
Program Verification by Reduction to
Semi-Algebraic System Solving

Naijun ZHAN

Lab. of Comp. Sci., Institute of Software, CAS, China
znj@ios.ac.cn

(With Yinghua Chen, Bican Xia, Lu Yang and Chaochen Zhou)

1

OUTLINE

Ü Motivation

Ü Theories and Tools on Semi-Algebraic Systems

Ü Semi-Algebraic Transition Systems

Ü Polynomial Invariant Generation

Ü Polynomial Ranking Function Discovering

Ü Computing Reachable Set of Linear Hybrid Systems

Ü Complexity Analysis

Ü Conclusion

OUTLINE 2

MOTIVATION

Invariant Generation and Termination Analysis
Ü Termination analysis and invariant generation play a central role in

program verification, also are thought as the most challenging parts of
program verification.

Reachability Computation
Ü How to design correct embedded systems is a big challenge for

computer scientists and control theorists.

Ü From a computer scientist’s point of view, that is how to guarantee the
correctness of embedded software.

Ü Verification of embedded systems can be reduced to reachability
computation.

MOTIVATION 3

Related Work on Invariant Generation
Ü Limited success in the past attempts
German and Wegbreit [IEEE TSE 1(1)], Karr [Acta Inf. 6], Katz and Manna [CACM 19(4)]

Ü Based on Abstract Interpretation
• Incomplete
• Possibly producing weak invariants
• Cousot [VMCAI05], Cousot and Halbwachs [POPL78]

Ü Based on the Technique of Linear Algebra
• Polynomials of bounded degree as invariants of programs with

affine assignments
• M. Müller-Olm and H. Seidl, [SAS02]

Ü Based on Ideal Theory
• Completeness
• invariants represented as a conjunction of polynomial equations
• Rodriguez-Carbonell and Kapur [JSC 42, SCP64(1)]

MOTIVATION 4

Ü Based on Gröbner Bases
• Completeness
• invariants represented as a conjunction of polynomial equations
• Rodriguez-Carbonell and Kapur [ISSAC04], Sankaranarayanan, Sipma

and Manna [POPL04]
Ü Based on First-Order Quantifier Elimination

• More expressive invariants, but high complexity,
• Kapur [ACA04]

MOTIVATION 5

Related Work on Termination Analysis
Ü Kats & Manna 1975 [CACM 19(4)]

Generate and solve constraint systems for linear ranking functions,
over linear loop with affine assignments

Ü Colón & Sipma 2001, 2002 [TACAS01,CAV02]
Synthesis of linear ranking functions for linear loops.

Ü Podelski & Rybalchenko 2005 [VMCAI05]
Complete method for linear ranking functions over linear loops with
one transition and without an initial condition.

Ü Bradley, Manna & Sipma 2005 [CAV05,CONCUR05]
Complete method for lexicographic linear ranking functions over linear
loops.

Ü Bradley, Manna & Sipma 2005 [VMCAI05]
Incomplete but efficient method for synthesis of polynomial ranking
functions over polynomial loops.

Ü Cousot 2005 [VMCAI05]
Incomplete but efficient method for synthesis of polynomial ranking
functions over polynomial loops.

MOTIVATION 6

Ü Bradley, Manna & Sipma 2005 [ICALP05]
Complete and efficient method for synthesis of lexicographic linear
polyranking functions over linear loops.

Ü Gupta, Henzinger, Majundar, Rybalchenko & Xu 2008 [POPL08]
A method to search counterexamples to termination that are infinite
program executions.

Related Work on Decidability of State Reachability
Ü Timed Automaton Alur and Dill, [TCS 126]

Ü Multi-rate Automata Alur et al, [TCS 138]

Ü Rectangular Hybrid Automata Henzinger et al, [JCSS 57(1)]

Ü O-Minimal Hybrid Systems Lafferriere, Pappas and Sastry
[UCB/ERL M98/29]

MOTIVATION 7

Summary
Ü Applying the theories and tools of computer algebra to program

verification has made great success

Ü High complexity of computer algebra algorithms forms the bottleneck
of such approaches

Challenges in Program Verification through Computer Algebra
Challenging Problem: To invent more powerful approaches with low

complexity to program verification is still a challenging problem.

MOTIVATION 8

Overview
Ü Goal: Applying techniques on solving semi-algebraic systems to

program verification, in particular, to automatic synthesis of more
expressive invariants and ranking functions, and computing reachable
set of linear hybrid systems
• Non-linear ranking functions
• Invariants represented as semi-algebraic systems
• Over polynomial programs and linear hybrid systems

Ü Our Solution:
• Reduce these problems to semi-algebraic systems solving
• Then utilize our theories and tools on semi-algebraic systems to

solve the resulted problems
Ü Our Contributions:

• A complete and efficient method for invariant synthesis, which can
be used to generate more expressive invariants

• A similar method for non-linear ranking function discovering
• Improvement of the efficiency of reachability computation of linear

hybrid systems

MOTIVATION 9

THEORIES AND TOOLS ON SEMI-ALGEBRAIC SYSTEMS (SASS)
First-Order Quantifier Elimination
Ü E.g. ∃x.ax2 + bx + c = 0 iff

(a 6= 0 ∧ b2 − 4ac ≥ 0) ∨ (a = 0 ∧ b 6= 0) ∨ (a = b = c = 0)

Ü Tarski’s Algorithm ([Tarski51])
• To eliminate quantifications of first-order formula of polynomials
• Decidability of elementary algebra and geometry
• Complexity is non-elementary

Ü Collins’s Algorithm ([AT&FL, LNCS 33])
• Cylindrical Algebra Decomposition
• The complexity is double exponential
• QEPCAD

Ü Combined First-Order Quantifiers Eli. (Weispfenning & Sturm,[..])
• Tarski’s Algebra + Presburger Arithmetics + QBF + · · ·
• REDLOG

Ü Chinese School Led by Prof. Wu (Herbrand Award Winner)
Contributed Very Much on Solving Polynomial Systems
• Wu Method ([JSSM 4])
• Complete Discrimination Systems ([Sci in CN E(39),JSC 28])

THEORIES AND TOOLS ON SEMI-ALGEBRAIC SYSTEMS (SASS) 10

SASs
Ü Let u = (u1, · · · , ut), x = (x1, · · · , xs)

Ü A semi-algebraic system is of the following form:8
>>>>><
>>>>>:

p1(u,x) = 0, ..., pr(u,x) = 0,

g1(u,x) ≥ 0, ..., gk(u,x) ≥ 0,

gk+1(u,x) > 0, ..., gl(u,x) > 0,

h1(u,x) 6= 0, ..., hm(u,x) 6= 0,

(1)

Ü An SAS of the form (1) is usually denoted by [P,G1,G2,H], where
P = [p1, ..., pr],G1 = [g1, ..., gk],G2 = [gk+1, ..., gl] and
H = [h1, ..., hm];

Ü An SAS is called parametric if t 6= 0, written PSAS, otherwise
constant, written CSAS.

Main Concerns on SASs
Ü For CSASs, real root isolation
Ü For PSASs, real solution classification

THEORIES AND TOOLS ON SEMI-ALGEBRAIC SYSTEMS (SASS) 11

Real Root Classification of PSASs
(Lu Yang et al, [Sci. in CN F(44), ASCM 2005])

Step 1, Triangularizing a PSAS with Ritt-Wu Method
Ü Triangular set

T1 = T1(v, y1),
T2 = T2(v, y1, y2),
· · · · · ·
Tk = Tk(v, y1, · · · , yk),

(2)

Ü Triangular system8
>><
>>:

f1(u, x1) = 0,
· · ·

fs(u, x1, ..., xs) = 0,
G1, G2, H.

(3)

Ü With Ritt-Wu Method, decomposing the equations of an SAS S of (1)
into triangular sets T = {T1, ...,Te}

Ü The correspondence Zero(P) =
Se

i=1 Zero(Ti/Ji)

THEORIES AND TOOLS ON SEMI-ALGEBRAIC SYSTEMS (SASS) 12

Step 1, Triangularizing a PSAS with Ritt-Wu Method (Cont’d)

Example 1

Consider an SAS S : [P,G1,G2,H] with P = [p1, p2, p3],
G1 = ∅,G2 = [x, y, z, b, 2− b],H = ∅, where

p1 = x2 + y2 − z2, p2 = (1− x)2 − z2 + 1, p3 = (1− y)2 − b2z2 + 1.

The equations P can be decomposed into two triangular sets

T1 : [b4x2 − 2b2(b2 − 2)x + 2b4 − 8b2 + 4,−b2y + b2x + 2− 2b2, b4z2 + 4b2x− 8b2 + 4],

T2 : [x2 − 2x + 2, y + x− 2, z],

with the relation

Zero(P) = Zero(T1/b)
[

Zero(T2)

THEORIES AND TOOLS ON SEMI-ALGEBRAIC SYSTEMS (SASS) 13

Step 2, Computing Border Polynomial
Ü F = a0x

m + a1x
m−1 + · · ·+ am−1x + am,

G = b0x
l + b1x

l−1 + · · ·+ bl−1x + bl.

The following (m + l)× (m + l) matrix (those entries except ai, bj are
all zero)

0
BBBBBBBBBBBBBBBBBB@

a0 a1 · · · am

a0 a1 · · · am

. . .
. . .

. . .

a0 a1 · · · am

b0 b1 · · · bl

b0 b1 · · · bl

. . .
. . .

. . .

b0 b1 · · · bl

1
CCCCCCCCCCCCCCCCCCA

9
>>>>>=
>>>>>;

l

9
>>>>>=
>>>>>;

m

,

is called the Sylvester matrix of F and G w.r.t. x. The determinant of
the matrix is called the Sylvester resultant or resultant of F and G

w.r.t. x and is denoted by res(F, G, x).

THEORIES AND TOOLS ON SEMI-ALGEBRAIC SYSTEMS (SASS) 14

Step 2, Computing Border Polynomial (Cont’d)
Ü The successive resultant of fi with respect to the triangular set

{fi−1, ..., f1}, denoted by Ri, for each i (1 ≤ i ≤ s), is

Ri = res(res(· · · res(res(res(fi, f
′
i , xi), fi−1, xi−1), fi−2, xi−2) · · ·), f1, x1).

Obviously, R1 = res(f1, f
′
1, x1)

Ü For each of those inequalities and inequations, the successive
resultant of gj (resp. hj) w.r.t. the triangular set [f1, ..., fs], denoted
by Qj (resp. Ql+j) is

Qj) = res(res(· · · res(res(gj , fs, xs), fs−1, xs−1) · · ·), f1, x1).

Ü For an SAS T of the form (3), the border polynomial of T is

BP =

sY
i=1

Ri

l+mY
j=1

Qj .

THEORIES AND TOOLS ON SEMI-ALGEBRAIC SYSTEMS (SASS) 15

Example 2
For the triangular system T1 in Example 1, the border polynomial is

BP = b(b− 2)(b + 2)(b2 − 2)(b4 − 4b2 + 2)(2b4 − 2b2 + 1).

THEORIES AND TOOLS ON SEMI-ALGEBRAIC SYSTEMS (SASS) 16

Step 3, Choosing Sample Points and Calculating Distinct Real
Solutions at Each Sample Point
Theorem Let T be a PSAS of the form (3) and BP its border polynomial.

Then, in each connected component of the complement of BP = 0 in
parametric space Rd, the number of distinct real solutions of T is
constant; and each polynomial in G1 ∪G2 ∪H keeps the same sign.

Ü BP = 0 decomposes the parametric space into a finite number of
connected region;

Ü Choose sample points in each connected component of the
complement of BP = 0 with PCAD;

Ü Calculate the number of distinct real solutions of T at each sample
point.

THEORIES AND TOOLS ON SEMI-ALGEBRAIC SYSTEMS (SASS) 17

A Computer Algebra Tool: DISCOVERER
Ü DISCOVERER can be downloaded for free via

“http://www.is.pku.edu.cn/~xbc/discoverer.html".

Ü Main Features:
• Real Solution Classification of PSASs Determines the

conditions on parameters such that the given system has the
given number of distinct real solutions.

• Real Solution Isolation of CSASs Determines the number of its
distinct real solutions, say n, and moreover, can find out n disjoint
cubes with rational vertices in each of which there is only one
solution.

THEORIES AND TOOLS ON SEMI-ALGEBRAIC SYSTEMS (SASS) 18

LOOP ABSTRACTION AND DEFINITIONS

Semi-Algebraic Transition Systems (SATS)

Definition: An SATS is a quintuple 〈V, L, T, `0, Θ〉.
• V is a set of program variables over R
• L a set of locations

• T is a set of transitions which are of the form 〈`1, `2, ρτ , θτ 〉, where `1

and `2 are the pre- and post- locations of the transition, ρτ is the
transition relation, and θτ is the guard of the transition

• `0 is the initial location, and

• Θ is the initial condition.

• θτ and Θ are polynomial assertion over V , while ρτ is polynomial
assertion over V ∪ V ′.

LOOP ABSTRACTION AND DEFINITIONS 19

Example 3 Integer (x, y) := (0, 0);

l0 : while x ≥ 0 ∧ y ≥ 0 do

(x, y) := (x + y2, y + 1);

end while

(a) Program P

P = { V = {x, y},
L = {l0},
T = {τ}, l0,

Θ = x = 0 ∧ y = 0}
where τ = 〈l0, l0, x′ − x− y2 = 0 ∧ y′ − y − 1 = 0,

x ≥ 0 ∧ y ≥ 0〉
(b) P ’s SATS

LOOP ABSTRACTION AND DEFINITIONS 20

Invariant
Ü PF (V) stands for the set of polynomial formulae in which all

polynomial are in the variables of V .

Invariant at a Location Let P = 〈V, L, T , l0, Θ〉 be an SATS. An invariant at
a location l ∈ L is a polynomial formula φ ∈ PF (V) such that φ holds
on all states that can be reached at location l.

Invariant of Program An assertion map for an SATS P = 〈V, L, T , l0, Θ〉 is
a map η : L 7→ PF (V) that associates each location of P with a
formula of PF (V). An assertion map of P is said to be an invariant of
P iff the following conditions hold:

Initiation: Θ(V0) |= η(l0).
Consecution: For each transition τ = 〈li, lj , ρτ , θτ 〉,

η(li)(V) ∧ ρτ (V, V ′) ∧ θτ (V) |= η(lj)(V
′).

LOOP ABSTRACTION AND DEFINITIONS 21

Ranking Function
Ü A sequence of transitions l11

τ1→ l12, . . . , ln1
τn→ ln2 is called

composable if li2 = l(i+1)1 for i = 1, . . . , n− 1, and written as
l11

τ1→ l12(l21)
τ2→ · · · τn→ ln2.

Ü A composable sequence is called transition circle at l11, if l11 = ln2.

Ü Ranking Function: Let P = 〈V, L, T , l0, Θ〉 be an SATS. A ranking
function is a function γ : V al(V) → R+ such that the following
conditions are satisfied:

Bounded: Θ(V0) |= γ(V0) ≥ 0.
Ranking: There exists a constant C ∈ R+ such that C > 0 and for

any transition circle at l0 l0
τ1→ l1

τ2→ · · · τn−1→ ln−1
τn→ l0,

ρτ1;τ2;··· ;τn(V, V ′)∧θτ1;τ2;··· ;τn(V) |= γ(V)−γ(V ′) ≥ C∧γ(V ′) ≥ 0,

Ü Existence of a ranking function implies termination of the loop

LOOP ABSTRACTION AND DEFINITIONS 22

POLYNOMIAL INVARIANT GENERATION

(Y. Chen, B. Xia, L. Yang, N. Zhan, [FMRTS 07, LNCS 4711])

1. Predefining Invariant

Predefine a template of invariants as a PSAS at each of the
underlining locations. All of these predefined PSASs form a
parametric invariant of the program.

Example 4 For example, we can assume a template of invariants of
P at l0 in Example 3 as

eq(x, y) = a1y
3 + a2y

2 + a3x− a4y = 0 (4)

ineq(x, y) = b1x + b2y
2 + b3y + b4 > 0, (5)

I.e. η(l0) = (4) ∧ (5).

Note that we can split η to η1 and η2 by letting η1(l0) = (4) and
η2(l0) = (5). It is easy to prove that η exists iff η1 and η2 exist.

POLYNOMIAL INVARIANT GENERATION 23

2. Deriving PSASs from Initial Condition and Solving the Resulted
PSASs
Ü Deriving PSASs

• In Examples 3&4, Θ |= η1(l0) is equivalent to that
x = 0, y = 0, eq(x, y) 6= 0 (6)

has no real solution;
• And Θ |= η2(l0) is equivalent to that

x = 0, y = 0, ineq(x, y) ≤ 0 (7)

has no real solution.
Ü Solving the Resulted PSASs

• For (6), by calling
tofind(([x, y], [], [], [eq(x, y)], [x, y], [a1, a2, a3, a4], 0)

we get that (6) has no real solution iff true.
• Similarly, (7) has no real solution iff

b4 > 0. (8)

POLYNOMIAL INVARIANT GENERATION 24

3. Deriving PSASs from Consecutive Condition and Solving the
Resulted PSASs
Ü For η1 (resp. η2), we can derive the following PSASs without real

solution:
eq(x, y) = 0 ∧ x′ − x− y2 = 0 ∧ y′ − y − 1 = 0 ∧ eq(x′, y′) 6= 0 (9)

ineq(x, y) > 0 ∧ x′ − x− y2 = 0 ∧ y′ − y − 1 = 0 ∧ ineq(x′, y′) ≤ 0. (10)

Ü By DISCOVERER, (9) (resp. (10)) has no real solution iff
a3y

2 + 3a1y
2 + 2ya2 + 3a1y − a4 + a2 + a1 = 0 ∧ (a3(a1y

2 + ya2 − a4) ≤ 0, (11)

b4 + b3 + b2 + 2b2y + b3y + b2y
2 + b1x + b1y

2 > 0). (12)

Ü Simplifying (11) (resp. (12)) by QEPCAD, and obtaining
−a4 + a2 + a1 = 0 ∧ 3a1 + 2a2 = 0 ∧ a3 + 3a1 = 0, (13)

b1 + b2 ≥ 0 ∧ b1 ≥ 0 ∧ b2 + b3 + b4 > 0 ∧
(b3 + 2b2 ≥ 0 ∨ (b1b2 + b2

2 ≥ 0 ∧ 4b2b4 + 4b1b4 + 4b1b3 + 4b1b2 − b2
3 > 0)) (14)

POLYNOMIAL INVARIANT GENERATION 25

4. Generating Invariant
Ü From (13), by using DISCOVERER, we get an instantiation

(a1, a2, a3, a4) = (−2, 3, 6, 1).

η1(l0) = −2y3 + 3y2 + 6x− y = 0.

Ü From (8) ∧ (14), by PCAD of DISCOVERER, it results the following
instantiation

(b1, b2, b3, b4) = (1,−1, 2, 1)

that is, η2(l0) = x− y2 + 2y + 1 > 0.

Ü Finally, we get the following invariant for the program P :
8
<
:

−2y3 + 3y2 + 6x− y = 0,

x− y2 + 2y + 1 > 0

POLYNOMIAL INVARIANT GENERATION 26

RANKING FUNCTION SYNTHESIS ([ICTAC 07])
Example 4

{a ≥ 0} b = 0; c = 1;

while (c2 ≤ a) do

c = 2c;

end while

l0 : while c ≥ 2 do

c = c/2;

if (b + c)2 ≤ a then

b = b + c ;

end if

end while

return b;

P = {
V = {a, b, c}
L = {l0}
T = {τ1, τ2}
Θ = a ≥ 0 ∧ b = 0 ∧ c ≥ 1 ∧ c2 > a

where

τ1 : 〈l0, l0, a′ = a ∧ b′ = b + c/2 ∧ c′ = c/2,

c− 2 ≥ 0 ∧ (2b + c)2 ≤ 4a〉
τ2 : 〈l0, l0, a′ = a ∧ b′ = b ∧ c′ = c/2,

c ≥ 2 ∧ (2b + c)2 > 4a〉
}

RANKING FUNCTION SYNTHESIS ([ICTAC 07]) 27

No Linear Ranking Function
Ü Assume a linear ranking function γ = ax + b.

Bounded:

b + 21a ≥ 0 (15)

Decreasing Condition for First Branch: No solution

x ≥ 1, x′ = 1− x, ax′ + b < 0 and (16)

x ≥ 1, x′ = 1− x, C > 0, ax′ + b− (ax + b) < C (17)

Decreasing Condition for Second Branch: No solution

x ≤ −1, x′ = −x− 2, ax′ + b < 0 and (18)

x ≤ −1, x′ = −x− 2, C > 0, ax′ + b− (ax + b) < C (19)

Ü Completeness: If a program has ranking function of the given
template, the method indeed can discover one of them.

Ü Conclusion: The program has no linear ranking function.

RANKING FUNCTION SYNTHESIS ([ICTAC 07]) 28

Nonlinear Ranking Function
Ü Assume nonlinear ranking functions γ = ax2 + bx + c, and C = 1.

Ü Applying the procedure given above to reduce and then using
DISCOVERER, produce the condition

c + 21b + 441a ≥ 0 ∧ a ≥ 0 ∧ c ≥ 0 ∧ (b ≤ 0 ∨ 4ac− b2 ≥ 0) ∧
b + a− 1 ≥ 0 ∧ a ≥ 0 ∧ c + b + a ≥ 0 ∧

(b + 2a ≤ 0 ∨ 4ac− b2 ≥ 0) ∧ a ≥ 0 ∧ 2b + 1 ≤ 0 (20)

Ü Termination Analysis of Example 4.
• Using DISCOVERER, obtain a non-linear ranking function:

2x2 − x + 3 (x2 + 1 can be another one).
• The example terminates at all reals except integers:

x = 2 (mod 3).
• For any given terminating input there exists a ranking function.
• For input in [−2,−1) (and some other intervals) it terminates but

has no polynomial (even continuous) ranking function.

RANKING FUNCTION SYNTHESIS ([ICTAC 07]) 29

DISCUSSIONS

Ü Completeness: In the sense, if a program has an invariant or
ranking function of the given template, the methods indeed can
generate it

Ü The approaches can be applied to more general programs and to
synthesize more expressive invariants

Ü Difference between Ranking Function and Invariant
• Ranking function is global
• Invariant may be either global or local
• Ranking function can be seen as a global invariant
• In general, it’s difficult to handle ranking function for nested loops,

but invariants can be dealt with a uniform method for all kinds of
loops

DISCUSSIONS 30

Computing Reachable Set of Linear Hybrid Systems
Hybrid Systems:

• A mixture of Continuous (differential equations) and Discrete
(events) states

• Software Embedded Systems
• Safety Critical Systems
• Interdisciplinary Subject: Control Theory + Computer Science

Most Recent Results: Symbolic reachability computation for families of
linear vector Fields (G. Lafferriere, G.J. Pappas and S. Yovine, J.
Symbolic Computation 11, 2001)

Computing Reachable Set of Linear Hybrid Systems 31

Ü Linear Hybrid Systems

ξ̇ = Aξ + Bu

• ξ(t) ∈ Rn – state of the system at time t,
• A ∈ Rn×n, B ∈ Rn×m – system matrices, and
• u : R→ Rm – control input.

Ü Given x = ξ(0) and u, the solution of the differential equation for any
time t ≥ 0 is

ξ(t) = Φ(x, u, t) = eAtx +

Z t

0

eA(t−τ)Bu(t)dτ

where

eAt =

∞X

k=0

tk

k!
Ak

Ü Given U , a set of control inputs, state y is said reachable from state x,
if there exists control input u ∈ U and t ≥ 0 such that y = Φ(x, u, t).

Computing Reachable Set of Linear Hybrid Systems 32

Ü Decidability of Reachability

À A – nilpotent matrix, and U – polynomials in t;
Á A – diagonalizable matrix with rational eigenvalues, and U – linear

combinations of exponentials;
Â A – diagonalizable matrix with purely imaginary eigenvalues, and
U – linear combinations of sinusoids.

Ü To compute the reachability LPY transforms the above into
Semi-Algebraic System (SAS) problem.

Computing Reachable Set of Linear Hybrid Systems 33

Example 5
Ü Let B be a unit matrix. Consider the diagonal matrix A and U = {u}

defined as

A =

2
4 2 0

0 −1

3
5 , u(t) =

2
4 u1(t)

u2(t)

3
5 =

2
4 −ae

1
2 t

aet

3
5 , with a ≥ 0.

Ü Thus,

Φ(x1, x2, u, t) =

2
4 x1e

2t + 2
3
a(−e2t + e

1
2 t)

x2e
−t + 1

2
a(et − e−t)

3
5

Ü Let the initial set be X = {(0, 0)}. Then the reachable set from X is:

{(y1, y2) ∈ R2 | ∃a∃t : 0 ≤ a ∧ t ≥ 0

∧y1 = x1e
2t + 2

3
a(−e2t + e

1
2 t)

∧y2 = x2e
−t + 1

2
a(et − e−t)}

Computing Reachable Set of Linear Hybrid Systems 34

Ü Let z = e
1
2 t, thus, we get

{(y1, y2) ∈ R2 | ∃a∃z : 0 ≤ a ∧ z ≥ 1 ∧ p1 = 0 ∧ p2 = 0}

where

p1 = y1 − 2
3
a(−z4 + z),

p2 = y2z
2 − 1

2
a(z4 − 1).

a, z are variables and y1, y2 are parameters

Computing Reachable Set of Linear Hybrid Systems 35

Ü Since the quantifiers cannot be eliminated using REDLOG or
QEPCAD alone, LPY applied REDLOG to eliminate a first and then
used QEPCAD to eliminate z, and thus obtained

{(y1, y2) ∈ R2 | (y2 > 0 ∧ y1 + y2 ≤ 0)

∨(y2 < 0 ∧ y1 + y2 ≥ 0) ∨ 4y2 + 3y1 = 0} (21)

Ü Note that (21) includes mistakes such as (y1, y2) = (2,−1),
(y1, y2) = (1,−1) and (y1, y2) = (4,−3).

Ü With DISCOVERER, state (y1, y2) is reachable if and only if

(y2 > 0 ∧ y1 + y2 < 0) ∨ (y1 = y2 = 0)

The mistakes are avoided.
(L. Yang, N. Zhan, B. Xia and C. Zhou: Program Verification by Using
DISCOVERER. Proc. of VSTTE, LNCS 4171.)

Computing Reachable Set of Linear Hybrid Systems 36

COMPLEXITY ANALYSIS

Ü For a PSAS S, directly applying quantifier elimination to S has
complexity O((2d)2

2n+8
(s + m)2

n+6
).

Ü The total cost is O(k(2d)2
2n+8

(s + m)2
n+6

) for directly applying the
technique of quantifier elimination to invariant generation.

Ü For a PSAS S, the cost of DISCOVERER plus QEPCAD is
O(snO(1)

(d + 1)nO(1)
) +O(1)O(2D22t+8

))), where
D = O(sO(s2+s2nO(1))(d + 1)O(s2nO(1))), and t is the dimension of the
ideal generated by the s polynomial equations.

Ü The total cost of our approach is
O(k ∗ (O(snO(1)

(d + 1)nO(1)
) +O(1)O(2D22t+8

))).

Ü This approach can dramatically reduce the complexity, in particular
when t is much less than n.

COMPLEXITY ANALYSIS 37

CONCLUSION AND FUTURE WORK

Conclusion
Ü Proposed new approaches to program verification by applying

theories and tools on solving semi-algebraic systems

Ü Proved that, in compared speaking, our approach is efficient by
analyzing the complexity;

Ü The approaches for polynomial invariant generation and non-linear
ranking function discovering are also complete;

Ü Similar approach can be applied to termination analysis of programs

Future Work
Ü How to further improve the efficiency is still a big challenge;

Ü How to handle programs with complicated data structures;

Ü how to combine our approach with other program verification
techniques;

Ü · · ·

CONCLUSION AND FUTURE WORK 38

Thank You

CONCLUSION AND FUTURE WORK 39

Questions?

CONCLUSION AND FUTURE WORK 40

