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Abstract

In this paper, Korn inequality is generalized to the non-conforming finite
element spaces, provided the spaces satisfy some conditions.

Poincare inequality, Poincare-Friedrichs inequality and Friedrichs inequality
play an important role in the existence of solutions of boundary value problems.
Korn inequality does the same for the boundary value problems of linear elas-
ticity. The first three inequalities have been generalized to nonconforming and
quasi-conforming finite element spaces and applied to the convergence discussion.
For some convergent nonconforming element, the generalized Korn inequality 15
not trueld]. This paper will show that the generalized Korn inequality holds for
nonconforming element spaces which satisfy certain conditions.

Let 1 be a polyhedron domain in R with boundary 8% Denote Sobolev
space, Sobolev norm and Soholey semi-norm by H™), HFO) [ lima and
| - |m,q Tespectively.

For element u = (4, u7, -, %n) 0 {H™())", define

o g 12 = . 1/2
|I|u||m1ﬂ = {E: |I|ui.l|m,ft} y |u|m,ﬂ = {z |“1:|fn._ﬂ} :

i=1 i=1

Set
1 3115 h

sijlu) =3 Bz; + Ba

when m > 1. The following Korn ineqgualities,

). 1<i,j=mn,

lulfq < C( 3 leglulln + lulfa), vue (H(E)" (1)

ig=1
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Julta £ C( X lleo(wia + 3 [ lulds), vae @@, @
ig=1 i=1 50

lufg <€ 3 legmifa, Yue (Ho(@)" (3)
ig=1
hold. Their proof can be found in [2] or [3]. They will be generalized to non-
conforming finite element spaces in this paper.

For parameter h, let T, be a finite subdivision of £2. The element in Ty is an
n-simplex or n-parallelotpe. For WT € Ty, denote the diameter of T by At and
the inner diameter by pp. Assume that there exists a constant 7 independent of
h, such that nh < pr < hp < Al T € Ty,

Let Vi C L?(f2) be a finite element space corresponding to Ty, which satisfies
the following conditions,

H1. There exists an integer r > 1, such that, for Vv € Vi, vl € P(T),%T € Th.

Here P.(T) is the space consisting of all polynomials with degree not greater
than r.

H2. For¥v € Vi, T € T, let F be a arbitrary (n—1) dimensional face of T, then
u i continnous on the set consisting of at least n points on F which are not
on a same (1 — 2) dimensional hyperplane and they are affine invariant.

For Vi , let V2 be a subspace of Vi, the element v € V2 of which satisfies that
« is zero on the set consisting of at least n points on F which are not on a same
(n — 2) dimensional hyperplane, when Fis a (n - 1) dimensional face of T in Ty
and F C &6l

For v € H™(Q) + Vy, define

i

ol = (3 0z)'™ Wl = (32 obar)

TeT, TeTa
For u € (H™(1}) + V)", set

[al|mp = (i '-|“i||ﬁ1.n]|m1 | |mp = {i |“:‘1En,h)uz-

i=1 i=1

Theorem 1. Let H1 and H2 be true. Then there exisls a conslont C inde-
pendent of h, such that, the following generalized Korn inequalities,

W< (& lealir +Iviga), ¥ve (), (4)

=l reT,

Mia<o(S & e+ 3 [ nlds), wvemr, ()
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n
IVIia <€ 3 3 lew(Wlifr,  ¥v e ()" (6)
ti=1TeT,
hold uniformly for Wh.

To prove the theorem, we need some preliminary results. For ¥r € R", let
Sz)={T|T € Ty and z € T}, and Ny(z) be the number of elements in
Siix). obwviously, Ny(r) is bounded. For T € Ty, let T be the set of inner points
of T, Er be the set of vertices of T. For ¥v € ¥, v’ is the continuous extension
of vlr From T to T. For h, define E} = { A | A € R and 4 € Ep, T € Ty},
Ei={A|Aecdland A€ Er,T € Ts}.

Lemma 1. Let Hl and H2 be true. Then there erisis a constant O indepen-
dent of . h, such thal

sup

if (@) =l (@) <ort? T 3 fe(vlhr, 1<k<n (7T)
THTMeSL (=)

Telpix)ig=l

are true for Wv € (V)" %z € T end h uniformly, and

sup i () < CR'™™E 3 3 Je(vllor 1SkSn (8)
Tesn(x) TESE(x) ig=1
are true for ¥z € 800, v € (V)" and h uniformly.

Progf. (i) Let v € (Vy)",z € §1. If Nu(z) = 1, then Sy(x) contains only
one element, and (7) is true obviously. When Np(r) > 1, r is on the boundary
of the elements in S;(z). Thus, for T', T € Sx(x), there exist T7,--, T} € Su(x)
such that Ty =T, T; = T", and T; N Ty4 15 an (n = 1) dimensional face F; and
r e F,1l<t<!-=1. Since v has n continuous points on F; which are not on a
same (1 — 2} dimensional hyperplane, one can get

t r - [ [
ot (@) — o, (2)] < AP (Julm + Jowlnisa ),
from the interpolation theory. Therefore,

{=1 -1
ok () = v ()] £ 3 ) = o @) < CRFYE Y (el + [oelams)
=] =1
< CREME 8™ gl (9)
TES, ()
On the other hand, for 1 < 3,t < n,
At b a a
= £ il S—— . 10
Basda; ~ Bay V) + g, uelV) — gy enlY) o

By the inverse inequality of polynomial space, one has

lorlar £ CR™Y Y Jeii(v)loT (11}
a=1
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Combining (9) and (11), oue get (7). (7} is proved.
(ii) Now let = € 8,V E (VT € Sp(x). Ifa (n — 1) dimensional face F of
T is on &0 and = € F, then

W ()] < CRluglar < CRV ™ - less (Vo (12)
ij=L
since ﬂ?; has n zero points on F which are not on a same {n — 2} dimensional
hyperplane.
1f there is no (n — 1) dimensional face F of T with F < 8% and x € F, then
there exist Ty, -+, T & Sp(z), such that Ty M Tiegp 18 an (n =1} dimensional face
Fo,re F,1<t<l-1 andan (n — 1) dimensional face Fi C TN,z e F
Therefore,

i=1
Wiz < 3 ol (e) — v ()] + it ()]
i=1

(&) follows from (7) and (12).

Corresponding to Ty, let Wy = Jw € HYQ)WT € Th wlr € Py(T) when T 15
an n-simplex, w|p is an n Lnear polynomial when T is an n-parallelotpe }. The
function in Wa is uniquely determined by their values at all points in E} U Ej.
Let WP = {w € Wy|w(d) =0,YA € E1}, then W € Hy(f2).

For Yu € Vi, define Ty € Wy, as follows, for ¥4 € Ej + EL,

_ 1 T
N 28 Ni(A) Teszmizlﬂ b

and define IMv € WY by
1 T
—— T WT(4), AE€E;,
Hﬂv{ﬂ} = Nu(A) Tes,(z)

0, Ae Ef

For ¥v € (Vi)™ let v = (Iavg, - pvn), M = (TR, -~ 00,0
Lemma 2. Let H1 and H2 be true. Then there erists a constant C indepen-

dent of h, such fhat,

T+ Bl Y
Y Ry = Maviiy + Y f o — il 2ds < CRY Y 2 lesi(¥)E s

=01 i=1m Ty if=L
Vv E I:Fh}ﬂ, {13}
T K¥|y - vl < Ch* 3 3 leu (i, ¥V E (W) (14)

i=0,1 TeT, td=1
hold for Wh uniformly.
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S ST

Proof. For ¥T € Ty, let Pr be the interpolation operator defined as follows.
Pr is the linear interpolation operator using the the function values on the vertices
when T is an n-simplex, and Pr is the n linear one when T is an n-parallelotpe,
By the interpolation theory (see [1] or [4] ), for ¥v € (V4)",

1 b3
SIS RE Y lm-Pruflr<ohtY Y lndir

k=1i=0,1 TcT, k=LTeTh

FE i -
D f|u,. - Prultds <Y T e
k=1TeThar k=1TeT,

From {11}, one get

]

2 203 e = Prodir +h 30 3 flﬂa-FrfukI“eis

k=1li=0,1 T&T, : k=1 TeTrgT

T

<ChEY N ley(v) 3 (15)

ig=17€T,

When T € Ty, is an n-simplex, it is easy to prove that ¥p € F(T),

pla gz + hlplar T S [p(A)2 (16)
AEEpm

{16) is also true for n linear polynomial p when T is an n-parallelotpe. From the
definitions of Pr and [T, one has

hr ! T
N | Prue = Ihwelir+ A3 Y [Prow— Oavelf or

k=1TeT, E=1TeT,

<Ch" 3 % |Pruc(d) = Have(4)
TET, AEET

<Ch™ 3 5 |uf(4) = Mawe( )], (17)
TET, AEET

When T € Ty, A € Ey, from (7], one derives that

() - () = pof () - o 3 oF'(4)
T ESL(A)

21
s -n"rlll{.-‘q‘:l T Z:

ESk[A)

v (4) =l ()]

< CR™™M % N |ei(v)lnge- (18)

TreS, (A=l
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By (17) and (18) as well as the inverse inequality, one get

S S K Y |Pro - Tanlir +h S 3 [ [Pro — avil'ds
k=1%

0,1 TeT. k=1 TeThaT

]

<Ch*Y. N Jei(vIia

idg=lTeT,
Inequality (13) follows from (15 and the above inequality. Inequality (14) can be
obtained by similar way.
Now we prove the theorem. Let v € (Vi)*, then Ilyv € (H L{a))™. From (1)
and (13), one has

Ivllie < 2(llv = Tavlf s + ITTav]d o)

< {’JI[ Y lesvilir + E: e (Mav)lgn + ||1'Ih"-'||§.:;:)

TeT), ni=l ij=1
EC( Yo ¥ legivilgr + 33 |ei(Tav) - = (VI3
TeT, i=l ig=1TeT,

1
Flv-TavlEa +IvIZa) <C( X 3 lealir +1vida)
TET“'E{.;=1

that is, inequality {4) is true. Similarly, inequality (3) is obtained by (2} and {13],
and inequality (8} by (3) and (14).

For the fnite element methods of the linear elasticity problem, one can get,
by the generalized Korn inequality, that a non-conforming elements, convergent
in the energy norm, is also convergent in norm || - [|1,4 with the same error bounds,
when 0 is not convex. For example, Wilson element is convergent in norm || - |1
and the error is O(h).
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