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Linear Programs

Consider the termination of the following loop,

P1: while (Bx >0b) {z:= Ax+ ¢}

where A IS an nxn matrix, B iS an m xn matrix,
and z, b and ¢ are vectors.

Homogeneous |loop:

P2 : while (Bx >0) {z := Az}
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A decision procedure with
numerical computation

To determine whether BA"x > 0, we need a
clear description of A™. So, it's natural to con-
sider the Jordan form of A.

Theorem (Tiwari'04)

If the program P2 is non-terminating, then there
must be a real eigenvector v of A correspond-
ing to a positive eigenvalue such that Bv > 0.
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A decision procedure with
numerical computation

Corollary (Tiwari'04)

Assume that for every real eigenvector v of A
corresponding to a positive eigenvalue, every
element of Bv is not zero. Then, program P2
IS nonterminating if and only if there is a real
eigenvector v of A corresponding to a positive
eigenvalue such that Bv > 0.
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A decision procedure with
numerical computation

So, if the Jordan form of A is
A* = Q 1AQ
and
B* = BQ,
then P2 terminates if and only if
while (B*z > 0) {x := A™x}

terminates. And by the Theorem (Tiwari’'04),
we need only to consider the submatrices cor-
responding to the positive eigenvalues.
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A decision procedure with
numerical computation

Floating-point computation is needed in the
procedure since it depends on the computation
of eigenvalues, eigenvectors and Jordan forms.

However, floating-point computation is a source
of run-time errors which may lead to a wrong

conclusion.
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An example

2 -3 1 b
=4 7)) e=(40)

where

1127637245
_ — —v/3 4 ¢ = —1.732050807
651041667

1127637245
with ¢ = /3 —
c=V3 651041667
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An example

The approximate eigenvalues of A are 3.732050808
and 0.267949192 (both carry 10 decimal digits
of precision). Hence, the Jordan form of A is

A= 0140 = ( 3.732050808 0 )

0 0.267949192
and

. {10 00
B _BQ_(O.O —1.0)‘
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An example

If we let x = (1,—1), after n times of iteration,
the loop condition is

B*(A*)"z = (3.732050808",0.267949192™) > (0, 0)

which is always true for all n. Therefore, the
loop is not terminating.

However, this conclusion is NOT correct.
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An example

The Jordan form of A is indeed (by symbolic
computation)

1. [2+3 0
erne (P50 )
and,

€ €
BP — 1_6 3 6\@ — [ ™M11 mi2
—g\@ —l—l—é\@ m21 M2
1127637245
where e = V3 —

651041667 >
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An example

Obviously, mio > 0, mo1 < 0. However, when
we use floating-point computation, these two
elements (mi1o and mo7) are evaluated to O (in
Maple 11 with Digits 10). That is why we
obtained wrong result by floating-point com-
putation.
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Our main results

Theorem Suppose A and B are both matrices
on the rational numbers Q and the characteris-
tic polynomial D()\) of A is irreducible in Q[\].
T he program P2 is nonterminating if and only if
there is a real eigenvector v of A corresponding
to a positive eigenvalue such that Bv > 0.
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Our main results

Corollary If A and B are both matrices on a
field of numbers (e.g., the second extension of
the field of rational numbers) and the charac-
teristic polynomial of A is irreducible on this
field, then the program P2 is nonterminating
if and only if there exists a real eigenvector v
of A, corresponding to a positive eigenvalue,
such that Bv > 0.
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A symbolic decision procedure

Step 1. Compute the characteristic polynomial
of A and denote it by D()).

Step 2. Compute the algebraic complement
minor of every element in the first (or a fixed)
row of A — A\l (the characteristic matrix of A),
respectively and denote them by Aq; (1 <<
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A symbolic decision procedure

Step 3. For each row of B, compute

n
uj = ) bipA (1< <m).
k=1

Step 4. Construct a semi-algebraic system

S{D(A)ZOJ A >0, ugup > 0, "';um—lum>0}'
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A symbolic decision procedure

By computer algebra tools, one can determine,
according to the rational coefficients of S, whether
S has real solutions. If yes, P2 is not terminat-
ing. Otherwise, it terminates.
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A brief introduction of DISCOVERER

A semi-algebraic system (SAS) is a system of

4

pl(u,}() — 0: *“ﬁp?‘(ua X) = O&
g1(u,x) > 0,...,gx(u,x) > 0,
gk+1(u,x) = Oﬁ '”Jgt(ua X) = O}
L hi(u,x) #0, ..., hn(u,x) #= 0,

where u = (u1, ...,uyq), x = (z1,...,xs), 7,8 > 1,t >k >0,
m >0 and all p;'s, ¢'sS and h;’sS are polynomials
in Q.

Parametric SASs and constant SASS.
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A brief introduction of DISCOVERER

Real Solution Classification of Parametric SASs

For a parametric SAS T and an argument N,
DISCOVERER provides tofind and Tofind to
determine the conditions on u such that the
number of the distinct real solutions of T equals
N if N is an integer, otherwise falls in the scope
N if N is a range like b..c or b.. + .
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A brief introduction of DISCOVERER

Real Solution Isolation of Constant SASs

For a constant SAS 7', if T' has only a finite
number of real solutions, DISCOVERER can
determine the number of distinct real solutions
of 1', say n, and moreover, can find out n dis-
joint cubes with rational vertices in each of
which there is only one solution. In addition,
the width of the cubes can be less than any
given positive real. The two functions are re-

alized by calling realzeros and nearsolve.
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Examples (1)

We illustrate how to use our algorithm and tool
to decide the termination of P2 by the following
examples.

(3 1 4 1 5]

9 2 6 5 3 '3 - 83 2 7]
A=]|589 79|, B=|1 -41 4 -2

3 2 384 4 -2 8 -5 7

6 2 6 4 3 = :

T he characteristic polynomial of A is irreducible.
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Examples (1)

Compute the algebraic complement minors first.

A11(0\) = —48 + 313X + 822 — 2223 + 24,
A1o()\) = 381 4+ 243X\ — 11702 + 923,
A13()\) = 74 — 539\ + 8272 + 5)3,
A14()) = 144 — 60X + 15)% + 3)3,
A1s()\) = —498 4 204X\ — 54)\° + 6)°.
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Examples (1)

Then, compute

up = 3A411(A) — 8A412(A) + 3413(N) + 2414(N) — 7TA15(N)
— 804 — 4170\ + 1614)2 — 159)3 + 3%,

us = A11(A) —4A15(0) + A13(0) +4A14(0) —2A15(N)
— 74 — 1846\ + 726)% — 5323 + \*

uz = 4A411(A) —2A412(A) +8A413(A) —5A414(\) +7A15(N)
— _ 4568 — 1818\ + 46972 — 39)3 + 424,
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Examples (1)

By our theorem, the program is nonterminat-
ing if and only if the following semi-algebraic
system has real solutions.

{D(M\) =0, A\ >0, ugup > 0, upuz > 0},

where D()\) is the characteristic polynomial of
A.
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Examples (1)

Using DISCOVERER, say nearsolve, we can
conclude that the SAS has no real solutions.
Therefore, the program is terminating.

If we delete the third row of B (i.e., delete
a constraint), by calling DISCOVERER, we
can conclude that the system {D(\) =0, A >
0, uqup > 0} has 2 distinct real solutions. That
IS to say, the revised program is nonterminat-

Ing.
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Examples (11)

The following example shows how to generate

parametric conditions for the termination of P2

according to our main theorem.

- - - b11 bio biz |
a1 ai12 ais b;i b;i b;z

A= a1 az a3 |, B=| 77 7

| a431 432 433 | blbgb?,
L T T mos

are two matrices on Q and the characteristics
polynomial of A is assumed to be irreducible in

Q.
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Examples (11)

By following the steps of our algorithm, we
finally have to determine whether the following
semi-algebraic system has real solutions.

{D(A\) =0, A >0, ugus >0, -+, upy_1um > 0},

where D()) is the characteristic polynomial of
A and wu; are polynomials in A.
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Examples (11)

T his is a parametric semi-algebraic system, and
we may use the functions tofind and Tofind of
DISCOVERER to generate the required condi-
tions. However, the system includes only uni-
variate polynomials, and the generalized Com-
plete Discrimination System (CDS) of polyno-
mials (Yang-Hou-Zhang'96) is very suitable for
it.
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Examples (11)

Through the CDS tool in DISCOVERER and
other tools, when the characteristic polyno-
mial of A is irreducible and A has a unique real
eigenvalue, we can conclude that the program
IS nonterminating iff

det(A) >0 A ((B1 >0A---ABm>0)V
(B1 <OA---ABm<0)),

where for k = 1,...,m, B, IS a polynomial of
degree 6 with 12 variables and 86 terms.
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Examples (111, reducible case)

When the characteristic polynomial of A is re-
ducible, we can still develop a symbolic deci-
sion algorithm, which also transforms the linear
program termination problem to the problem
of determining whether a semi-algebraic sys-
tem has real solutions symbolically. However
the transformation is more complicated than
the one in the previous sections. We use the
following example to show the main idea of the
transformation.
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Examples (111, reducible case)

228_83 28 13 2 10 |
A= ., B=|1 4 1 4 |,
-1 0 -3 0 1 13 ¢
-2 0 1 0 5 -

The characteristic polynomial of A is

FO) =2 423-1222-92+42 = (0—2)(\3+3)2°—6.)-21).

It has exactly two positive roots A\ = 2.557309..., A» =
2, which both are of multiplicity 1.
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Examples (111, reducible case)

Suppose the corresponding eigenvectors are re-
spectively

- U117 | - U271 | 0
v v 28
v = | 2|, v =| 2% | = a
V13 V23 0
V14 | V24 | ==

and J = P~ 1AP is the real Jordan form of A.
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Examples (111, reducible case)

Then v1 and vy are exactly the two columns of
P corresponding to the two positive eigenval-
ues A1 and A>. Please note that this claim is
not valid for the case that some of the eigen-
values of A is not simple (i.e. not of multiplic-

ity 1).
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Examples (111, reducible case)

And for this example, v1 can be expressed as

- A11(A1) —A3 — A2+ 6

— A1o(A1) | _ | —6AF —2); 456
A13(A1) A2 — 2

A1a(A1) 207 +3X; — 14
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Examples (111, reducible case)

The loop P2 is terminating if and only if the
following loop P4 is terminating.

P4: while (By>0) {y:=Jy},

where
[ —28)3 — 8417+ 168X +588 364 ]
B = Bx[vivs] = —Ai—16A2+8A1+168 112
i A+ 2027 4+5X0 — 126  —28 |
z_| A1 O _ v
=182 v ln)
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Examples (111, reducible case)

Obviously, whether the loop P4 terminates can
be decided by whether there exists a real vec-
tor y such that for all positive integer n the
following inequality holds.
n
5 1Y1
B l Dty } > 0.
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Examples (111, reducible case)

Firstly, we consider the first column of B. Set

up = —28(A\; + 377 — 6 —21),

usr = —A3 — 16 A7 + 81 + 168,

uz = A} + 203 + 51 — 126.
It is easy to see that u; = 0. We then deter-
mine whether u, and uz have the same sign by

checking whether the following semi-algebraic
system has real solution,

{F(A\) =0, X >2, wupuz>O0}
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Examples (111, reducible case)

Using DISCOVERER, e.g., calling realzeros,
we obtain an output immediately: the system
has one real solution which is in [5/2,21/8].
T herefore, if n is large enough, the second and
the third inequalities of
T
B [ 2,,113; ] > 0.
must hold for any (y1,y>) with y1 > 0.
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Examples (111, reducible case)

Secondly, we consider the second column of
B. Because we only need to consider the first
element of the column and it is positive, the
first inequality of
..

> 1Y1

53] >0
holds for any (y1,y>) with yo> > 0. Therefore,

we conclude that the loop does not terminate.
For example, the loop does not terminate on

(1,1).
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Discussion

1. Any decision procedure that involves floating-
point calculation is not feasible in terms of
Implementation. This paper is to develop a fully
symbolic decision procedure for termination of
linear program, so that we can avoid floating-
point computations in termination analysis.
Another Interesting issue Is how to guarantee a
(proved) terminating linear program will indeed
terminate, when it runs under a compiler with
certain precision of floating point computation.
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Discussion

2. One may ask whether the assumption in our
main theorem (“the characteristic polynomial
of A Is irreducible”) can be deleted or
weakened as “the characteristic polynomial of
A Is square-free”. The answer is negative.
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Discussion

3. When the characteristic polynomial of A is
reducible, we have used an example to explain
why we still can avoid computing Jordan forms.
The idea Is also to transform the termination
decision problem to the problem of determining
whether a semi-algebraic system has real
solutions symbolically as we have used for the
Irreducible case. However, it is unfortunately
much more complicated and the technical
details will be presented in another paper.

SRATC’08, ECNU, April 4, 2008



Thank you !
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