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Abstract. This paper proposes a robust finite element method for a three dimensional fourth
order elliptic singular perturbation problem. The method uses the three dimensional Morley element
and replaces the finite element functions in the part of bilinear form corresponding to the second
order differential operator by a suitable approximation. To give such an approximation, the paper
constructs a convergent nonconforming element for the second order problem. The paper shows
that the method converges uniformly in the perturbation parameter.
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1. Introduction

Let Q be a bounded polyhedral domain of R™ with 1 < n < 3. Denote the boundary of 2
by 9Q. For f € L?(Q)), we consider the following boundary value problem of fourth order
elliptic singular perturbation equation:

2A%u — Au = f, in Q,

| ou (1.1)
U\ £ = — =

227 v laa

where v = (v1,---,v,) " is the unit outer normal of 92, A is the standard Laplacian operator

and ¢ is a real small parameter with 0 < ¢ < 1. When ¢ — 0 the differential equation formally
degenerates to Poisson equation.

In two dimensional case, the Morley element was proposed in [9] for the plate bending
problem. The Morley element is convergent for fourth order elliptic problem, but is divergent
for second order problem (see [5], [8] and [13]). The Morley element and an C° modified
Morley element for problem (1.1) were discussed in [10]. It was was shown that the modified
Morley element is uniformly convergent with respective to & while the Morley element does
not converges when ¢ — 0. Two non C° nonconforming elements were proposed in [4] by
the double set parameter technique. These two elements were also proved to be uniformly
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convergent. A modified Morley element method for problem (1.1) was proposed in [15], it is
convergent uniformly with respective to e. This method also uses the Morley element (or the
rectangle Morley element), but the linear approximation (or the bilinear approximation) of
finite element functions is used in the part of the bilinear form corresponding to the second
order differential term.

In this paper, we consider three dimensional case. The three dimensional Morley element
can be found in [11] or in [14]. We will take a similar way used in [15] and propose a
modified Morley element method for problem (1.1). We will use certain approximation of
finite element functions in the part of the bilinear form corresponding to the second order
differential term. It will be shown that the modified method converges uniformly in the
perturbation parameter €. The three dimensional Morley element uses the integral averages
of function over all edges as degrees of freedom instead of the function values at vertices. To
given a suitable approximation of finite element function, we need to construct a convergent
nonconforming finite element for Poisson equation with the integral averages of function
over all edges as degrees of freedom.

Problem (1.1) is a boundary value problem of a stationary linearizing form of the Cahn-
Hilliard equation. The modelling in material science makes use of the Cahn-Hilliard equa-
tions in three dimensions (see [3, 2, 6]). Besides the theoretical interest, our new finite
element method is hoped to be useful in the computation of the Cahn-Hilliard equation.

The paper is organized as follows. The rest of this section lists some preliminaries.
Section 2 describes a nonconforming finite element for Poisson equation. Section 3 gives the
detail descriptions of the modified Morley element method. Section 4 shows the uniform
convergence of the method.

Throughout this paper, we assume n = 3. For nonnegative integer s, let H*(Q), || - |s.0
and | - |5, denote the usual Sobolev space, norm and semi-norm respectively. Let Hj(2) be
the closure of C§°(€2) in H*(§2) with respect to the norm || - ||s.q and (-,-) denote the inner
product of L?(Q2). Define

2
a(v,w) / E 83318:1% axzaxj Yo, w € H*(Q), (1.2)
3
B ov Ow 1
b(v, w) 7/9 E B, 92, Yo, we H (Q). (1.3)

The weak form of problem (1.1) is: to find u € H3(Q) such that
e2a(u,v) +b(u,v) = (f,v), Yo € HZ(Q). (1.4)
Let u° be the solution of following boundary value problem:

{ —Au’ = f, in Q,

1.5
u’)pq =0 (15)

For mesh size h, let 7; be a triangulation of ) consisting of tetrahedrons. For each
T € T3, let hp be the diameter of the smallest ball containing 7" and pr be the diameter
of the largest ball contained in T. Let {73} be a family of triangulations with h — 0.
Throughout the paper, we assume that hpr < h < npp, VI' € 73, with n a positive constant
independent of h.



2. A nonconforming element for Poisson equation

For a subset B C R?® and a nonnegative integer r, let P,.(B) be the space of all polynomials
with degree not greater than r.

Given a tetrahedron T, its four vertices is denoted by a;, 1 < j < 4. The face of T'
opposite a; is denoted by Fj, 1 < j < 4. The edge with a; and a; as its vertices, is
denoted by S;;, 1 < i < j < 4. Denote the measures of T, F; and S;; by |T|, |F;| and |S;;]
respectively. Let Aq,---, A4 be the barycentric coordinates of T. Define

1= (A1 = A3)(A2 — A1), g2 = (A1 — A2) (Mg — A3)
We define a nonconforming element (7', Ps, ®3.) for Poisson equation by
1) T is a tetrahedron.
2) P} =P (T)+span{qi,q2}.
3) For v € CU(T),

D5.(v) = (P12 (v), P13(v), P14(V), P23 (v), Paa(v), ¢34(’U))T
with X
gbij(v):l&y/sijv’ 1<i<j<A.

For1<i<j<4,/letl1<k<l<4and{kI}N{i,j} =0, and define

2 1
S+ A7) = 2+ ) + 20 + 20\ — ST N (2.1)

pij:3

i1=i,j in=F,l

Set
2

3
Then the following identities can be verified

- 1
Dij = (N +Aj) — g()\k + Ao).

(2.2)

P12 = P12 + 2q1 + q2, P13 = P13 — q1 — 2q2, P14 = P14 — q1 + qo,
P23 = P23 — q1 + G2, P24 = P24 — q1 — 2q2, P34 = P34 + 2q1 + q2.

That is, p;; € Py, 1 <i < j < 4. Denote by d;; the Kronecker delta. By directly computing,

we obtain

1
1Skil Js,,

Hence, p;;, 1 <@ < j <4, are the basis functions corresponding to the degrees of freedom.
This leads to that ®3 is Pj-unisolvent.
The interpolation operator II%. corresponding to (T, Py, ®5.) is written as

TV = Z pijdij(v), Yve C'T). (2.4)
1<i<j<4
For v € L*(Q) and v|r € C%T), VT € Tj, define I v by
wolr =g (vlr), YT € Th. (2.5)

By the interpolation theory (refer to [5]) we obtain the following lemma.



Lemma 2.1 There exists a constant C independent of h such that
[v — 0| < Ch2 " ular, 0<m<2, Yoe HXT) (2.6)
1s true for all T € T,.
By a direct computation we have the following lemma.

Lemma 2.2 Given a tetrahedron T, the following equality is true,

il =

By the above two lemmas and the mathematical theory (refer to [8], [12] or [5]) we obtain
that this element is convergent for the boundary value problem of three dimensional Poisson
equation.

1
1<;<k<4 | jk| Sik
JFi,kF#

3. Modified Morley element method

The Morley element can be described by (T, PM, M) with
1) T is a tetrahedron.
2) PM = Py(T).

3) @M is the vector of degrees of freedom whose components are:

1 1 ov
— Ll<i<j<4 — | = 1<j<4
|sij/si].” == |Fj|/pjau !

For each 73, let Vj, and V3o be the corresponding finite element spaces associated with
the Morley element for the discretization of H?(Q2) and HZ(f2) respectively. This defines
two family of finite element spaces {Vj,} and {Vj}. It is known that V,, ¢ H?*(Q) and
Vio ¢ HZ(Q). Let II;, be the interpolation operator corresponding to the Morley element
and 7j,.

We define, for v,w € L?(Q) and v|r,w|r € H*(T), VT € Ty,

w
(vw) =3 / Z axzaxj ax 0z (3:1)

for v € CY(T).

ov Jw
(v, w) Z /ZaxZ% (3.2)

TeT

The standard finite element method for problem (1.4) corresponding to the Morley element
is: to find uy € Vo such that

EQah(uh, Uh) + bh(uh,vh) = (f, Uh), Yy, € Vio. (3.3)



We consider the following modified Morley element method: to find u, € Vjg such that
e2ap (un, vp) + bp(Miup, I vy) = (f,5vy),  Yop € Vie. (3.4)

Problem (3.4) has unique solution when & > 0. When e = 0, the problem degenerates to
b (IL up, o) = (f,jvn),  Yup € Vig. (3.5)

Although the solution of problem (3.5) is not unique yet, IIju; is uniquely determined.
Actually, IT} uj, is the exact finite element solution of the element for problem (1.5) given in
previous section.

Now we consider two examples. Let Q = [—1,1]3 and

ur(@) = (1—21)*(1 - 23)*(1 — 23)?,
uz(x) = (1 + cosmay)(1 + cosmaz)(1 + cos was).

Let i € {1,2}. For ¢ > 0, set f = e2A%u; — Au;. Then wu; is the solution of problem (1.1)
when ¢ > 0, and is the solution of problem (1.5) when € = 0.

We first divide €2 into 12 tetrahedral elements with A = 2 as shown in Figure 1, then use
the global regular refinement strategy provided in [1] to get the mesh sequence.
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Figure 1: The initial mesh
Define 12
onlllen = (2an(vn, vi) + b (v, Mivg)) 77, Yoy, € Vio.

Different values of € and h are chosen to demonstrate the behaviors of the following relative
error of the modified Morley element method,

H _
B, - | TThw — unl||en

— 3.6
5= i allen (3:6)

where wy, is the solution of problem (3.4).



Let g = A%u;, then wu; is the solution of the following boundary value problem of bihar-

monic equation,
A%y =g, in Q,

ou (3.7)

u|aQ - % o0 -

For comparison, we also consider the error of finite element solution to problem (3.7). Let
up, € Vi be the solution of the following problem,

an(tn,vn) = (g, jon),  VYon € Vio. (3.8)
In this situation, the relative error Ej, is presented by

ah(Hhu — ﬂ}“ Hhu — ﬂh)

B2 =
h ah(Hhu, H;,,u)

(3.9)

For the modified Morley element method in the case of f = ¢?A2u; — Au; and g =
A?uy, E. ) and Eh, corresponding some ¢ and h, are listed in Table 1. In the case that
f =e2A%uy — Aug and g = A%uy, E., and E}, are listed in Table 2.

From Table 1 and Table 2 we see that the modified Morley element method converges
for all € € [0, 1]. More precisely, the result shows that E. j is linear with respect to h as well
as Ep 5 and Eh are.

e\h | 2 [ 1 [ 27V ] 272 [ 273 | 2
0 0.5800 | 0.2942 | 0.1654 | 0.08072 | 0.03969 | 0.01960
210 0.5800 | 0.2942 | 0.1654 | 0.08071 | 0.03966 | 0.01958
278 0.5802 | 0.2943 | 0.1654 | 0.0805 | 0.03923 | 0.01874
276 0.5844 | 0.2950 | 0.1651 | 0.07802 | 0.03429 | 0.01276
2-4 0.6492 | 0.3082 | 0.1680 | 0.06994 | 0.02814 | 0.01234
272 1.438 | 0.5122 | 0.2923 | 0.1426 | 0.06951 | 0.03398
1 3.565 | 0.8335 | 0.4097 | 0.1959 | 0.09494 | 0.04634
oo (Biharmonic) | 4.195 | 0.8872 | 0.4243 | 0.2021 | 0.09781 | 0.04773

Table 1

e\l 2 1 271 272 273 27
0 0.7717 | 0.3048 | 0.1778 | 0.08484 | 0.04107 | 0.02009
210 0.7717 | 0.3048 | 0.1778 | 0.08483 | 0.04105 | 0.02003
8 0.7721 | 0.3049 | 0.1777 | 0.08466 | 0.04063 | 0.01920
=8 0.7776 | 0.3054 | 0.1777 | 0.08226 | 0.03570 | 0.01316
4
2

0.8643 | 0.3140 | 0.1822 | 0.07345 | 0.02838 | 0.01209
1.919 | 0.4598 | 0.2949 | 0.1401 | 0.06752 | 0.03288

1 4.788 | 0.7376 | 0.4012 | 0.1907 | 0.09203 | 0.04484
oo (Biharmonic) | 5.646 | 0.7877 | 0.4144 | 0.1966 | 0.09480 | 0.04618

Table 2



4. Convergence analysis

In this section, we discuss the convergence properties of the modified Morley element meth-
ods given in previous section.

We introduce the following mesh dependent norm || - ||, and semi-norm | - |, 5:
1/2 1/2
ol = (D2 I0l2r) s olmn = (D olr)
TET, TET,

for v € L?(Q) that v|r € H™(T), VT € Tj.
Let w and uy, be the solutions of problem (1.4) and (3.4) respectively.

Lemma 4.1 There exists a constant C' independent of h and € such that for any vy, € Vi,
there exists wy, € H}(Q) satisfying

v — whllo0 + hlon — w1, < Ch?|ok|2n, (4.1)
1T vn — wallo,o + R[TLvn — walin < ChILvp]1 A (4.2)

Proof. Let vy, € Vio. For T € 75, denote by I} the linear interpolation operator with
function values at all vertices of T as degrees of freedom. Define II},v by

vl = Ik (v|7), VYT €T

for function v € L%(Q2) and v|7 € CY(T), VT € T;. By the interpolation theory, the following
inequality is true

|Hivh — Hll.L ]ivh|m,h < Ch2im|H]SL’Uh|2’h, 0<m<1. (43)

Given a set B C R", let 7T,(B) ={T € 7;, | BNT # 0 } and N,(B) the number of the
elements in 73,(B).
Now we define wy, € Hg () as follows: for any T € T,

1) wh|T c Pl(T)

i) if vertex a; of T is in €2 then

1
wp(a;) = m y Z (5 vnl7)(a:).
€Tn(as)
Then wy, is well defined. We will show
|H2’l}h — wh|m,h S Chg_m|H}sl’Uh|2’h, 0 S m S 1. (44)

By the affine technique, we can show that

4
|p|12n)T < Op3—2m Z |p(ai)|27 Vpe P (T), m=0,1. (4.5)

i=1

Set ¢ = H}LHvah —wyp, and ¢ = I§vy,. Obviously, ¢|r € Pi(T), VT € Tp,. For T € 15,
let o1 = |7 and Y = Y.



If vertex a; of T is in ) then by the definition of wy,,

pla) =Ur@) - s 3 ()

Q;
1) T'€Th(as)

T'€Th(as)

For T" € 73(a;) there exist Ty, - -+, Ty € Tn(a;) such that Ty =T, Ty = T and Fj =T;NTj41
is a common face of T and 711 and a; € F}, 1 < j < J. By the inverse inequality, we have
) J—1 9
er(as)—vr (@)|” = | 3 (¥, (a0) = ér. ()|
j=1

J—1

J—1
<C Z |wTj (a;) — wTJ+1(ai)|2 < Ch™? Z |wTj — Y1, |(2),I7“j'
Jj=1 j=1

On each edge of F' j, the integral average of ¢r; is equal to the one of 17, , by the definition
of 1. Hence

2
|1/)Tj - wTjJrl |O,I:"'j < Chg(lw@ffj + |w|§7Tj+1)'
Then

[r(@) = vr (@)

J
2
<ChY Wl
j=1
Since Np,(T) is bounded, we get
lea)* <Ch > Wl (4.6)
T'eT (T)

If vertex a; of T is on 9 then exists TV € Tj(a;) with a face F' of T" belonging to 92
and a; € F. By the definitions of wy,

lp(ai)| = [¥r(ai) — Yo (ai) + Yo (ai)| < [Wr(ai) — Yo (a)] + [Yr(a:)]
Since the integral average of 17+ on each edge of F' vanishes,
[ (ai)|* < Ch™2 |y |3 p < ChIYLS 1

by the inverse inequality. By similar analysis for |[¢r(a;) — 1/ (a;)|, we conclude that (4.6)
is also true in this case.
Combining (4.5) and (4.6), we obtain

hzm“ﬁﬁn,T <cnt Z W"%T'-
T'eTh(T)
Summing the above inequality over all T' € 7}, we get

W™Melmn SCRY Y Y W3

TET, T'€Th(T)



Consequently,
R2™ o2, < CRHI3 . (4.7)

Inequality (4.4) follows from (4.7) and (4.3).
We obtain (4.2) by (4.4) and the inverse inequality, and (4.1) by (4.4) and Lemma 2.1.

U
Lemma 4.2 There exists a constant C independent of h and € such that for any vy € Vi
| bn (I u, I vp) + (Au, I op)| < Chlulz,0|IT; 08|18, (4.8)

lan(u,vn) — (A%, I vy)| < C(hluls. + h?[|[A%ullog)lonlzn, (4.9)
when u € H3(Q).
Proof. Let vy, € Vig. By Green’s formula

b (I u, My vp) + (Aw, My vp) = by (TTju — u, M7 vp) + Z / —Hhvh
fez, Jor 9

Given T € T;, and a face F of T, let P be the orthogonal projection operator from L?(F)
to Py(F'). By Lemma 2.2, we have

> [ Gemn= 5 S [ (G- Pege) (o, - PR

TeTh TeT, FCOT

By the interpolation theory and the Schwarz inequality we obtain
ou_, s
| > [ SoMon| < ChlulzolTvnlu. (4.10)
ar oV

On the other hand,
|br, (115w — w, 1T vy)| < Chlulz |1} vp 1 4

Hence (4.8) follows.
Now let ¢ € H'(Q). Let 4,5 € {1,2,3}. It is known that the integral average of z2-vj,
J
on I is continuous through F' and vanishes when F' C 992. Then Green’s formula gives

Z / 02 Uh 8¢ %)
33318:10] 8951 8£Cj

_Z 8% Z Z /¢avh .

TET, TeT, FCOT
PRI R R
TeT, FCOT j Ox
3vh 0 ﬁvh
_ é— — P -
T;'h ng;T/ 6 )



From the Schwarz inequality and the interpolation theory we obtain

> 5 [o-ra(ln-min),

TeT, FCOT
< 3 - Pholor] 52 - PR

TeT, FCOT

<C > hlgl,

TETh

0,F

1,0|vn]2,h-

Consequently, we obtain that for any ¢ € HY(Q), v, € Vi, 0,5 € {1,2,3},

2
|22 ) o i) < ol

Let wy, € H}(Q) ba as in (4.1) and (4.2). Then

ap(u, vp)— (AQU,HZ”Uh) = (A2%u,wy, — IT; vp)

2 OAu 0wy, — vp)

i=1 TeT, ' T

3 9%, OAw vy,
+Z;TZ /T<A“ 022 ' om, 8951-)

1= €T}

0%u Oy 83w Ouy,
+ Z Z / Ox;0x; Ox;0x; + 0x20x; 87@)

1<i#j<3T€ET
Z Z / 82u 82’Uh 83’6& 6’Uh)
92 2297 Or . )"
\<iEi<s T, 0x; 830 8xi8x] Ox;

We obtain (4.9) from (4.12), (4.11), (4.1) and Lemma 2.1.

Theorem 4.1 There ezists a constant C independent of h and € such that

ellu —unll2n + llu—pupllin < Ch(

)

when u € H3(Q).
Proof. Let ¢}, = Ilju, then

ellu —unll2.n + lu — Mhunll1n < ellu— nllen + [lu—T5enln

Fellun = enllz,n + 11 (un — @n)
Set vp, = up — pp. From (3.4) and (1.1), we derive that

e2ap (v, vp) by (5 vy, T 0p)

10

(4.11)

(4.12)

(4.13)

(4.14)



=c®an(u — @n, vn) + bn(IL; (u — @), 1T} vn)
+ &2 ((Azu, I} vp) — ap(u, vh))
— ((Aw,TT0) + by, ) ).
By the interpolation theory, Lemma 2.1, (4.8) and (4.9), we have
e2ap, (vn, vp)+bn (Mo, T vp)

<Ch(|ulz,0 + £luls.o + k|| A%ullo,0) (elvnl2,n + T val1h).

Since
2llonl3 + 1Tonl3 s < C(2an(n, vn) + b (Tyon, Tin) )

we obtain that
ellun = @nllo.n + 1T, (un — o) llLn < Ch(lulao + eluls o + ehl|A%uljo.q). (4.15)

The theorem follows from the interpolation theory, (4.14) and (4.15). 0
Similar to Lemma 5.1 in [10], we can prove the following lemma.

Lemma 4.3 If Q is convez, then there exists a constant C independent of € such that
e P lu—u’lia +ePlulzg + e Plulz o < O fllog (4.16)
for all f € L?(Q).

Lemma 4.4 There exists a constant C independent of € and h such that

_ 1/2 1/2
lollo.or < C (02 ollor + [olg/Z 0137, (4.17)
1/2, 41/2
> v = Ppollor < Cllolg7lvli 7. (4.18)
FCoT

for allv e HY(T) and T € Tj,.

Proof. Let T be the reference tetrahedron. From [7] we know that

1/2
o,

1/2

N 1/
Vi Vo e HY(T). (4.19)

[0llo,67 < ClIo]

ol

Then we obtain (4.17) by the affine technique.
Now let 7' € 7;, and let P2 be the orthogonal projection operator from L?(T) to Py(T).
For each ' C 9T and % € H'(T), we have by (4.19) and the interpolation theory,

o = PRollo s < l10 — P26 — PR(6 — PRo)l, ¢
~ ~nl/29 ~ ~nl/2 ~nl/21~1/2
< Cllo — PRally 2119 — PRall/z < 19l 21017

Consequently, we obtain (4.18) by the affine technique. 0O

11



Theorem 4.2 If Q is convex, then there exists a constant C independent of h and € such

that
ellu — unllan + lu — Munllrn < CRMY?||f

lo,02-
Proof. From the interpolation theory, it is true that
lu = yul3, < Clulzollu —Myull2n < Chlulzolulso.

By Lemma 4.3, we have
llu — Tyullap < CHY2| fllo.

Similar to (4.4) in [10], we can show that
lv = 0]1% ), < Chlvlialvlze, Vo€ HE(Q).
Using (4.22), we obtain
lu—u® =10 (u = w®)[[ ), < Chlu—u’l10lu —u’l20,
and we have, by the interpolation theory,
[u” = TG u’ 1 < Chlu®|2,0.
By Lemma 4.3 and the following inequalities

[

l2.0 < Ol fllo.a,

llu = Tulln < flu—u® =TI (= u®) [l 4 [Ju® = TG |[1n,

we have
lu = T ulln < CHY2(| 0.0

Set v, = up — [Mu. Lemma 2.2 and Green’s formula give

b, (115 w, 115 vp,) + (Au, 5 vp) = by (I u — u, I3 vp,)

u—u’ u — u®
P3PS /F(a(au)‘Pg@(ay)ﬂﬂivh—Pﬁﬂivh)

TeT, FCoT
oul oudy .
+ Z Z / (W *Pzgg)( non — PpIT;on).
Tet, FcoT” I

By the Schwarz inequality and the interpolation theory, we have
‘ bh (Hiua szh)+ (Au7 szh”

<Cy. ( lu = Tuly 7 + hlu®ls 7
TETH

_ 0 — Y
+ h1/? Z ’a(uayu ) _Pga(uauu )’o F)'HZU“LT'

)

Fcor

12

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)



Then we obtain by (4.24), (4.18), (4.23) and Lemma 4.3 that,

| b (I15 u, I vp) + (Au, i op)| <

(4.25)

Now let ¢ € H(Q2) and i,j € {1,2}. From the proof of Lemma 4.2, we have
|5 [ o e o)
al’ZaZL’] 61'1 ij

< 3 - Polar|g - PR

TeT, FCOT

By the interpolation theory and (4.17), we have

82vh 8(;5 8vh 1 1
20| < /2 /21 411172 ]
\Z /(0 T rorred | R e G AN (4:26)

Let wy, € H () such that (4.1) and (4.2) are true. If ¢ < h, then by Green’s formula

we get
wp, — vh wp — Uh
Z / ﬁml C Ox; Z /aT ox; T o,

TeTn TETh

By the Schwarz inequality, (4.1) and (4.17), we obtain

|3 Lo s X teoar] 25,

TeTn

+ Z pllo.7|wn — val2,r

TeTh

1/2 1/2
<C (72| glls/a o1 + l1gllo.e) [onl2,n-

Hence when € < h

5 [ o <O (IR + s (127

When e > h, by the Schwarz inequality and (4.1) we have,

‘ Z / 3x ‘ < Che?|l1,alvnlan < ChY2E52|6|1 glun2n- (4.28)

From (1.1) and (1.5) it follows that

2(A%u,wy, — ivp) = (A(u — u®),wy, — Tivy). (4.29)

13



When ¢ > h, we have by (4.2) and Lemma 2.2
[(A(u —u®), wy, — T5vp)| < Chlu — u®|2 o I vp|10 < ChY2e 2 u — 0P|y o |TTEvn |1 4.
By Lemma 4.3 and (4.23) we get that
|€2(A%u, wp = 1Tvn)| < CRY2| fllo.o o)1 n (4.30)

is true when € > h.
On the other hand, we have

= 23: Z (/aT W(wh — I v,y _/ 6(ua;ju0) 8(wh(;56?flvh)>.

3
< (2D~ Tenloor + llu -l rllwn — onlr)
hS O 00T h nUR|l0,0T 1,T||Wh RUR|1,T )-
. J El

By (4.17), (4.2) and the Schwarz inequality, we obtain
|(A(u—u), wy, = TTvp)]

1/2

< O (2w = Gl = w503 + = .0 T on .

From Lemma 4.3 and (4.29) we get
|€2(A%u, wy, — Wop)| < C (Y2 + %) || fllo.o /T vn]1,0-

That is, (4.30) is also true when € < h.
From Lemma 4.3, (4.12), (4.26), (4.27), (4.28) and (4.30) we obtain

52| ah(u, ”Uh) — (AQU,, Hivh)\ S Ch1/2||f||079 (5|Uh|2,h =+ |Hivh|1,h)~ (4.31)

Combining (4.21), (4.24), (4.25), (4.31) and the proof of Theorem 4.1, we obtain the

theorem. 0
References

[1] Bey J, Tetrahedral Grid Refinement, Computing, 55 (1995), 355-378.
[2] Cahn J W, On spinodal decomposition, Acta Metallurgica, 9 (1961). 795-801.

[3] Cahn J W, Hilliard J E, Free energy of a nonuniform system I. Interfacial free energy, J Chem
Phys, 28(1958), 258-267.

14



[4]

[5]

[6]

[12]

[13]

[14]

[15]

Chen S-C, Zhao Y C and Shi D-Y, Non C° nonconforming elements for elliptic fourth order
singular perturbation problem, J Comput Math, 23, 2 (2005), 185-198.

Ciarlet P G, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam,
New York, 1978.

Fife P C, Models for phase separation and their mathematics, Flectronic Journal of Differential
Equations, 2000, 8 (2000), 1-26.

Grisvard P, Elliptic problems in nonsmooth domains, Pitman, Boston, London, Melbourne,
1985.

Lascaux P and Lesaint P, Some nonconforming finite elements for the plate bending problem,
RAIRO Anal Numer, R-1 (1985), 9-53.

Morley L. S D, The triangular equilibrium element in the solution of plate bending problems,
Aero Quart, 19 (1968), 149-169.

Nilssen T K, Tai X-C and Winther R, A robust nonconforming H>2-element, Math Comp, 70
(2001), 489-505.

Ruas V, A quadratic finite element method for solving biharmonic problems in R"™, Numer
Math, 52 (1988), 33-43.

Strang G and Fix G J, An Analysis of the Finite Element Method, Prentice-Hall, Englewood
Cliffs, 1973.

Wang M, On the necessity and sufficiency of the patch test for convergence of nonconforming
finite elements, SIAM J Numer Anal, 39, 2(2002), 363-384.

Wang M and Xu J, The Morley element for fourth order elliptic equations in any dimensions,
Numer Math, Online First, 10.1007/s00211-005-0662-x.

Wang M, Xu J and Hu Y-C, Modified Morley element method for a fourth order elliptic
singular perturbation problem, J comput Math, 24, 2 (2006)

15



