35x4 − 7x6)y + 7x− 14x3 + 7x5 − x7 = 0,
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Experimental Results

Comparison of our results with results in Bajaj and Xu (97)

Results.

1. High accuracy with a few segments

2. Maintenance of sharp points and with correct topology
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3. Algebraic Surfaces
Represent the topology of S : f(x, y, z) = 0 by a polyhedron: (V , E ,F)

• Vertices(V): Singular points, boundary points and some auxiliary points (regular points).

• Edges(E): Singular curve segments, boundary curve segments, and some auxiliary curve
segments whose endpoints are inside V .

• Surfaces(F): Surface Patch of S without singularities except for their boundaries, whose
boundaries are inside E .

Adjacency Information:

• Vertices-Edges: How many curve segments connect to a vertex?

• Edges-Surfaces: How many surface patches connect to a curve segments?
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Basic Steps
• PROJECTION

f(x, y, z) 7−→ g(x, y) = Resl(f, fz, z)

• TOPOLOGY DETERMINATION of plane curve g(x, y) = 0 and TRIANGULATION of
plane region.

• LIFTING

plane points 7−→ spatial points;

plane curve segments 7−→ spatial curve segments;

plane regions (cells) 7−→ spatial surface patches

• ADJACENCY INFORMATION

– Vertices-Edges: Add (P, C) to the topology polyhedron.

– Edges-Surfaces: Add (C, S) to the topology polyhedron.
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Example. Consider the surface:

S : f(x, y, z) = (y2 + z2 − x2 + 1/2 · x3 − 4)2 − 16 · x2 + 8 · x3 = 0.
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Project S to the XY -plane to obtain the projection curve C : g(x, y) = 0.
Determine the topology of C.

Points: {P0, P1 · · ·}
Curve Segments: {C0,1, C1,3, · · ·}
Cells: {E0, E1, · · ·}
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Lifting the plane critical points to spatial critical points

Determine the spatial curve segment

Example: Spatial curve lifted from P3P1.
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# of curves originating from V3,0 = # of intersections of line (x, y) = P 1
1,3 and S.

If P 1
1,3 is close enough to P3?

Using segregating box.
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Determine the surface patch of S.
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# of surfaces originating from P0B3 = # of intersections of line (x, y) = P−1
1,3 and S.
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Mesh the surface with correct topology
Subdivide until the precision is satisfied
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Intrinsic topology of surfaces
Combine any two surface patches which have a common non-singular intersection.

Example. The four finial surface patches of S.

Euler characteristic: χ1 = 0, χ2 = 0, χ3 = 1, χ4 = 1.

Number of the close boundaries: β1 = 0, β1 = 2, β1 = 1, β1 = 1.

Connection Information: V0,1: the isolated singular point of S. L1: the singular curve of S.
B1, B2: the closed boundary curve segments of S.
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4. Root-isolating for Triangular Systems
Problem:
Find an isolating box I = [a1, b1] × · · · × [an, bn] under a given precision ε for each real root
ξ of a triangular system Fn:

f1(x1) = 0, . . . , fn(x1, . . . , xn) = 0

• maxn
j=0{bj − aj} ≤ ε.

• ξ ∈ I and ξ is the unique root of Fn in I .

• I ∩ J = ∅, I, J both are isolating boxes of real roots of Fn.

Motivation:
In CAD computation and topology determination of algebraic surfaces, we need to find zeros
of triangular systems with multiple roots (Lazard, Mega 2007; Mourrain, Mega 2007).
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Related Work
• For univariate polynomials with coefficients in R

– C.B. Soh and C.S. Berger, Strict aperiodic-property of polynomials with perturbed
coefficients, IEEE Transactions on Automatic Control, 1989.

– A. Eigenwillig et al, A descartes algorithm for polynomials with bit stream coefficients,
CASC 2005, LNCS 3718, 2005.

• For triangular systems

– G.E. Collins et al, interval arithmetic methods and Descartes’ method, Journal of Sym-
bolic Computation, 2002.

– B. Xia and L. Yang, resultant computation, Journal of Symbolic Computation, 2002.

– Z. Lu et al, sleeve polynomials, Proceedings of International Workshop on Symbolic-
Numeric Computation, 2005.

These methods require the system to be square-free, regular. And they can not deal with
multiple roots directly.
Our method can deal with any zero-dimensional triangular system, including the system
with multiple roots, directly.
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The Idea
• Solving triangular system ⇒ Solving univariate polynomial in R[x]

Given triangular system Fn := {f1, . . . , fn}
For each root (ξ1, . . . , ξi) of Fi, solve xi+1 with fi+1(ξ1, . . . , ξi, xi+1) = 0(i = 1, . . . , n−1)

• Solving univariate polynomial in R[x] ⇒ Solving univariate polynomial in Q[x]

For f(x) ∈ R[x], construct sleeve (Lu, et al) fu(x), fd(x) ∈ Q[x] such that

fd(t) < f(t) < fu(t).

Real roots isolation of f ⇒ Real roots isolation of fd, fu.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Sleeve-Evaluation Inequality
Sleeve Bound: SBI(f

u, fd) , sup{fu(x)− fd(x) : x ∈ I = [a, b]}.
Evaluation Bound: EBI(f) := inf{|f(x)| : x ∈ zero(f ′)∪ {a, b} \ zero(f)}, x ∈ I},where
zero(g) := {x : g(x) = 0}.
Lemma. When the sleeve-evaluation inequality holds:

SBI(f
u, fd) < EBI(f),

all the real roots of f are isolated by the real roots of fu or fd.
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Odd Root Isolation
Lemma. Interval Jj = (t2j, t2j+1) is an isolating interval of f when

t2j ∈ zero(fu) and t2j+1 ∈ zero(fd).
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Problems for Even Roots Isolation

For even root, we need Monotonicity Property:

∂fu

∂x
≥ ∂f

∂x
≥ ∂fd

∂x
holds in I
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Even Root Isolation
Lemma. Interval (t2j, t2j+1) is an isolating interval of f iff

∂fu

∂x has a real zero in (t2j−1, t2j+1) when t2j, t2j+1 ∈ zero(fd).
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Triangular System
1. How to construct sleeve?

2. How to compute sleeve bound and evaluation bound?

3. How to ensure monotonicity property?
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Constructing Sleeve & Monotonicity Property
Let f ∈ Z[x1, . . . , xn], then f = f+ − f−, where f+, f− ∈ Z+[x1, . . . , xn].
Jξ = [a1, b1]×· · ·×[an−1, bn−1] is an isolating box for the zero ξ = (ξ1, . . . , ξn−1) of Fn−1 = 0,
when ai ≥ 0, bi ≥ 0, we have the sleeve (Lu, et al)

fu(x) := fu
n (Jξ, x)= f+

n (b1, . . . , bn−1, x)− f−n (a1, . . . , an−1, x),

fd(x) := fd
n(Jξ, x)= f+

n (a1, . . . , an−1, x)− f−n (b1, . . . , bn−1, x)

for
f(x) := fn(ξ, x)= fn(ξ1, . . . , ξn−1, x).

• Monotonicity property ∂fu

∂x (x) ≥ ∂f
∂x(x) ≥ ∂fd

∂x (x) is true directly.

• fu(x)− fd(x) is monotonously increasing, so, when I = [a, b],

SBI(f
u, fd) = fu(b)− fd(b).
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Computing Evaluation Bound
Let F̄n := {f1, . . . , fn−1,

∂fn(x1,...,xn−1,xn)
∂xn

, Y − fn(x1, . . . , xn−1, xn)}.

• Yap’s bound:

The evaluation bound EB(Fn) of Fn = {f1, . . . , fn}:

EB(Fn) ≥ (23/2NK)−D 2−(n+1)d1···dn,

where K := max{
√

n + 2, ‖f1‖2, . . . , ‖fn−1‖2, ‖Y − fn‖2, ‖∂fn

∂xn
‖2},

N :=

(
1 +

∑n+1
i=1 di

n + 1

)
, D := (1 +

n+1∑
i=1

1

di
)

n+1∏
i=1

di,

di = deg(fi) for i = 1, . . . , n− 1, dn = deg(∂fn

∂xn
), dn+1 = deg(Y − fn).

• Resultant Computation:

en = resX(Y − fn,
∂fn

∂X
), ei = resxi

(ei+1, fi), i = n− 1, . . . , 1,

where resx(p, q) is the resultant of p and q relative to x. Thus e1 ∈ Z[Y ], we have

EB(Fn) := min{|z| : e1(z) = 0, z 6= 0}.
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Experimental Results
Triangular system (f1, f2, . . . , fn), precision is 2−10.
Timings collected on a PC with a 3.2G CPU and 512M memory.

TYPE:= (degx1
(f1), degx2

(f2), . . . , degxn
(fn)).

NT is the number of tested triangular systems.
TIME is the average running time for each triangular system in seconds.
NS is the average number of real solutions for each triangular system.
NE is the average number of terms in each polynomial.
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The column NM gives the average number of multiple roots for the tested triangular systems.
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Without Using Evaluation Bound
Lemma. Let (fu, fd) be a sleeve of f , [a, b] an odd candidate interval of f , then [a, b] is an
isolating interval of f if fu, fd both are monotonous in [a, b].
Furthermore, if f is squarefree, then for each root ξ of f = 0, there exists an interval I

containg ξ such that fu, fd are monotonous in I .

Monotonous of a function f(x) on an interval I can be efficiently checked with f(I) > 0.
This avoids the computation of Sturm sequence.
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Conclusion
1. We give an algorithm to determine a topologically correct meshing for algebraic curves

and surfaces without changing them to generic positions.

2. We can approximate algebraic curves with RQBS curve which has the same topology as
the original curve.

3. The main computation tool: a complete algorithm for root isolation of triangular systems
using interval arithmetics.
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Thanks!


