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Summary In this paper, a new class of Zienkiewicz-type nonconforming finite element,
in n spatial dimensions with n ≥ 2, is proposed. The new finite element is proved to be
convergent for the biharmonic equation.
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1 Introduction

In this paper, we will propose a new class of Zienkiewicz-type nonconforming simplex finite
element for n-dimensional fourth order partial differential equations with n ≥ 2. It uses the
values of function and first order derivatives at vertices as degrees of freedom, that is, it uses
the same degrees of freedom with the Zienkiewicz element [2 or 6]. But its shape function
space is different from the one of the Zienkiewicz element.

As a nonconforming finite element for fourth order partial differential equations, the
Zienkiewicz element is attractive. The first thing is its convergent property. In two dimen-
sional case, the Zienkiewicz element is only convergent under the parallel line condition,
and is divergent in general grids. The numerical experiments were given in [7] and the
mathematical proof can be found in [10]. Another attractive thing is the degrees of freedom
of the Zienkiewicz element. It is convenient for numerical computations to take values of
function and derivatives at vertices as degrees of freedom. Although on each single element
the number of degrees of freedom of the Zienkiewicz element is not the least, the global
number is.
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�� This work was supported in part by NSF DMS-0209497 and NSF DMS-0215392 and the Changjiang
Professorship through Peking University
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There are some modified triangular elements, with the same degrees of freedom of the
Zienkiewicz element, proposed by different ways, such as, the TQC9 element by the quasi-
conforming method [18,5], the generalized conforming element by the generalized con-
forming method [9], the TRUNC element by the free formula method [1,4] and the Bergan
element by the energy orthogonal method [3]. We call these elements are of Zienkiewicz-
type, Z-type for short. Their convergence analysis were given in [20,13,11,14] respectively.
It is a little surprise that there were no convergent Z-type element proposed directly from
the nonconforming element method in two dimensions.

In three dimensional case, two convergent Z-type elements were proposed in [19]. One
is constructed by the quasi-conforming method, and another is a non C0 nonconforming
element which is reduced from a cubic tetrahedral nonconforming element proposed also in
[19]. For this cubic element, the number of the degrees of freedom is just the dimension of
the cubic polynomial space. It does not occur in other dimensional cases when the similar
degrees of freedom are used.

The new Z-type element proposed in this paper is a nonconforming C0 element, and it
is constructed in a canonical fashion for two and higher dimensions.

The rest of the paper is organized as follows. Section 2 recalls the nonconforming el-
ement method. Section 3 gives a detailed descriptions of a new Z-type nonconforming el-
ement. Section 4 shows the convergence of the new element. The last section gives some
concluding remarks.

2 Preliminaries

Let Ω be a bounded polyhedroid domain in Rn (n ≥ 2) with boundary ∂Ω. For a nonneg-
ative integer s, Let Hs(Ω), Hs

0(Ω), ‖ · ‖s,Ω and | · |s,Ω denote the usual Sobolev spaces,
norm and semi-norm respectively. Let (·, ·) denote the inner product of L2(Ω).

For f ∈ L2(Ω), we consider the following fourth order boundary value problem:⎧⎨
⎩

∆2u = f, in Ω,

u|∂Ω =
∂u

∂ν

∣∣∣
∂Ω

= 0
(1)

where ν = (ν1, ν2, · · · , νn)� is the unit outer normal to ∂Ω and ∆ is the standard Laplacian
operator.

Set

∇ =
( ∂

∂x1
,

∂

∂x2
, · · · ,

∂

∂xn

)�
.

Define

a(v,w) =
∫

Ω

n∑
i,j=1

∂2v

∂xi∂xj

∂2w

∂xi∂xj
, ∀v,w ∈ H2(Ω). (2)

The weak form of problem (1) is: find u ∈ H2
0 (Ω) such that

a(u, v) = (f, v), ∀v ∈ H2
0 (Ω). (3)
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For a subset B ⊂ Rn and a nonnegative integer r, let Pr(B) be the space of all polyno-
mials with degree not greater than r.

Let (T, PT , ΦT ) be a finite element where T is the geometric shape, PT the shape func-
tion space and ΦT the vector of degrees of freedom, and let ΦT be PT -unisolvent (see [6]).
Let Th be a triangulation of Ω with mesh size h. For each element T ∈Th, let hT be the di-
ameter of the smallest ball containing T and ρT be the diameter of the largest ball contained
in T .

Let {Th} be a family of triangulations with h → 0. Throughout the paper, we assume
that {Th} is quasi-uniform, namely it satisfied that hT ≤ h ≤ ηρT , ∀T ∈ Th for a positive
constant η independent of h.

For each Th, let Vh and Vh0 be the corresponding finite element spaces associated with
(T, PT , ΦT ) for the discretization of H2(Ω) and H2

0 (Ω) respectively. In the case of non-
conforming element, Vh 	⊂ H2(Ω) and Vh0 	⊂ H2

0 (Ω).
For v,w ∈ L2(Ω) that v|T , w|T ∈ H2(T ), ∀T ∈ Th, we define

ah(v,w) =
∑

T∈Th

∫
T

n∑
i,j=1

∂2v

∂xi∂xj

∂2w

∂xi∂xj
. (4)

The finite element method for problem (3) corresponding to the element (T, PT , ΦT ) is:
find uh ∈ Vh0 such that

ah(uh, vh) = (f, vh), ∀vh ∈ Vh0. (5)

For any v ∈ L2(Ω) that v|T ∈ Hm(Ω), ∀T ∈ Th, we define the following mesh-
dependent norm ‖ · ‖m,h and semi-norm | · |m,h:

‖v‖m,h =
( ∑

T∈Th

‖v‖2
m,T

)1/2
, |v|m,h =

( ∑
T∈Th

|v|2m,T

)1/2
.

For nonconforming elements, the basic mathematical theory has been established (see
[6,8,15-17]). We will use them to discuss the convergence of the new element.

3 A New Z-Type Nonconforming Element

In this section, we give a detailed description of our new Z-type nonconforming element in
n-dimensions (n ≥ 2).

Given an n-simplex T with vertices ai, 1 ≤ i ≤ n+1, denote by Fi (1 ≤ i ≤ n+1) the
(n − 1)-dimensional subsimplex of T without ai as its vertex, and by λ1, λ2, · · · , λn+1 the
barycentric coordinates of T . Denote by |T | and |Fi| the measures of T and Fi respectively.

Define

P ′
3(T ) = P2(T ) + span {λ2

i λj − λiλ
2
j | 1 ≤ i < j ≤ n + 1}.

Then the shape function space of the n-dimensional Zienkiewicz element is just P′
3(T ).
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Now let q0 be the bubble function defined by

q0 = λ1λ2 · · ·λn+1.

For 1 ≤ i < j ≤ n + 1, we define

qij = λ2
i λj − λiλ

2
j

+ (2n−1)!
n!

(
(n−1)n

n+1 (λi − λj) +
∑

1≤k≤n+1
k �=i,k �=j

(∇λi−∇λj)�∇λk

‖∇λk‖2 (nλk − 1)
)
q0. (6)

A new Z-type nonconforming element, NZT element for short, is defined by (T, PT , ΦT )
with

1) T is an n-simplex.
2) PT = P2(T ) + span{ qij | 1 ≤ i < j ≤ n + 1}.
3) The components of ΦT are:

v(aj), 1 ≤ j ≤ n + 1, (aj − ai)�∇v(ai), 1 ≤ i 	= j ≤ n + 1, ∀v ∈ C1(T ).

The degrees of freedom of the NZT element are just the same with the n-dimensional
Zienkiewicz element (see Fig. 1).

•

•
• •

a1 a2

a3

a4

n = 3

•

• •
a1 a2

a3

n = 2
Fig. 1

Let ν(i) denote the unit out normal of (n − 1)-subsimplex Fi of T (1 ≤ i ≤ n + 1). By
certain computation, we can obtain that

1
|Fi|

∫
Fi

∂p

∂ν(i)
=

1
n

∑
1≤k≤n+1

k �=i

∂p

∂ν(i)
(ak), 1 ≤ i ≤ n + 1, ∀p ∈ PT . (7)

Lemma 1 For NZT element, ΦT is PT -unisolvent.

Proof Let p ∈ PT and

p(aj) = 0, 1 ≤ j ≤ n + 1; (aj − ai)�∇p(ai) = 0, 1 ≤ i 	= j ≤ n + 1.

We only need to show that p ≡ 0. Let q1, · · · , ql be a basis of P2(T ). Then p can be wriiten
as

p =
l∑

i=1

ciqi +
∑

1≤i<j≤n+1

cijqij
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where ci and cij are constants. Set q̃ij = λ2
i λj − λiλ

2
j and

p̃ =
l∑

i=1

ciqi +
∑

1≤i<j≤n+1

cij q̃ij.

Then
p = p̃ +

∑
1≤i<j≤n+1

cij(qij − q̃ij).

It can be verified that

(qij− q̃ij)(ak) = 0, 1 ≤ k ≤ n+1; (am−ak)�∇(qij− q̃ij)(ak) = 0, 1 ≤ k 	= m ≤ n+1.

Thus, p̃ satisfies

p̃(aj) = 0, 1 ≤ j ≤ n + 1; (aj − ai)�∇p̃(ai) = 0, 1 ≤ i 	= j ≤ n + 1.

On the other hand, p̃ ∈ P ′
3(T ). Thus p̃ ≡ 0, that is,

ci = 0, 1 ≤ i ≤ l; cij = 0, 1 ≤ i < j ≤ n + 1.

It follows that p ≡ 0.

For 1 ≤ i 	= j ≤ n + 1 we define⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pij =
1
2
λiλj(1 + λi − λj),

+ (2n−1)!
2n!

(
(n−1)n

n+1 (λi − λj) +
∑

1≤k≤n+1
k �=i,k �=j

(∇λi−∇λj)
�∇λk

‖∇λk‖2 (nλk − 1)
)
q0

pi = λ2
i + 2

∑
1≤j≤n+1

j �=i

pij .

(8)

Let δij be the Kronecker delta. It can be verified that for 1 ≤ i 	= j ≤ n + 1 and 1 ≤ k 	=
l ≤ n + 1, {

pi(ak) = δik, (al − ak)�∇pi(ak) = 0,

pij(ak) = 0, (al − ak)�∇pij(ak) = δikδjl.
(9)

That is, pi and pij are the nodal basis functions respect to the degrees of freedom. The
corresponding interpolation operator ΠT can be written by,

ΠT v =
∑

1≤i≤n+1

piv(ai) +
∑

1≤i�=j≤n+1

pij(aj − ai)�∇v(ai), ∀v ∈ C1(T ). (10)

For NZT element, we can define the corresponding finite element spaces Vh and Vh0 as
follows: Vh = {v ∈ L2(Ω) | v|T ∈ PT ,∀T ∈ Th, v and ∇v are continuous at all vertices
of elements in Th}. Vh0 = {v ∈ Vh | v and ∇v vanish at all vertices belonging to ∂Ω}.
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We claim that Vh ⊂ H1(Ω) and Vh0 ⊂ H1
0 (Ω). Let vh ∈ Vh, and let F be a common

(n − 1)-dimensional subsimplex of T, T′ ∈ Th. By definition, the restrictions of vh|T and
vh|T ′ on F are all in P ′

3(F ), and they and their first order derivatives are equal at all vertices
of F respectively. Thus vh|T = vh|T ′ on F , that is, vh ∈ C0(Ω̄), and this leads to that
vh ∈ H1(Ω). Using similar argument, we can show vh ∈ H1

0 (Ω) when vh ∈ Vh0.
Given any (n − 1)-dimensional subsimplex F and vh ∈ Vh, let us define the jump of

∇vh across F as follows:
[∇vh] = ∇vh|T −∇vh|T ′

if F = T ∩ T ′ for some T, T ′ ∈ Th and

[∇vh] = ∇vh|T
if F = T ∩ ∂Ω.

The following lemma is a direct consequence of equality (7) and the definitions of Vh
and Vh0.

Lemma 2 Let Vh and Vh0 be the finite element spaces corresponding to NZT element. If F
is a common (n − 1)-dimensional subsimplex of T, T′ ∈ Th, then∫

F
[∇vh] = 0, ∀vh ∈ Vh. (11)

If an (n − 1)-dimensional subsimplex F of T ∈Th is on ∂Ω then∫
F
[∇vh] = 0, ∀vh ∈ Vh0. (12)

Remark. Let Vh and Vh0 be the finite element spaces corresponding to NZT element. By
Lemma 2 and Green’s formula, we can obtain directly that

ah(p, vh) = 0, ∀p ∈ P2(Ω̄), ∀vh ∈ Vh0.

We know from [15] that the NZT element passes the patch test on triangulationTh.

4 Convergence Analysis

In this section, we discuss the convergence property of NZT element. Let Vh and Vh0 be the
finite element spaces corresponding to NZT element. First, we consider the error estimates
for finite element spaces.

Theorem 1 Let Vh and Vh0 be the finite element spaces corresponding to NZT element.
Then there exists a constant C independent of h such that

inf
vh∈Vh0

3∑
m=0

hm|v − vh|m,h ≤ Ch3|v|3,Ω , ∀v ∈ H3(Ω) ∩ H2
0 (Ω), (13)

inf
vh∈Vh

3∑
m=0

hm|v − vh|m,h ≤ Ch3|v|3,Ω , ∀v ∈ H3(Ω). (14)
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Proof For v ∈ H3(Ω) ∩ H2
0 (Ω), let wh ∈ L2(Ω) such that ∀T ∈ Th, wh|T ∈ P2(T ) and∫
T

qwhdx =
∫

T
qvdx, ∀q ∈ P2(T ).

By the interpolation theory, we have

|v − wh|m,h ≤ Ch3−m|v|3,Ω , 0 ≤ m ≤ 3. (15)

Given a set B ⊂ Rn, let Th(B) = {T ∈ Th |B ∩ T 	= ∅ } and Nh(B) be the number
of the elements in Th(B).

Now we define vh ∈ Vh0 as follows: for any T ∈ Th, if vertex ai of T is in Ω then

vh(ai) =
1

Nh(ai)

∑
T ′∈Th(ai)

(wh|T ′)(ai), ∇vh(ai) =
1

Nh(ai)

∑
T ′∈Th(ai)

∇(wh|T ′)(ai).

Obviously, vh is well-defined. We will show that

|v − vh|m,h ≤ Ch3−m|v|3,Ω , 0 ≤ m ≤ 3. (16)

Let T ∈ Th, by a standard scaling argument, we have

|p|2m,T ≤ Chn−2m
n+1∑
i=1

(
|p(ai)|2 + h2‖∇p(ai)‖2

)
, 0 ≤ m ≤ 3, ∀p ∈ PT . (17)

Set φh = wh − vh. Obviously, φh|T ∈ PT .
If vertex ai of T is in Ω, the definition of vh leads to that

(φh|T )(ai) =
1

Nh(ai)

∑
T ′∈Th(ai)

(
(wh|T )(ai) − (wh|T ′)(ai)

)
.

For T ′ ∈ Th(ai) there exist T1, · · · , TJ ∈ Th(ai) such that T1 = T , TJ = T ′ and F̃j =
Tj ∩ Tj+1 is a common (n − 1)-dimensional subsimplex of Tj and Tj+1 and ai ∈ F̃j ,
1 ≤ j < J . By the inverse inequality, we have

∣∣∣(wh|T )(ai) − (wh|T ′)(ai)
∣∣∣2 =

∣∣∣ J−1∑
j=1

(
(wh|Tj )(ai) − (wh|Tj+1)(ai)

)∣∣∣2

≤ C

J−1∑
j=1

∣∣∣(wh|Tj )(ai) − (wh|Tj+1)(ai)
∣∣∣2

≤ Ch1−n
J−1∑
j=1

∣∣∣wh|Tj − wh|Tj+1

∣∣∣2
0,F̃j

≤ Ch1−n
J−1∑
j=1

( ∣∣∣v − wh|Tj

∣∣∣2
0,F̃j

+
∣∣∣v − wh|Tj+1

∣∣∣2
0,F̃j

)
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By the interpolation theory, we obtain

∣∣∣(wh|T )(ai) − (wh|T ′)(ai)
∣∣∣2 ≤ Ch6−n

J∑
j=1

|v|23,Tj

Since Nh(T ) is bounded, we have

|(φh|T )(ai)|2 ≤ Ch6−n
∑

T ′∈Th(T )

|v|23,T ′ (18)

If vertex ai of T is on ∂Ω then there exists T′ ∈ Th(ai) with an (n − 1)-dimensional
subsimplex F of T ′ on ∂Ω and ai ∈ F . By the definitions of wh and vh, we have

|(φh|T )(ai)| = |(wh|T )(ai) − (wh|T ′)(ai) + (wh|T ′)(ai)|

≤ |(wh|T )(ai) − (wh|T ′)(ai)| + |(wh|T ′)(ai)|.

By the inverse inequality and the interpolation theory

|(wh|T ′)(ai)|2 ≤ Ch1−n|wh|T ′ |20,F = Ch1−n|v − wh|T ′ |20,F ≤ Ch6−n|v|23,T ′ .

By a similar analysis for |(wh|T )(ai) − (wh|T ′)(ai)|, we conclude that (18) is also true in
this case.

Similarly, we can show that

n+1∑
i=1

‖∇(φh|T )(ai)‖2 ≤ Ch4−n
∑

T ′∈Th(T )

|v|23,T ′ . (19)

Combining (17), (18) and (19), we have

h2m|φh|2m,T ≤ Ch6
∑

T ′∈Th(T )

|v|23,T ′ .

Summing the above inequality over all T ∈Th, we obtain that

h2m|φh|2m,h ≤ Ch6
∑
T∈Th

∑
T ′∈Th(T )

|v|23,T ′ .

Consequently
h2m|φh|2m,h ≤ Ch6|v|23,Ω . (20)

Inequality (16) follows from (20) and (15).
Using similar argument, we can show (14).

Lemma 3 Let Vh0 be the finite element space corresponding to NZT element. Then there
exists a constant C independent of h such that for v ∈ H3(Ω)

|ah(v, vh) − (∆2v, vh)| ≤ Ch|v|3,Ω |vh|2,h, ∀vh ∈ Vh0. (21)
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Proof Let vh ∈ Vh0 and φ ∈ H1(Ω). Given T ∈ Th and an (n−1)-dimensional subsimplex
F of T , let P 0

F : L2(F ) → P0(F ) be the L2-orthogonal projection.
Let i, j ∈ {1, 2, · · · , n}. By Lemma 2 and Green’s formula we have

∑
T∈Th

∫
T

(
φ

∂2vh

∂xi∂xj
+

∂φ

∂xi

∂vh

∂xj

)
=
∑

T∈Th

∫
∂T

φ
∂vh

∂xj
νi =

∑
T∈Th

∑
F⊂∂T

∫
F

φ
∂vh

∂xj
νi

=
∑

T∈Th

∑
F⊂∂T

∫
F

φ
(∂vh

∂xj
− P 0

F

∂vh

∂xj

)
νi

=
∑

T∈Th

∑
F⊂∂T

∫
F
(φ − P 0

F φ)
(∂vh

∂xj
− P 0

F

∂vh

∂xj

)
νi

Using the Schwarz inequality and the interpolation theory we obtain that∣∣∣ ∑
T∈Th

∑
F⊂∂T

∫
F
(φ − P 0

F φ)
(∂vh

∂xj
− P 0

F
∂vh

∂xj

)
νi

∣∣∣
≤
∑

T∈Th

∑
F⊂∂T

‖φ − P 0
F φ‖0,F

∥∥∥∂vh

∂xj
− P 0

F

∂vh

∂xj

∥∥∥
0,F

≤ C
∑

T∈Th

h|φ|1,T |vh|2,T ≤ Ch|φ|1,Ω |vh|2,h.

Consequently, for i, j ∈ {1, 2, · · · , n},∣∣∣ ∑
T∈Th

∫
T

(
φ

∂2vh

∂xi∂xj
+

∂φ

∂xi

∂vh

∂xj

)∣∣∣ ≤ Ch|φ|1,Ω |vh|2,h, ∀φ ∈ H1(Ω), ∀vh ∈ Vh0. (22)

Using (22) and the following equality,

ah(v, vh) − (∆2v, vh) =
n∑

i=1

∑
T∈Th

∫
T

(
∆v

∂2vh

∂x2
i

+
∂∆v

∂xi

∂vh

∂xi

)

+
∑

1≤i�=j≤n

∑
T∈Th

∫
T

( ∂2v

∂xi∂xj

∂2vh

∂xi∂xj
+

∂3v

∂x2
i ∂xj

∂vh

∂xj

)

−
∑

1≤i�=j≤n

∑
T∈Th

∫
T

(∂2v

∂x2
i

∂2vh

∂x2
j

+
∂3v

∂x2
i ∂xj

∂vh

∂xj

)
,

(23)

we obtain the conclusion of the lemma.

Theorem 2 Let Vh0 be the finite element space corresponding to NZT element, and let u
and uh be the solutions of problems (3) and (5) respectively. Then

lim
h→0

‖u − uh‖2,h = 0, (24)
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and there exists a constant C independent of h such that

‖u − uh‖2,h ≤ Ch|u|3,Ω (25)

when u ∈ H3(Ω).

Proof From Lemma 2 we see that NZT element passes the F-E-M-Test in [12]. Hence NZT
element passes the generalized patch test. By Theorem 1 and the fact that H2

0 (Ω) is the
closure of C∞

0 (Ω) in norm ‖ · ‖2,Ω , we obtain

lim
h→0

inf
vh∈Vh0

‖v − vh‖2,h = 0, ∀v ∈ H2
0 (Ω).

Thus (24) is true by the result in [16].
By the generalized Poincare-Friedrichs inequality [17] and the Strang Lemma (see [6]

or [15]), we have

‖u − uh‖2,h ≤ C

(
inf

wh∈Vh0

‖u − wh‖2,h + sup
wh∈Vh0 wh �=0

| ah(u,wh) − (f,wh)|
‖wh‖2,h

)
.

Then (25) follows from (13) and (21).

5 Concluding remarks

To construct a convergent Z-type nonconforming element for the fourth order elliptic bound-
ary value problems, is motivated by the theoretical interest and the efficiency consideration
in practical computation. In this paper, the NZT element, a new n-dimensional C0 non-
conforming simplex finite element, is constructed and analyzed. The NZT element uses the
same degrees of freedom with the Zienkiewicz element and the different shape function
space. Unlike the Zienkiewicz element, the NZT element is convergent and passes the patch
test in general grids.
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