Program Verification by Reduction to
Semi-Algebraic System Solving

Naijun ZHAN
Lab. of Comp. Sci., Institute of Software, CAS, China

znjOios.ac.cn

(With Yinghua Chen, Bican Xia, Lu Yang and Chaochen Zhou)

1

b L d e Y

OUTLINE

Motivation

Theories and Tools on Semi-Algebraic Systems
Semi-Algebraic Transition Systems

Polynomial Invariant Generation

Polynomial Ranking Function Discovering
Computing Reachable Set of Linear Hybrid Systems
Complexity Analysis

Conclusion

OUTLINE

MOTIVATION

Invariant Generation and Termination Analysis
=» Termination analysis and invariant generation play a central role in
program verification, also are thought as the most challenging parts of
program verification.

Reachability Computation
=»> How to design correct embedded systems is a big challenge for
computer scientists and control theorists.
=» From a computer scientist’s point of view, that is how to guarantee the
correctness of embedded software.
=» Verification of embedded systems can be reduced to reachability
computation.

MOTIVATION

Related Work on Invariant Generation

-» Limited success in the past attempts
German and Wegbreit [IEEE TSE 1(1)], Karr [Acta Inf. 6], Katz and Manna [CACM 19(4)]
-» Based on Abstract Interpretation
e Incomplete
e Possibly producing weak invariants
e Cousot [VMCAIO5], Cousot and Halbwachs [POPL78]
=» Based on the Technique of Linear Algebra
e Polynomials of bounded degree as invariants of programs with
affine assignments
e M. Mller-Olm and H. Seidl, [SAS02]
-> Based on Ideal Theory
e Completeness
e invariants represented as a conjunction of polynomial equations
e Rodriguez-Carbonell and Kapur [JSC 42, SCP64(1)]

MOTIVATION 4

=> Based on Grobner Bases
e Completeness

e invariants represented as a conjunction of polynomial equations
e Rodriguez-Carbonell and Kapur [ISSAC04], Sankaranarayanan, Sipma
and Manna [POPL04]
=» Based on First-Order Quantifier Elimination
e More expressive invariants, but high complexity,
e Kapur [ACA04]

MOTIVATION

Related Work on Termination Analysis

->

Kats & Manna 1975 [CACM 19(4)]

Generate and solve constraint systems for linear ranking functions,
over linear loop with affine assignments

Colén & Sipma 2001, 2002 [TACAS01,CAV02]

Synthesis of linear ranking functions for linear loops.

Podelski & Rybalchenko 2005 [VMCAIO5]

Complete method for linear ranking functions over linear loops with
one transition and without an initial condition.

Bradley, Manna & Sipma 2005 [CAV05,CONCURO05]

Complete method for lexicographic linear ranking functions over linear
loops.

Bradley, Manna & Sipma 2005 [VMCAI05]

Incomplete but efficient method for synthesis of polynomial ranking
functions over polynomial loops.

Cousot 2005 [VMCAIO5]

Incomplete but efficient method for synthesis of polynomial ranking
functions over polynomial loops.

MOTIVATION

=» Bradley, Manna & Sipma 2005 [ICALP05]
Complete and efficient method for synthesis of lexicographic linear
polyranking functions over linear loops.

=» Gupta, Henzinger, Majundar, Rybalchenko & Xu 2008 [POPLO0S8]
A method to search counterexamples to termination that are infinite
program executions.

Related Work on Decidability of State Reachability
=» Timed Automaton Alur and Dill, [TCS 126]
=> Multi-rate Automata Alur et al, [TCS 138]
=»> Rectangular Hybrid Automata Henzinger et al, [JCSS 57(1)]

=» O-Minimal Hybrid Systems Lafferriere, Pappas and Sastry
[UCB/ERL M98/29]

MOTIVATION

Summary

=» Applying the theories and tools of computer algebra to program
verification has made great success

=» High complexity of computer algebra algorithms forms the bottleneck
of such approaches

Challenges in Program Verification through Computer Algebra

Challenging Problem: To invent more powerful approaches with low
complexity to program verification is still a challenging problem.

MOTIVATION

Overview

=» Goal: Applying techniques on solving semi-algebraic systems to
program verification, in particular, to automatic synthesis of more
expressive invariants and ranking functions, and computing reachable

set of linear hybrid systems
e Non-linear ranking functions

e Invariants represented as semi-algebraic systems
e Over polynomial programs and linear hybrid systems
=» Our Solution:
e Reduce these problems to semi-algebraic systems solving
e Then utilize our theories and tools on semi-algebraic systems to
solve the resulted problems
=» Our Contributions:
e A complete and efficient method for invariant synthesis, which can
be used to generate more expressive invariants
e A similar method for non-linear ranking function discovering
e Improvement of the efficiency of reachability computation of linear
hybrid systems

MOTIVATION

THEORIES AND TOOLS ON SEMI-ALGEBRAIC SYSTEMS (SASS)
First-Order Quantifier Elimination

< E.g. Jz.az” + bx + ¢ = 0 iff
(@#O0AbL —4ac>0)V(a=0Ab#0)V (a=0b=c=0)

=» Tarski’s Algorithm ([Tarski51])
e To eliminate quantifications of first-order formula of polynomials
e Decidability of elementary algebra and geometry
e Complexity is non-elementary

=>» Collins’s Algorithm ([AT&FL, LNCS 33])
e Cylindrical Algebra Decomposition

e The complexity is double exponential
e QEPCAD

=» Combined First-Order Quantifiers Eli. (Weispfenning & Sturm,[..])
e Tarski’s Algebra + Presburger Arithmetics + QBF + - - -

e REDLOG
=»> Chinese School Led by Prof. Wu (Herbrand Award Winner)

Contributed Very Much on Solving Polynomial Systems
e Wu Method ([JSSM 4])

e Complete Discrimination Systems ([Sciin CN E(39),JSC 28])

THEORIES AND TOOLS ON SEMI-ALGEBRAIC SYSTEMS (SASS) 10

SASs
= letu= (u1, - ,ut), r = (1, - ,Ts)

-» A semi-algebraic system is of the following form:

(p1(u,x) =0,...,p-(u,x) =0,

gl(u7x) > 0, ...,gk(u,x) > 0,
gk—I—l(u,X) > 0, ...,gz(U,X) > 0,
| hi(u,x) #0,..., hn(u,x) #0,

=» An SAS of the form (1) is usually denoted by [P, G, G2, H], where

P = [pla "°7p7“]7G1 — [917 "'7gk]7G2 — [gk—f—la "'7gl] and
H = [h1,..., Am];

=» An SAS is called parametric if ¢t 4 0, written PSAS, otherwise
constant, written CSAS.

Main Concerns on SASs
-» For CSASs, real root isolation
-» For PSASSs, real solution classification

THEORIES AND TOOLS ON SEMI-ALGEBRAIC SYSTEMS (SASS)

11

Real Root Classification of PSASs
(Lu Yang et al, [Sci. in CN F(44), ASCM 2005])

Step 1, Triangularizing a PSAS with Ritt-Wu Method
=» Triangular set

Ty =Ti(v,y1),
T2 — TQ(V7ylay2)7 (2)

Te =Te(V,y1,- - ,Yk),

=» Triangular system

(fl(uyxl) — O7
< fs(u,flfl,-..,fli‘s) — O, (3)
| G1, G, H.

=» With Ritt-Wu Method, decomposing the equations of an SAS S of (1)
into triangular sets 7 = {T+, ..., Te }
=¥ The correspondence Zero(P?) = [J;_, Zero(T;/J;)

THEORIES AND TOOLS ON SEMI-ALGEBRAIC SYSTEMS (SASS)

12

Step 1, Triangularizing a PSAS with Ritt-Wu Method (Cont’d)

Example 1

ConSider an SAS S [IP), Gl,GQ,H] W|th P = [pl,pg,pg],
G1=0,Gs = [z,y,2,b,2 — b],H = (), where

pp=z+y’—2% pp=0-2)°—-22+1, ps=(1—-y)? -0z +1.
The equations P can be decomposed into two triangular sets

T, : [b*z® — 2b%(b% — 2)x + 2b* — 8b% 4 4, —b*y + b’z + 2 — 2b%, b 2% + 4b*x — 8b* + 4],
Ty : [2® =22+ 2,y + 7 — 2, 2],

with the relation

Zero(P) = Zero(T1/b) |] Zero(T>)

THEORIES AND TOOLS ON SEMI-ALGEBRAIC SYSTEMS (SASS) 13

Step 2, Computing Border Polynomial
@ = ax"+az™ + o ma1T + am,
G = box' +bix' ™' -+ bz + by

The following (m + 1) x (m -+ [) matrix (those entries except a,, b; are

all zero)
(o a1 - am \)
CLO al A, >l
ao a1 e Am ’
bo by b;) ’
bo by b
. . . >m
\ bo by - -- b;))

is called the Sylvester matrix of I and G w.r.t. =. The determinant of
the matrix is called the Sylvester resultant or resultant of F' and
w.r.t. = and is denoted by res(F, GG, z).

THEORIES AND TOOLS ON SEMI-ALGEBRAIC SYSTEMS (SASS) 14

Step 2, Computing Border Polynomial (Cont'd)
=» The successive resultant of f; with respect to the triangular set
{fi—1,..., f1},denoted by R;, foreachi (1 <i < s),is

R; = res(res(- - - res(res(ves(fi, fi, @), fim1,@io1), fim2, @iz2) -), f1,21).

Obviously, 21 = res(fi, f{, x1)
=» For each of those inequalities and inequations, the successive
resultant of ¢, (resp. /;) w.r.t. the triangular set |1, ..., f<|, denoted

by), (resp. Q1+ ;) is

Qj> — I’GS(I’GS(' o res(res(gj, f87$8>7 fS—laxS—l) o),fl,LUl)-

=» For an SAS T of the form (3), the border polynomial of T is

s l+m

BP = Hl& H1 Qj.
1= J—=

THEORIES AND TOOLS ON SEMI-ALGEBRAIC SYSTEMS (SASS) 15

Example 2
For the triangular system T, in Example 1, the border polynomial is

BP =b(b—2)(b+2)(b° — 2)(b* — 4b° + 2)(2b* — 2b° + 1).

THEORIES AND TOOLS ON SEMI-ALGEBRAIC SYSTEMS (SASS)

16

Step 3, Choosing Sample Points and Calculating Distinct Real
Solutions at Each Sample Point

Theorem Let T be a PSAS of the form (3) and B P its border polynomial.

Then, in each connected component of the complement of 57 = 0 in
parametric space R“, the number of distinct real solutions of T' is
constant; and each polynomial in G; U G5 U [H keeps the same sign.

=» BP = 0 decomposes the parametric space into a finite number of
connected region;

=» Choose sample points in each connected component of the
complement of B = 0 with PCAD;

=» Calculate the number of distinct real solutions of T at each sample
point.

THEORIES AND TOOLS ON SEMI-ALGEBRAIC SYSTEMS (SASS)

17

A Computer Algebra Tool: DISCOVERER

> DISCOVERER can be downloaded for free via
“nttp://www.is.pku.edu.cn/~xbc/discoverer.ntml".
=» Main Features:

e Real Solution Classification of PSASs Determines the
conditions on parameters such that the given system has the
given number of distinct real solutions.

e Real Solution Isolation of CSASs Determines the number of its
distinct real solutions, say n, and moreover, can find out » disjoint
cubes with rational vertices in each of which there is only one
solution.

THEORIES AND TOOLS ON SEMI-ALGEBRAIC SYSTEMS (SASS)

18

LOOP ABSTRACTION AND DEFINITIONS

Semi-Algebraic Transition Systems (SATS)

Definition: An SATS is a quintuple (V, L, T, 7y, ©).
e |/ is a set of program variables over R
e [/ a set of locations

e 7'is a set of transitions which are of the form (/1. /5, p,,0,), where 7
and /- are the pre- and post- locations of the transition, o is the
transition relation, and ¢ is the guard of the transition

e !y is the initial location, and
e O is the initial condition.

e 0, and O are polynomial assertion over 1/, while p, is polynomial
assertion over vV U V"',

LOOP ABSTRACTION AND DEFINITIONS

19

Example 3 Integer (z,y) := (0,0);
lo: whilex>0Ay>0do

(z,y) == (z +y*,y+1);

end while
(a) Program P
P={V={zyj,
L = {lo},
T ={7}, lo,
O=x=0Ay =0}
where 7 = (lg, lg, 2" — 2 — 9> =0ANy —y—1=0,
r>0Ay>0)
(b) P’'s SATS

LOOP ABSTRACTION AND DEFINITIONS

20

Invariant

=> PF(V) stands for the set of polynomial formulae in which all
polynomial are in the variables of 1.

Invariant at a Location Let P = (V, L, T 1y, ©) be an SATS. An invariant at
a location | € L is a polynomial formula ¢ € PF(V') such that ¢ holds
on all states that can be reached at location /.

Invariant of Program An assertion map for an SATS P = (V, L. T, 1y, 0) is
amapn : L +— PF(V)that associates each location of P with a
formula of PF'(V7). An assertion map of P is said to be an invariant of
P iff the following conditions hold:

Initiation: ©(1,) = 7n(lo).
Consecution: For each transition 7 = (l;,1,, p+,0,),

(L) (V) A pr(V,V) N0 (V) = n(l;) (V).

LOOP ABSTRACTION AND DEFINITIONS 21

Ranking Function

=» A sequence of transitions 111 —> Lo, ..., L1 —% 1,5 is called
composable if l;o = [;y1y, fore = 1,...,n — 1, and written as
l11 = lia(la1) = -+ 2B o,

=» A composable sequence is called transition circle at [+, if 11 = [,.2.

=» Ranking Function: Let P = (V. L, T, [y, ©) be an SATS. A ranking
function is a function : Val(V) — R such that the following
conditions are satisfied:
Bounded: O(1)) = ~(Vh) > 0.
Ranking: There exists a constant C' ¢ R such that C' > 0 and for

Tn—1

any transition circle at lo lo — 11 = -+ = 1,1 % lo,

Pr1;72; iTn (Va V/)/\HTUTQ;“' STn (V) ‘: 'Y(V) —’V(V/) > C/\V(V/) >0,

=» Existence of a ranking function implies termination of the loop

LOOP ABSTRACTION AND DEFINITIONS

22

POLYNOMIAL INVARIANT GENERATION
(Y. Chen, B. Xia, L. Yang, N. Zhan, [FMRTS 07, LNCS 4711])

1. Predefining Invariant

Predefine a template of invariants as a PSAS at each of the
underlining locations. All of these predefined PSASs form a
parametric invariant of the program.

Example 4 For example, we can assume a template of invariants of
P atly in Example 3 as

eq(x,y) = alyg T a2y2 + a3z —asy =0 (4)
ineq(z,y) = bix + bay” + by + bs > 0, (5)
l.e. n(lo) = (4) A (5).

Note that we can split » to ; and 1. by letting 7, (/o) = (4) and
n2(lo) = (5). It is easy to prove that 1, exists iff), and 1. exist.

POLYNOMIAL INVARIANT GENERATION

23

2. Deriving PSASs from Initial Condition and Solving the Resulted

PSASs
=> Deriving PSASs
e In Examples 3&4, © = 11 (ly) is equivalent to that

r=0,y=0,eq(z,y) #0 (6)

has no real solution:

e And © = 12(lp) is equivalent to that
z =0,y =0,ineq(z,y) <0 (7)

has no real solution.
=» Solving the Resulted PSASs
e For (6), by calling

tOfIﬂd(([:C, y]7 Hv H? [6(](%‘, y)]v [ZE, y]v [a17 az, as, CL4], O)

we get that (6) has no real solution iff true.
e Similarly, (7) has no real solution iff

by > 0. (8)

POLYNOMIAL INVARIANT GENERATION 24

3. Deriving PSASs from Consecutive Condition and Solving the
Resulted PSASs

=» For 1, (resp. 72), we can derive the following PSASs without real

solution:
eq(z,y) =0Az —2—y"=0Ay —y—1=0Aeq(z',y)#0 (9)

ineq(z,y) > 0Nz —z—y" =0Ay —y—1=0Aineq(z’,y") <0. (10)

-» By DISCOVERER, (9) (resp. (10)) has no real solution iff
asy® + 3a1y° + 2yas + 3a1y — a4 + as + a1 =0 A (ag(a1y2 +yaz —aq) <0, (11)

by 4 bz + b 4 2bay + bay + bay” + bix + biy® > 0). (12)

=» Simplifying (11) (resp. (12)) by QEPCAD, and obtaining
—a4 + a2+ a1 =0A3a1 +2a2 =0A a3z + 3a1 =0, (13)

b1 +bs > 0ANb1 >0Abs+bs+bsy >0AN
(bs 4+ 2by > 0V (biba + b5 > 0 A 4baby + 4b1by + 4b1bs + 4b1bs — b3 > 0)) (14)

POLYNOMIAL INVARIANT GENERATION 25

4. Generating Invariant
=> From (13), by using DISCOVERER, we get an instantiation

(a1,a2,as,a4) = (—2,3,6,1).

ni(lo) = —2y° + 3y° + 62 — y = 0.
=> From (8) A (14), by PCAD of DISCOVERER, it results the following
instantiation

(b1,b2,b3,b4) = (1,—1,2,1)

thatis, n2(lo) =z — y* +2y + 1 > 0.
=» Finally, we get the following invariant for the program F:

—2y° +3y* + 6z —y =0,
z—y?+2y+1>0

POLYNOMIAL INVARIANT GENERATION

26

RANKING FUNCTION SYNTHESIS ([ICTAC 07])

Example 4

{a >0} b=0;c=1;
while (¢ < o) do
c = 2c;
end while
lo: whilec>2do
c=c/2;
if (b+¢c)” <a then
b=b+c;
end if
end while

return b;

P=
V ={a,b,c}
L = {lo}
T={r,7}

O=a>0Ab=0Ac>1Ac*>a

where

71 : {lo,lo,a’ =aAb =b+c/2Nc =c¢/2,

c—2>0A(2b+c)? < 4a)

72 : (lo,lo,d =a ANV =bAc =c/2,

c>2A(2b+c)® > 4a)

RANKING FUNCTION SYNTHESIS ([ICTAC 07])

27

No Linear Ranking Function
=» Assume a linear ranking function v = ax + b.

Bounded:
b+ 2la >0 (15)
Decreasing Condition for First Branch: No solution

r>1.2 =1—z,ax' +b<0 and (16)
r>1,2=1—-2,C>0,ax +b— (ax+b) <C (17)

Decreasing Condition for Second Branch: No solution

r< 1,2 =—x—2a +b<0 and (18)
r<—-1,2 =—2—-2,C>0,ax" +b— (ax +b) < C (19)

-» Completeness: If a program has ranking function of the given
template, the method indeed can discover one of them.

=» Conclusion: The program has no linear ranking function.

RANKING FUNCTION SYNTHESIS ([ICTAC 07])

28

Nonlinear Ranking Function

-» Assume nonlinear ranking functions v = az” + bz + ¢, and C' = 1.

=>» Applying the procedure given above to reduce and then using
DISCOVERER, produce the condition

c+21b4+441a>0Aa>0Ac>0A(b<0Vdac—Db" > 0)A
b+a—1>0ANa>0Ac+b+a>0AN
(b+2a<0Vdac—b">0)Aa>0A20+1<0 (20)

-> Termination Analysis of Example 4.
e Using DISCOVERER, obtain a non-linear ranking function:

22° — x + 3 (x° + 1 can be another one).

e The example terminates at all reals except integers:
r =2 (mod 3).

e For any given terminating input there exists a ranking function.

e Forinputin [—2, —1) (and some other intervals) it terminates but
has no polynomial (even continuous) ranking function.

RANKING FUNCTION SYNTHESIS ([ICTAC 07])

29

DISCUSSIONS

-> Completeness: In the sense, if a program has an invariant or
ranking function of the given template, the methods indeed can
generate it

=» The approaches can be applied to more general programs and to
synthesize more expressive invariants

=» Difference between Ranking Function and Invariant

Ranking function is global

Invariant may be either global or local

Ranking function can be seen as a global invariant

In general, it’s difficult to handle ranking function for nested loops,
but invariants can be dealt with a uniform method for all kinds of
loops

DISCUSSIONS

30

Computing Reachable Set of Linear Hybrid Systems

Hybrid Systems:
e A mixture of Continuous (differential equations) and Discrete

(events) states
e Software Embedded Systems
e Safety Critical Systems
e Interdisciplinary Subject: Control Theory + Computer Science
Most Recent Results: Symbolic reachability computation for families of
linear vector Fields (G. Lafferriere, G.J. Pappas and S. Yovine, J.
Symbolic Computation 11, 2001)

Computing Reachable Set of Linear Hybrid Systems 31

=» Linear Hybrid Systems
§ = Af + Bu

o £(1) € R" — state of the system at time ¢,
e AcR" "™ BeR" ™ —gystem matrices, and
o 1 : R — R™ —control input.
=» Given = = £(0) and u, the solution of the differential equation for any
timet > 01is

t
£(t) = Bz, u,t) = ez —1—/ e) Bu(t)dr
0

where
O S
a k!
k=0

=» Given U/, a set of control inputs, state y is said reachable from state =,
if there exists control input « € ¢/ and ¢ > 0 such that y = ®(z, u, t).

Computing Reachable Set of Linear Hybrid Systems

32

=> Decidability of Reachability

® A — nilpotent matrix, and &/ — polynomials in ¢;

@ A — diagonalizable matrix with rational eigenvalues, and I/ — linear
combinations of exponentials;

® A — diagonalizable matrix with purely imaginary eigenvalues, and
U — linear combinations of sinusoids.

=» To compute the reachability LPY transforms the above into
Semi-Algebraic System (SAS) problem.

Computing Reachable Set of Linear Hybrid Systems

33

Example 5
=>» Let B be a unit matrix. Consider the diagonal matrix A and &/ = {u}

defined as

1

2 0 w1 (t —ae2’
A = , u(t) = 1) = , with a > 0.
0 -1 u2(t) ae’
= Thus,

2t | 2 2t 1t

rie” + zal—e +e2
O(z1, 00, u,t) = ' 3)

zoe” "+ ale’ —e™")

=» Let the initial set be X = {(0,0)}. Then the reachable set from X is:

{(y1,92) €R* | FaFt:0<aAt>0
Ay = z1et + %a(—e% -+ e%t)

Ay2 = z2e " + za(e’ —e ")}

Computing Reachable Set of Linear Hybrid Systems 34

= Let > — ¢2', thus, we get

{(91792)€R2 | Jadz:0<aAz>1Ap1 =0Ap2 =0}
where

p1 = yl—g (=2 + 2),

P2 — y22,’2 — %&(24 — 1)

a, z are variables and v, - are parameters

Computing Reachable Set of Linear Hybrid Systems

35

=» Since the quantifiers cannot be eliminated using REDLOG or
QEPCAD alone, LPY applied REDLOG to eliminate « first and then
used QEPCAD to eliminate z, and thus obtained

{(y1,2) €R® | (y2 > O A y1 +y2 < 0)
V(y2 <OA y1+y2>0)V 4y + 3y1 = 0} (21)

=> Note that (21) includes mistakes such as (y1,v2) = (2, —1),
(y1,92) = (1,—1) and (y1,y2) = (4, —3).
-» With DISCOVERER, state (v, y2) is reachable if and only if

(Y2 > 0N y1 +y2 <0)V (y1 = y2 = 0)

The mistakes are avoided.
(L. Yang, N. Zhan, B. Xia and C. Zhou: Program Verification by Using
DISCOVERER. Proc. of VSTTE, LNCS 4171.)

Computing Reachable Set of Linear Hybrid Systems 36

COMPLEXITY ANALYSIS

For a PSAS S, directly applying quantifier elimination to S has
complexity O((2d)> """ (s +m)2" 7).

The total costis O(k(2d)> " (s +m)>" ") for directly applying the
technique of quantifier elimination to invariant generation.

For a PSAS 5, the cost of DISCOVERER plus QEPCAD is
O™ a7y L omoep), where

D = OO+ () eETn Ty Tand ¢ s the dimension of the
ideal generated by the s polynomial equations.

The total cost of our approach is

Ok * (0" (d+ 1)y + 012D).

This approach can dramatically reduce the complexity, in particular
when ¢ is much less than n.

COMPLEXITY ANALYSIS

37

CONCLUSION AND FUTURE WORK

Conclusion
=» Proposed new approaches to program verification by applying
theories and tools on solving semi-algebraic systems
=» Proved that, in compared speaking, our approach is efficient by
analyzing the complexity;
=» The approaches for polynomial invariant generation and non-linear
ranking function discovering are also complete;

=» Similar approach can be applied to termination analysis of programs

Future Work
=» How to further improve the efficiency is still a big challenge;
=» How to handle programs with complicated data structures;

=» how to combine our approach with other program verification
techniques;
- ...

CONCLUSION AND FUTURE WORK

38

Thank You

CONCLUSION AND FUTURE WORK

39

Questions?

CONCLUSION AND FUTURE WORK

40

