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Abstract. This paper proposes a robust finite element method for a three dimensional fourth

order elliptic singular perturbation problem. The method uses the three dimensional Morley element
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1. Introduction

Let Ω be a bounded polyhedral domain of Rn with 1 ≤ n ≤ 3. Denote the boundary of Ω
by ∂Ω. For f ∈ L2(Ω), we consider the following boundary value problem of fourth order
elliptic singular perturbation equation:





ε2∆2u−∆u = f, in Ω,

u|∂Ω =
∂u

∂ν

∣∣∣
∂Ω

= 0
(1.1)

where ν = (ν1, · · · , νn)> is the unit outer normal of ∂Ω, ∆ is the standard Laplacian operator
and ε is a real small parameter with 0 < ε ≤ 1. When ε → 0 the differential equation formally
degenerates to Poisson equation.

In two dimensional case, the Morley element was proposed in [9] for the plate bending
problem. The Morley element is convergent for fourth order elliptic problem, but is divergent
for second order problem (see [5], [8] and [13]). The Morley element and an C0 modified
Morley element for problem (1.1) were discussed in [10]. It was was shown that the modified
Morley element is uniformly convergent with respective to ε while the Morley element does
not converges when ε → 0. Two non C0 nonconforming elements were proposed in [4] by
the double set parameter technique. These two elements were also proved to be uniformly
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convergent. A modified Morley element method for problem (1.1) was proposed in [15], it is
convergent uniformly with respective to ε. This method also uses the Morley element (or the
rectangle Morley element), but the linear approximation (or the bilinear approximation) of
finite element functions is used in the part of the bilinear form corresponding to the second
order differential term.

In this paper, we consider three dimensional case. The three dimensional Morley element
can be found in [11] or in [14]. We will take a similar way used in [15] and propose a
modified Morley element method for problem (1.1). We will use certain approximation of
finite element functions in the part of the bilinear form corresponding to the second order
differential term. It will be shown that the modified method converges uniformly in the
perturbation parameter ε. The three dimensional Morley element uses the integral averages
of function over all edges as degrees of freedom instead of the function values at vertices. To
given a suitable approximation of finite element function, we need to construct a convergent
nonconforming finite element for Poisson equation with the integral averages of function
over all edges as degrees of freedom.

Problem (1.1) is a boundary value problem of a stationary linearizing form of the Cahn-
Hilliard equation. The modelling in material science makes use of the Cahn-Hilliard equa-
tions in three dimensions (see [3, 2, 6]). Besides the theoretical interest, our new finite
element method is hoped to be useful in the computation of the Cahn-Hilliard equation.

The paper is organized as follows. The rest of this section lists some preliminaries.
Section 2 describes a nonconforming finite element for Poisson equation. Section 3 gives the
detail descriptions of the modified Morley element method. Section 4 shows the uniform
convergence of the method.

Throughout this paper, we assume n = 3. For nonnegative integer s, let Hs(Ω), ‖ · ‖s,Ω

and | · |s,Ω denote the usual Sobolev space, norm and semi-norm respectively. Let Hs
0(Ω) be

the closure of C∞0 (Ω) in Hs(Ω) with respect to the norm ‖ · ‖s,Ω and (·, ·) denote the inner
product of L2(Ω). Define

a(v, w) =
∫

Ω

3∑

i,j=1

∂2v

∂xi∂xj

∂2w

∂xi∂xj
, ∀v, w ∈ H2(Ω), (1.2)

b(v, w) =
∫

Ω

3∑

i=1

∂v

∂xi

∂w

∂xi
, ∀v, w ∈ H1(Ω). (1.3)

The weak form of problem (1.1) is: to find u ∈ H2
0 (Ω) such that

ε2a(u, v) + b(u, v) = (f, v), ∀v ∈ H2
0 (Ω). (1.4)

Let u0 be the solution of following boundary value problem:
{ −∆u0 = f, in Ω,

u0|∂Ω = 0
(1.5)

For mesh size h, let Th be a triangulation of Ω consisting of tetrahedrons. For each
T ∈ Th, let hT be the diameter of the smallest ball containing T and ρT be the diameter
of the largest ball contained in T . Let {Th} be a family of triangulations with h → 0.
Throughout the paper, we assume that hT ≤ h ≤ ηρT , ∀T ∈ Th, with η a positive constant
independent of h.
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2. A nonconforming element for Poisson equation

For a subset B ⊂ R3 and a nonnegative integer r, let Pr(B) be the space of all polynomials
with degree not greater than r.

Given a tetrahedron T , its four vertices is denoted by aj , 1 ≤ j ≤ 4. The face of T
opposite aj is denoted by Fj , 1 ≤ j ≤ 4. The edge with ai and aj as its vertices, is
denoted by Sij , 1 ≤ i < j ≤ 4. Denote the measures of T , Fi and Sij by |T |, |Fi| and |Sij |
respectively. Let λ1, · · · , λ4 be the barycentric coordinates of T . Define

q1 = (λ1 − λ3)(λ2 − λ4), q2 = (λ1 − λ2)(λ4 − λ3)

We define a nonconforming element (T, P s
T ,Φs

T ) for Poisson equation by

1) T is a tetrahedron.

2) P s
T = P1(T ) + span{q1, q2}.

3) For v ∈ C0(T ),

Φs
T (v) = (φ12(v), φ13(v), φ14(v), φ23(v), φ24(v), φ34(v))>

with
φij(v) =

1
|Sij |

∫

Sij

v, 1 ≤ i < j ≤ 4.

For 1 ≤ i < j ≤ 4, let 1 ≤ k < l ≤ 4 and {k, l} ∩ {i, j} = ∅, and define

pij =
2
3
(λi + λj)− 1

3
(λk + λl) + 2λiλj + 2λkλl −

∑

i1=i,j

∑

i2=k,l

λi1λi2 . (2.1)

Set
p̃ij =

2
3
(λi + λj)− 1

3
(λk + λl).

Then the following identities can be verified
{

p12 = p̃12 + 2q1 + q2, p13 = p̃13 − q1 − 2q2, p14 = p̃14 − q1 + q2,

p23 = p̃23 − q1 + q2, p24 = p̃24 − q1 − 2q2, p34 = p̃34 + 2q1 + q2.
(2.2)

That is, pij ∈ P s
T , 1 ≤ i < j ≤ 4. Denote by δij the Kronecker delta. By directly computing,

we obtain
1

|Skl|
∫

Skl

pij = δikδjl, 1 ≤ i < j ≤ 4, 1 ≤ k < l ≤ 4. (2.3)

Hence, pij , 1 ≤ i < j ≤ 4 , are the basis functions corresponding to the degrees of freedom.
This leads to that Φs

T is P s
T -unisolvent.

The interpolation operator Πs
T corresponding to (T, P s

T ,Φs
T ) is written as

Πs
T v =

∑

1≤i<j≤4

pijφij(v), ∀v ∈ C0(T ). (2.4)

For v ∈ L2(Ω) and v|T ∈ C0(T ), ∀T ∈ Th, define Πs
hv by

Πs
hv|T = Πs

T (v|T ), ∀T ∈ T h. (2.5)

By the interpolation theory (refer to [5]) we obtain the following lemma.
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Lemma 2.1 There exists a constant C independent of h such that

|v −Πs
T v|m,T ≤ Ch2−m|v|2,T , 0 ≤ m ≤ 2, ∀v ∈ H2(T ) (2.6)

is true for all T ∈ Th.

By a direct computation we have the following lemma.

Lemma 2.2 Given a tetrahedron T , the following equality is true,

1
|Fi|

∫

Fi

p =
1
9

∑
1≤j<k≤4
j 6=i,k 6=i

1
|Sjk|

∫

Sjk

p, 1 ≤ i ≤ 4, ∀p ∈ P s
T . (2.7)

By the above two lemmas and the mathematical theory (refer to [8], [12] or [5]) we obtain
that this element is convergent for the boundary value problem of three dimensional Poisson
equation.

3. Modified Morley element method

The Morley element can be described by (T, PM
T ,ΦM

T ) with

1) T is a tetrahedron.

2) PM
T = P2(T ).

3) ΦM
T is the vector of degrees of freedom whose components are:

1
|Sij |

∫

Sij

v, 1 ≤ i < j ≤ 4;
1
|Fj |

∫

Fj

∂v

∂ν
, 1 ≤ j ≤ 4

for v ∈ C1(T ).

For each Th, let Vh and Vh0 be the corresponding finite element spaces associated with
the Morley element for the discretization of H2(Ω) and H2

0 (Ω) respectively. This defines
two family of finite element spaces {Vh} and {Vh0}. It is known that Vh 6⊂ H2(Ω) and
Vh0 6⊂ H2

0 (Ω). Let Πh be the interpolation operator corresponding to the Morley element
and Th.

We define, for v, w ∈ L2(Ω) and v|T , w|T ∈ H2(T ), ∀T ∈ Th,

ah(v, w) =
∑

T∈Th

∫

T

3∑

i,j=1

∂2v

∂xi∂xj

∂2w

∂xi∂xj
, (3.1)

bh(v, w) =
∑

T∈Th

∫

T

3∑

i=1

∂v

∂xi

∂w

∂xi
. (3.2)

The standard finite element method for problem (1.4) corresponding to the Morley element
is: to find uh ∈ Vh0 such that

ε2ah(uh, vh) + bh(uh, vh) = (f, vh), ∀vh ∈ Vh0. (3.3)
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We consider the following modified Morley element method: to find uh ∈ Vh0 such that

ε2ah(uh, vh) + bh(Πs
huh,Πs

hvh) = (f,Πs
hvh), ∀vh ∈ Vh0. (3.4)

Problem (3.4) has unique solution when ε > 0. When ε = 0, the problem degenerates to

bh(Πs
huh,Πs

hvh) = (f,Πs
hvh), ∀vh ∈ Vh0. (3.5)

Although the solution of problem (3.5) is not unique yet, Πs
huh is uniquely determined.

Actually, Πs
huh is the exact finite element solution of the element for problem (1.5) given in

previous section.
Now we consider two examples. Let Ω = [−1, 1]3 and

u1(x) = (1− x2
1)

2(1− x2
2)

2(1− x2
3)

2,

u2(x) = (1 + cos πx1)(1 + cos πx2)(1 + cos πx3).

Let i ∈ {1, 2}. For ε ≥ 0, set f = ε2∆2ui −∆ui. Then ui is the solution of problem (1.1)
when ε > 0, and is the solution of problem (1.5) when ε = 0.

We first divide Ω into 12 tetrahedral elements with h = 2 as shown in Figure 1, then use
the global regular refinement strategy provided in [1] to get the mesh sequence.

1
0.5

0
-0.5

-1
-1

-1

-0.5

0

-0.5

0.5

1

0 0.5 1

Figure 1: The initial mesh

Define
‖|vh‖|ε,h =

(
ε2ah(vh, vh) + bh(Πs

hvh,Πs
hvh)

)1/2
, ∀vh ∈ Vh0.

Different values of ε and h are chosen to demonstrate the behaviors of the following relative
error of the modified Morley element method,

Eε,h =
‖|Πhu− uh‖|ε,h

‖|Πhu‖|ε,h
(3.6)

where uh is the solution of problem (3.4).

5



Let g = ∆2ui, then ui is the solution of the following boundary value problem of bihar-
monic equation, 




∆2u = g, in Ω,

u|∂Ω =
∂u

∂ν

∣∣∣
∂Ω

= 0
(3.7)

For comparison, we also consider the error of finite element solution to problem (3.7). Let
ũh ∈ Vh0 be the solution of the following problem,

ah(ũh, vh) = (g, Πs
hvh), ∀vh ∈ Vh0. (3.8)

In this situation, the relative error Ẽh is presented by

Ẽ2
h =

ah(Πhu− ũh,Πhu− ũh)
ah(Πhu, Πhu)

(3.9)

For the modified Morley element method in the case of f = ε2∆2u1 − ∆u1 and g =
∆2u1, Eε,h and Ẽh, corresponding some ε and h, are listed in Table 1. In the case that
f = ε2∆2u2 −∆u2 and g = ∆2u2, Eε,h and Ẽh are listed in Table 2.

From Table 1 and Table 2 we see that the modified Morley element method converges
for all ε ∈ [0, 1]. More precisely, the result shows that Eε,h is linear with respect to h as well
as E0,h and Ẽh are.

ε\h 2 1 2−1 2−2 2−3 2−4

0 0.5800 0.2942 0.1654 0.08072 0.03969 0.01960
2−10 0.5800 0.2942 0.1654 0.08071 0.03966 0.01958
2−8 0.5802 0.2943 0.1654 0.0805 0.03923 0.01874
2−6 0.5844 0.2950 0.1651 0.07802 0.03429 0.01276
2−4 0.6492 0.3082 0.1680 0.06994 0.02814 0.01234
2−2 1.438 0.5122 0.2923 0.1426 0.06951 0.03398
1 3.565 0.8335 0.4097 0.1959 0.09494 0.04634

∞ (Biharmonic) 4.195 0.8872 0.4243 0.2021 0.09781 0.04773

Table 1

ε\h 2 1 2−1 2−2 2−3 2−4

0 0.7717 0.3048 0.1778 0.08484 0.04107 0.02009
2−10 0.7717 0.3048 0.1778 0.08483 0.04105 0.02003
2−8 0.7721 0.3049 0.1777 0.08466 0.04063 0.01920
2−6 0.7776 0.3054 0.1777 0.08226 0.03570 0.01316
2−4 0.8643 0.3140 0.1822 0.07345 0.02838 0.01209
2−2 1.919 0.4598 0.2949 0.1401 0.06752 0.03288
1 4.788 0.7376 0.4012 0.1907 0.09203 0.04484

∞ (Biharmonic) 5.646 0.7877 0.4144 0.1966 0.09480 0.04618

Table 2
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4. Convergence analysis

In this section, we discuss the convergence properties of the modified Morley element meth-
ods given in previous section.

We introduce the following mesh dependent norm ‖ · ‖m,h and semi-norm | · |m,h:

‖v‖m,h =
( ∑

T∈Th

‖v‖2m,T

)1/2

, |v|m,h =
( ∑

T∈Th

|v|2m,T

)1/2

,

for v ∈ L2(Ω) that v|T ∈ Hm(T ), ∀T ∈ Th.
Let u and uh be the solutions of problem (1.4) and (3.4) respectively.

Lemma 4.1 There exists a constant C independent of h and ε such that for any vh ∈ Vh0,
there exists wh ∈ H1

0 (Ω) satisfying

‖vh − wh‖0,Ω + h|vh − wh|1,h ≤ Ch2|vh|2,h, (4.1)

‖Πs
hvh − wh‖0,Ω + h|Πs

hvh − wh|1,h ≤ Ch|Πs
hvh|1,h. (4.2)

Proof. Let vh ∈ Vh0. For T ∈ Th, denote by Π1
T the linear interpolation operator with

function values at all vertices of T as degrees of freedom. Define Π1
hv by

Π1
hv|T = Π1

T (v|T ), ∀T ∈ T h

for function v ∈ L2(Ω) and v|T ∈ C0(T ), ∀T ∈ Th. By the interpolation theory, the following
inequality is true

|Πs
hvh −Π1

hΠs
hvh|m,h ≤ Ch2−m|Πs

hvh|2,h, 0 ≤ m ≤ 1. (4.3)

Given a set B ⊂ Rn, let Th(B) = {T ∈ Th |B ∩ T 6= ∅ } and Nh(B) the number of the
elements in Th(B).

Now we define wh ∈ H1
0 (Ω) as follows: for any T ∈ Th

i) wh|T ∈ P1(T ).

ii) if vertex ai of T is in Ω then

wh(ai) =
1

Nh(ai)

∑

T ′∈Th(ai)

(Πs
hvh|T ′)(ai).

Then wh is well defined. We will show

|Πs
hvh − wh|m,h ≤ Ch2−m|Πs

hvh|2,h, 0 ≤ m ≤ 1. (4.4)

By the affine technique, we can show that

|p|2m,T ≤ Ch3−2m
4∑

i=1

|p(ai)|2, ∀p ∈ P1(T ), m = 0, 1. (4.5)

Set ϕ = Π1
hΠs

hvh − wh and ψ = Πs
hvh. Obviously, ϕ|T ∈ P1(T ), ∀T ∈ Th. For T ∈ Th,

let ϕT = ϕ|T and ψT = ψ|T .

7



If vertex ai of T is in Ω then by the definition of wh,

ϕ(ai) =ψT (ai)− 1
Nh(ai)

∑

T ′∈Th(ai)

ψT ′(ai)

=
1

Nh(ai)

∑

T ′∈Th(ai)

(
ψT (ai)− ψT ′(ai)

)
.

For T ′ ∈ Th(ai) there exist T1, · · · , TJ ∈ Th(ai) such that T1 = T , TJ = T ′ and F̃j = Tj∩Tj+1

is a common face of Tj and Tj+1 and ai ∈ F̃j , 1 ≤ j < J . By the inverse inequality, we have

∣∣ψT (ai)−ψT ′(ai)
∣∣2 =

∣∣∣
J−1∑

j=1

(
ψTj

(ai)− ψTj+1(ai)
)∣∣∣

2

≤ C
J−1∑

j=1

∣∣ψTj
(ai)− ψTj+1(ai)

∣∣2 ≤ Ch−2
J−1∑

j=1

∣∣ψTj
− ψTj+1

∣∣2
0,F̃j

.

On each edge of F̃j , the integral average of ψTj
is equal to the one of ψTj+1 by the definition

of ψ. Hence ∣∣ψTj − ψTj+1

∣∣2
0,F̃j

≤ Ch3
(|ψ|22,Tj

+ |ψ|22,Tj+1

)
.

Then ∣∣∣ψT (ai)− ψT ′(ai)
∣∣∣
2

≤ Ch
J∑

j=1

|ψ|22,Tj

Since Nh(T ) is bounded, we get

|ϕ(ai)|2 ≤ Ch
∑

T ′∈Th(T )

|ψ|22,T ′ (4.6)

If vertex ai of T is on ∂Ω then exists T ′ ∈ Th(ai) with a face F of T ′ belonging to ∂Ω
and ai ∈ F . By the definitions of wh,

|ϕ(ai)| = |ψT (ai)− ψT ′(ai) + ψT ′(ai)| ≤ |ψT (ai)− ψT ′(ai)|+ |ψT ′(ai)|
Since the integral average of ψT ′ on each edge of F vanishes,

|ψT ′(ai)|2 ≤ Ch−2|ψT ′ |20,F ≤ Ch|ψ|22,T ′

by the inverse inequality. By similar analysis for |ψT (ai)− ψT ′(ai)|, we conclude that (4.6)
is also true in this case.

Combining (4.5) and (4.6), we obtain

h2m|ϕ|2m,T ≤ Ch4
∑

T ′∈Th(T )

|ψ|22,T ′ .

Summing the above inequality over all T ∈ Th, we get

h2m|ϕ|2m,h ≤ Ch4
∑

T∈Th

∑

T ′∈Th(T )

|ψ|22,T ′ .

8



Consequently,
h2m|ϕ|2m,h ≤ Ch4|ψ|22,h. (4.7)

Inequality (4.4) follows from (4.7) and (4.3).
We obtain (4.2) by (4.4) and the inverse inequality, and (4.1) by (4.4) and Lemma 2.1.

Lemma 4.2 There exists a constant C independent of h and ε such that for any vh ∈ Vh0

| bh(Πs
hu, Πs

hvh) + (∆u, Πs
hvh)| ≤ Ch|u|2,Ω|Πs

hvh|1,h, (4.8)

| ah(u, vh)− (∆2u, Πs
hvh)| ≤ C(h|u|3,Ω + h2‖∆2u‖0,Ω)|vh|2,h, (4.9)

when u ∈ H3(Ω).

Proof. Let vh ∈ Vh0. By Green’s formula

bh(Πs
hu, Πs

hvh) + (∆u, Πs
hvh) = bh(Πs

hu− u, Πs
hvh) +

∑

T∈Th

∫

∂T

∂u

∂ν
Πs

hvh.

Given T ∈ Th and a face F of T , let P 0
F be the orthogonal projection operator from L2(F )

to P0(F ). By Lemma 2.2, we have

∑

T∈Th

∫

∂T

∂u

∂ν
Πs

hvh =
∑

T∈Th

∑

F⊂∂T

∫

F

(∂u

∂ν
− P 0

F

∂u

∂ν

)
(Πs

hvh − P 0
F Πs

hvh).

By the interpolation theory and the Schwarz inequality we obtain
∣∣∣

∑

T∈Th

∫

∂T

∂u

∂ν
Πs

hvh

∣∣∣ ≤ Ch|u|2,Ω|Πs
hvh|1,h. (4.10)

On the other hand,
|bh(Πs

hu− u, Πs
hvh)| ≤ Ch|u|2,Ω|Πs

hvh|1,h.

Hence (4.8) follows.
Now let φ ∈ H1(Ω). Let i, j ∈ {1, 2, 3}. It is known that the integral average of ∂

∂xj
vh

on F is continuous through F and vanishes when F ⊂ ∂Ω. Then Green’s formula gives

∑

T∈Th

∫

T

(
φ

∂2vh

∂xi∂xj
+

∂φ

∂xi

∂vh

∂xj

)

=
∑

T∈Th

∫

∂T

φ
∂vh

∂xj
νi =

∑

T∈Th

∑

F⊂∂T

∫

F

φ
∂vh

∂xj
νi

=
∑

T∈Th

∑

F⊂∂T

∫

F

φ
(∂vh

∂xj
− P 0

F

∂vh

∂xj

)
νi

=
∑

T∈Th

∑

F⊂∂T

∫

F

(φ− P 0
F φ)

(∂vh

∂xj
− P 0

F

∂vh

∂xj

)
νi
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From the Schwarz inequality and the interpolation theory we obtain
∣∣∣

∑

T∈Th

∑

F⊂∂T

∫

F

(φ− P 0
F φ)

(∂vh

∂xj
− P 0

F

∂vh

∂xj

)
νi

∣∣∣

≤
∑

T∈Th

∑

F⊂∂T

‖φ− P 0
F φ‖0,F

∥∥∥∂vh

∂xj
− P 0

F

∂vh

∂xj

∥∥∥
0,F

≤ C
∑

T∈Th

h|φ|1,T |vh|2,T ≤ Ch|φ|1,Ω|vh|2,h.

Consequently, we obtain that for any φ ∈ H1(Ω), vh ∈ Vh0, i, j ∈ {1, 2, 3},
∣∣∣

∑

T∈Th

∫

T

(
φ

∂2vh

∂xi∂xj
+

∂φ

∂xi

∂vh

∂xj

)∣∣∣ ≤ Ch|φ|1,Ω|vh|2,h. (4.11)

Let wh ∈ H1
0 (Ω) ba as in (4.1) and (4.2). Then

ah(u, vh)− (∆2u, Πs
hvh) = (∆2u,wh −Πs

hvh)

+
3∑

i=1

∑

T∈Th

∫

T

∂∆u

∂xi

∂(wh − vh)
∂xi

+
3∑

i=1

∑

T∈Th

∫

T

(
∆u

∂2vh

∂x2
i

+
∂∆u

∂xi

∂vh

∂xi

)

+
∑

1≤i 6=j≤3

∑

T∈Th

∫

T

( ∂2u

∂xi∂xj

∂2vh

∂xi∂xj
+

∂3u

∂x2
i ∂xj

∂vh

∂xj

)

−
∑

1≤i 6=j≤3

∑

T∈Th

∫

T

(∂2u

∂x2
i

∂2vh

∂x2
j

+
∂3u

∂x2
i ∂xj

∂vh

∂xj

)
.

(4.12)

We obtain (4.9) from (4.12), (4.11), (4.1) and Lemma 2.1.

Theorem 4.1 There exists a constant C independent of h and ε such that

ε‖u− uh‖2,h + ‖u−Πs
huh‖1,h ≤ Ch(|u|2,Ω + ε|u|3,Ω + εh‖∆2u‖0,Ω) (4.13)

when u ∈ H3(Ω).

Proof. Let ϕh = Πhu, then

ε‖u− uh‖2,h + ‖u−Πs
huh‖1,h ≤ ε‖u− ϕh‖2,h + ‖u−Πs

hϕh‖1,h

+ε‖uh − ϕh‖2,h + ‖Πs
h(uh − ϕh)‖1,h.

(4.14)

Set vh = uh − ϕh. From (3.4) and (1.1), we derive that

ε2ah(vh, vh)+bh(Πs
hvh,Πs

hvh)
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=ε2ah(u− ϕh, vh) + bh(Πs
h(u− ϕh),Πs

hvh)

+ ε2
(
(∆2u, Πs

hvh)− ah(u, vh)
)

−
(
(∆u, Πs

hvh) + bh(Πs
hu, Πs

hvh)
)
.

By the interpolation theory, Lemma 2.1, (4.8) and (4.9), we have

ε2ah(vh, vh)+bh(Πs
hvh,Πs

hvh)

≤Ch
(|u|2,Ω + ε|u|3,Ω + εh‖∆2u‖0,Ω

)(
ε|vh|2,h + |Πs

hvh|1,h

)
.

Since
ε2‖vh‖22,h + ‖Πs

hvh‖21,h ≤ C
(
ε2ah(vh, vh) + bh(Πs

hvh,Πs
hvh)

)

we obtain that

ε‖uh − ϕh‖2,h + ‖Πs
h(uh − ϕh)‖1,h ≤ Ch

(|u|2,Ω + ε|u|3,Ω + εh‖∆2u‖0,Ω

)
. (4.15)

The theorem follows from the interpolation theory, (4.14) and (4.15).
Similar to Lemma 5.1 in [10], we can prove the following lemma.

Lemma 4.3 If Ω is convex, then there exists a constant C independent of ε such that

ε−1/2|u− u0|1,Ω + ε1/2|u|2,Ω + ε3/2|u|3,Ω ≤ C‖f‖0,Ω (4.16)

for all f ∈ L2(Ω).

Lemma 4.4 There exists a constant C independent of ε and h such that

‖v‖0,∂T ≤ C
(
h−1/2‖v‖0,T + ‖v‖1/2

0,T ‖v‖1/2
1,T

)
, (4.17)

∑

F⊂∂T

‖v − P 0
F v‖0,F ≤ C‖v‖1/2

0,T |v|1/2
1,T , (4.18)

for all v ∈ H1(T ) and T ∈ Th.

Proof. Let T̂ be the reference tetrahedron. From [7] we know that

‖v̂‖0,∂T̂ ≤ C‖v̂‖1/2

0,T̂
‖v̂‖1/2

1,T̂
, ∀v̂ ∈ H1(T̂ ). (4.19)

Then we obtain (4.17) by the affine technique.
Now let T ∈ Th and let P 0

T be the orthogonal projection operator from L2(T ) to P0(T ).
For each F̂ ⊂ ∂T̂ and v̂ ∈ H1(T̂ ), we have by (4.19) and the interpolation theory,

‖v̂ − P 0
F̂
v̂‖0,F̂ ≤ ‖v̂ − P 0

T̂
v̂ − P 0

F̂
(v̂ − P 0

T̂
v̂)‖0,F̂

≤ C‖v̂ − P 0
T̂
v̂‖1/2

0,T̂
‖v̂ − P 0

T̂
v̂‖1/2

1,T̂
≤ ‖v̂‖1/2

0,T̂
|v̂|1/2

1,T̂
.

Consequently, we obtain (4.18) by the affine technique.
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Theorem 4.2 If Ω is convex, then there exists a constant C independent of h and ε such
that

ε‖u− uh‖2,h + ‖u−Πs
huh‖1,h ≤ Ch1/2‖f‖0,Ω. (4.20)

Proof. From the interpolation theory, it is true that

‖u−Πhu‖22,h ≤ C|u|2,Ω‖u−Πhu‖2,h ≤ Ch|u|2,Ω|u|3,Ω.

By Lemma 4.3, we have
ε‖u−Πhu‖2,h ≤ Ch1/2‖f‖0,Ω. (4.21)

Similar to (4.4) in [10], we can show that

‖v −Πs
hv‖21,h ≤ Ch|v|1,Ω|v|2,Ω, ∀v ∈ H2

0 (Ω). (4.22)

Using (4.22), we obtain

‖u− u0 −Πs
h(u− u0)‖21,h ≤ Ch|u− u0|1,Ω|u− u0|2,Ω,

and we have, by the interpolation theory,

‖u0 −Πs
hu0‖1,h ≤ Ch|u0|2,Ω.

By Lemma 4.3 and the following inequalities

‖u0‖2,Ω ≤ C‖f‖0,Ω, (4.23)

‖u−Πs
hu‖1,h ≤ ‖u− u0 −Πs

h(u− u0)‖1,h + ‖u0 −Πs
hu0‖1,h,

we have
‖u−Πs

hu‖1,h ≤ Ch1/2‖f‖0,Ω. (4.24)

Set vh = uh −Πhu. Lemma 2.2 and Green’s formula give

bh(Πs
hu, Πs

hvh) + (∆u, Πs
hvh) = bh(Πs

hu− u, Πs
hvh)

+
∑

T∈Th

∑

F⊂∂T

∫

F

(∂(u− u0)
∂ν

− P 0
F

∂(u− u0)
∂ν

)
(Πs

hvh − P 0
F Πs

hvh)

+
∑

T∈Th

∑

F⊂∂T

∫

F

(∂u0

∂ν
− P 0

F

∂u0

∂ν

)
(Πs

hvh − P 0
F Πs

hvh).

By the Schwarz inequality and the interpolation theory, we have

| bh(Πs
hu, Πs

hvh)+ (∆u, Πs
hvh)|

≤ C
∑

T∈Th

(
|u−Πs

hu|1,T + h|u0|2,T

+ h1/2
∑

F⊂∂T

∣∣∣∂(u− u0)
∂ν

− P 0
F

∂(u− u0)
∂ν

∣∣∣
0,F

)
|Πs

hvh|1,T .
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Then we obtain by (4.24), (4.18), (4.23) and Lemma 4.3 that,

| bh(Πs
hu, Πs

hvh) + (∆u, Πs
hvh)| ≤ Ch1/2‖f‖0,Ω‖Πs

hvh‖1,h. (4.25)

Now let φ ∈ H1(Ω) and i, j ∈ {1, 2}. From the proof of Lemma 4.2, we have

∣∣∣
∑

T∈Th

∫

T

(
φ

∂2vh

∂xi∂xj
+

∂φ

∂xi

∂vh

∂xj

)∣∣∣

≤
∑

T∈Th

∑

F⊂∂T

‖φ− P 0
F φ‖0,F

∥∥∥∂vh

∂xj
− P 0

F

∂vh

∂xj

∥∥∥
0,F

.

By the interpolation theory and (4.17), we have

∣∣∣
∑

T∈Th

∫

T

(
φ

∂2vh

∂xi∂xj
+

∂φ

∂xi

∂vh

∂xj

)∣∣∣ ≤ Ch1/2‖φ‖1/2
0,Ω‖φ‖1/2

1,Ω|vh|2,h. (4.26)

Let wh ∈ H1
0 (Ω) such that (4.1) and (4.2) are true. If ε ≤ h, then by Green’s formula

we get

∑

T∈Th

∫

T

∂φ

∂xi

∂(wh − vh)
∂xi

=
∑

T∈Th

∫

∂T

φ
∂(wh − vh)

∂xi
νi

−
∑

T∈Th

∫

T

φ
∂2(wh − vh)

∂x2
i

.

By the Schwarz inequality, (4.1) and (4.17), we obtain
∣∣∣

∑

T∈Th

∫

T

∂φ

∂xi

∂(wh − vh)
∂xi

∣∣∣ ≤
∑

T∈Th

‖φ‖0,∂T

∥∥∥∂(wh − vh)
∂xi

∥∥∥
0,∂T

+
∑

T∈Th

‖φ‖0,T |wh − vh|2,T

≤C
(
h1/2‖φ‖1/2

0,Ω‖φ‖1/2
1,Ω + ‖φ‖0,Ω

)|vh|2,h.

Hence when ε ≤ h

ε2
∣∣∣

∑

T∈Th

∫

T

∂φ

∂xi

∂(wh − vh)
∂xi

∣∣∣ ≤ Ch1/2
(
ε2‖φ‖1/2

0,Ω‖φ‖1/2
1,Ω + ε3/2‖φ‖0,Ω

)
|vh|2,h. (4.27)

When ε > h, by the Schwarz inequality and (4.1) we have,

ε2
∣∣∣

∑

T∈Th

∫

T

∂φ

∂xi

∂(wh − vh)
∂xi

∣∣∣ ≤ Chε2|φ|1,Ω|vh|2,h ≤ Ch1/2ε5/2|φ|1,Ω|vh|2,h. (4.28)

From (1.1) and (1.5) it follows that

ε2(∆2u,wh −Πs
hvh) = (∆(u− u0), wh −Πs

hvh). (4.29)
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When ε > h, we have by (4.2) and Lemma 2.2

|(∆(u− u0), wh −Πs
hvh)| ≤ Ch|u− u0|2,Ω|Πs

hvh|1,h ≤ Ch1/2ε1/2|u− u0|2,Ω|Πs
hvh|1,h.

By Lemma 4.3 and (4.23) we get that

|ε2(∆2u,wh −Πs
hvh)| ≤ Ch1/2‖f‖0,Ω|Πs

hvh|1,h (4.30)

is true when ε > h.
On the other hand, we have

(∆(u−u0), wh −Πs
hvh)

=
3∑

j=1

∑

T∈Th

( ∫

∂T

∂(u− u0)
∂xj

(wh −Πs
hvh)νj −

∫

T

∂(u− u0)
∂xj

∂(wh −Πs
hvh)

∂xj

)
.

Then

|(∆(u−u0), wh −Πs
hvh)|

≤
3∑

j=1

∑

T∈Th

(∥∥∥∂(u− u0)
∂xj

∥∥∥
0,∂T

‖wh −Πs
hvh‖0,∂T + ‖u− u0‖1,T ‖wh −Πs

hvh‖1,T

)
.

By (4.17), (4.2) and the Schwarz inequality, we obtain

|(∆(u−u0), wh −Πs
hvh)|

≤ C
(
h1/2‖u− u0‖1/2

1,Ω‖u− u0‖1/2
2,Ω + ‖u− u0‖1,Ω

)
|Πs

hvh|1,h.

From Lemma 4.3 and (4.29) we get

|ε2(∆2u,wh −Πs
hvh)| ≤ C

(
h1/2 + ε1/2

)‖f‖0,Ω|Πs
hvh|1,h.

That is, (4.30) is also true when ε ≤ h.
From Lemma 4.3, (4.12), (4.26), (4.27), (4.28) and (4.30) we obtain

ε2| ah(u, vh)− (∆2u, Πs
hvh)| ≤ Ch1/2‖f‖0,Ω

(
ε|vh|2,h + |Πs

hvh|1,h

)
. (4.31)

Combining (4.21), (4.24), (4.25), (4.31) and the proof of Theorem 4.1, we obtain the
theorem.
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