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NONCONFORMING TETRAHEDRAL FINITE ELEMENTS
FOR FOURTH ORDER ELLIPTIC EQUATIONS

WANG MING AND JINCHAO XU

ABSTRACT. This paper is devoted to the construction of nonconforming finite
elements for the discretization of fourth order elliptic partial differential oper-
ator in three spatial dimensions. The newly constructed elements include two
nonconforming tetrahedral finite elements and one quasi-conforming tetrahe-
dral element. These elements are proved to be convergent for a model bi-
harmonic equation in three dimensions. In particular, the quasi-conforming
tetrahedron element is a modified Zienkiewicz element while the non-modified
Zienkiewicz element (a tetrahedral element of Hermite type) is proved to be
divergent on a special grid.

1. INTRODUCTION

The construction of appropriate finite element spaces for fourth order elliptic
partial differential equations is an intriguing subject. This problem has been well-
studied in two dimensional spaces and there have been a lot of interesting construc-
tions of both conforming and nonconforming finite element spaces. In comparison,
there has been very little work devoted to three dimensional problems.

A conforming finite element space for fourth order problems consist of piecewise
polynomials that are globally continuously differentiable (C'). This smoothness
requirement can only be met with piecewise polynomials of sufficiently high de-
gree. In two dimensions, it is known [31] that at least 5th degree polynomial (the
well-known Argyris element) is needed on a triangular mesh. Such a high degree
polynomial leads to finite element spaces with a very large degrees of freedom which
is not computationally desirable. As a result, many lower degree nonconforming
finite elements have been constructed and used in practice(see [8]).

In three spatial dimensions, even higher degree of polynomials are needed to
construct a conforming finite element space on, say, a tetrahedral finite element
grid. In [30] (see also [17]), a conforming tetrahedral conforming finite element
space was first constructed using 9th degree of polynomials. This element requires
C' globally, C? on all element edges and C* on all element vertices. The degree
of freedom for this element is huge, 220 on each element! In order to reduce the
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degree of polynomials, like in two dimensions, there has been some work on the
construction of conforming finite element spaces on macro-elements (namely by
further partitioning a tetrahedron into sub-tetrahedrons), see [1] and [29] (similar
to Clough-Tocher in two dimensions) and [14]. But these elements all still have a
very large degree of freedom and furthermore the macro-elements are often awkward
to use in practical applications.

To reduce the degree of polynomials and degree of freedoms on each element,
one naturally turns to nonconforming elements. Surprisingly, there are very little
work on the construction of nonconforming finite elements for fourth order elliptic
boundary value problems in three dimensions. The purpose of this work is to fill
in this important gap in the literature for this type of elements.

The construction of nonconforming finite elements for fourth order problems in
three dimensions is not only important from a mathematical point of view but
also potentially important in practical applications. Indeed two dimensional bihar-
monic equations have been much used in modeling linear plates (see [15]) and such
practical applications contributed to the importance and interests of studying effi-
cient numerical methods such as nonconforming finite elements to solve this type
of equations. We would like to point out that the three dimensional biharmonic
operator also has important applications in practice. One notable example is the
Cahn-Hilliard diffusion equation (see [6]) and its modified version (see [13] and
the references there). The complex microstructure evolutions for many important
material processes, such as the phase separation in binary alloys and the solidifica-
tions of metals and alloys (see [5]), can be modeled by the Cahn-Hilliard diffusion
equations.

There were many works on the numerical methods for the Cahn-Hilliard equa-
tion, see [2,3,5,9-12,19] and their references. In addition to the finite difference
method and also the spectral method, the fourth order term in the Cahn-Hilliard
equation can also be discretized by the finite element method (see [2,3,10-12]). The
finite element methods of mixed type, namely by writing the biharmonic operator
as a product of two Laplacian operators, were discussed in [2,3,11]. It is conceiv-
able that the biharmonic operator can also be discretized directly from its original
form as it is often done for biharmonic equations in two dimensions. This kind
of finite element method had been applied to Cahn-Hilliard equation in one and
two dimensions (see [10,12]), and there is no work for three dimensions yet. As
discussed above, the existing 3-dimensional conforming finite elements are not very
practical and the nonconforming finite element methods proposed in this paper can
hopefully be used for such applications.

In this paper, we will propose some finite elements for 3-dimensional fourth
order partial differential equations. We took the natural approach of trying to
extend the various nonconforming finite element in two dimensions to three dimen-
sions. In 2 dimensions, there are well-known nonconforming elements, including
the elements named after Morley, Zienkiewicz, Adini, Bogner-Fox-Schmit, etc (see
[4,8,16,18]). There are some other ways of constructing elements, such as quasi-
conforming method [25,7]. In this paper, we will focus on tetrahedral complete
or incomplete cubic elements, propose and analyze the following three types of
elements:

(1) A cubic tetrahedral element with 20 degrees of freedom and complete cubic
polynomial shape function space.
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(2) A incomplete cubic tetrahedral element with 16 degrees of freedom and
incomplete cubic polynomial shape function space.

(3) A quasi-conforming tetrahedral element with 16 degrees of freedom similar
to 9-parameter quasi-conforming element.

The first two are nonconforming elements, the last one is an element constructed
by the quasi-conforming method. For nonconforming elements, the basic mathe-
matical theory has been studied in many works (see [8,16,22-24,33]). For quasi-
conforming elements, detailed discussions can be found in [32,33]. Following these
theories, we give the convergence analysis of the elements.

The element of Hermite tetrahedron of type (3') in [8], called 3-dimensional
Zienkiewicz element in this paper, is also viewed as an element for biharmonic
equations just like the 2-dimensional Zienkiewicz element. In 2-dimensional case,
Zienkiewicz element is not convergent for general meshes. We will also show that
3-dimensional Zienkiewicz element is divergent for some popular grids in three
dimensions.

We note that the degree of freedom of each element proposed in this paper is
substantially smaller than any known conforming elements. We expect that they
can be easily used in practice.

The rest of the paper is organized as follows. Section 2 gives a basic description
of nonconforming element method. Section 3 gives a detailed description of the
new finite elements. Section 4 shows the convergence of the new elements and the
divergence of the 3-dimensional Zienkiewicz element. Some concluding remarks are
made in the end of the paper.

2. PRELIMINARIES

In this section, we shall give a brief discussion of a model fourth order elliptic
boundary value problem and how it may be discretized by a nonconforming finite
element method.

Given a bounded polyhedron domain Q C R?* with boundary 9, for a nonneg-

ative integer s, let H*(2), || - ||s,o and | - |s,o be the usual Sobolev space, norm and
semi-norm respectively. Let H§(€2) be the closure of C§°(f2) in H*(2) with respect
to the norm || - ||s,0 and (-,-) denote the inner product of L*(Q).

For f € L?(2), we consider the following fourth order boundary value problem:
Ay = f, in Q,

(2.1) ou

ulog = Wl = 0,

o0

where v = (vi,vs,13)T is the unit outer normal to Q and A is the standard
Laplacian operator.
For any function v € H'(T), set

ov Ov Ov
Do = (50 Fam B
When v € H?(Q), we define

8%v 0%v v % 8%v 8%v )—r

022 922’ 9a2’ Ox10xy Ox1023 Ory023

(2.2) E() = (
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Let K € R%%® be the matrix given by
K = diag(1,1,1,2,2,2).
Define
(2.3) a(v,w) = /QE(w)TKE(U), Yo, w € H?(Q).

The weak form of problem (2.1) is: find u € HZ() such that
(2.4) a(wv) = (f0), Vo€ HEQ).

For a subset B C R® and a nonnegative integer r, let P.(B) be the space of all
polynomials of degree not greater than r, and let @Q),.(B) the space of all polynomials
of degree in each coordinate not greater than r.

Let (T, Pr, ®7) be a finite element where T is the geometric shape, Pr the shape
function space and @7 the vector of degrees of freedom, and let &7 be Pr-unisolvent
(see [8]). Let Tp be a triangulation of  with mesh size h. For each element T' € Ty,
let hp be the diameter of the smallest ball containing T" and pr be the diameter of
the largest ball contained in T'.

Let {75} be a family of triangulations with h — 0. Throughout the paper, we
assume that {73} is quasi-uniform, namely it satisfies that hr < h < npr, VT € Tp,
for a positive constant 1 independent of h.

For each Ty, let Vo be the corresponding finite element space associated with
(T, Pr,®r) for the discretization of HZ(Q). This defines a family of finite element
spaces {Vio}. In the case of nonconforming element, Vi,o ¢ H3 ().

For v,w € H%() + Vi, we define

(2.5) ap(v,w) = E(w)"KE(v).

The finite element method for problem (2.4) corresponding to element (7', Py, ®7)
is: find up € Vo such that

(2.6) an(un,vn) = (f,vn), Yy € Vio.

We introduce the following mesh-dependent norm || - ||;,,» and semi-norm | - |y, 5:

B 5 \1/2 B )
ollmn = ( Y- Molir) s ol = ( D lolhr

TET TETs

1/2

for all function v € L?(Q) that v7 € H™(T), VT € Tj.

For each element T € T}, let Il denote the canonical interpolation operator of
(T, Pp, ®7r), and define I, by (IT,v)|7 = r(v|r), where T € T, and v is piecewise
smooth.

3. TETRAHEDRAL ELEMENTS

Given a tetrahedron T with vertices a; = (241, %2, Zi3) ', 0 < i < 3, denote by
F; the facet opposite a;, by b; the barycenter of F;, 0 < i < 3, and by Ag, -+, A3
the barycentric coordinates of 7'.

Let T be the reference tetrahedron with vertices d; given by

ao = (0,0,0)", a1 = (1,0,0)", a» = (0,1,0) ", a3 = (0,0,1)".
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Set

Ti1 —2o1 T21 —To1 T31 — To1
Br = Ti2 —To2 T22 —To2 T32 — To2 = (Gl — Qop, a2 — o, a3 — Go),
T13 — To3 T23 —To3 T33 — T03

and Fr# = Bri + ag, © € R3, then
T =FrT, a;=Fra;, 0<i<3.
Set B;l = (&j)3xs- Let B, By, B3 be the row vectors of B}l and
By = —(By + B> + Bs),
then

(3.1) D\ =B;, 0<i<3.

3.1. The cubic tetrahedral element. For the first nonconforming element, called

the cubic tetrahedral element, (T, Pr, ®7) is defined by (see Fig. 1)

1): T is a tetrahedron,
2): Pr=DP(T),
3): ®r is the degree of freedom vector with components

’U(a]’), %(bj)a 0 S.] S 3a Dv(ai)(a’j - a’i): 0 S i ;é.] S 37 Yv € CI(T)

Fig. 1

We claim that ®1 is Ppr-unisolvent since with respect to ®7, we can obtain the

following basis functions of Pr:

(
9
§= AN — N AN |, 0<i<
= | 2 MMA TN D A ], 0siss
0<j<k<I<3 0<j<k<3
IE AN T INE JAi k#Ei
4B;B;
(3.2) pi =3\ —2)% + —t g, 0<i<3
0;3 3|1 Bkl
k#1
Bj|| (2B; + B;)B, .
= A2\ ” Ji Rt s Vind /2 0< < 3.
pl] T .7+ 9 q]+ 0;3 9||Bk|| qk, _Z;é.]_
\ k#i k)




6 WANG MING AND JINCHAO XU

In fact, by a direct calculation (see below), we have that

0¢;
gi(ax) =0,  Dgi(ar) =0, 1

(bk) ik,

(3.3) pi(ar) = dir, Dpi(ar) =0, i(bk) =0,

pij(ar) =0, Dpijlar)(a —ar) = dixdji, ap” (br) =0,

when 0 <i#j<3and0<k#I[<3.
The corresponding interpolation operator II7 can be written by, Vv € C*(T)

(3.4) Mo = Z piv(a;) + Z qi%(bi)-i— Z pijDv(a;)(aj — a;).

0<i<3 0<i<3 0<i#£j<3

Now we verify (3.3). For function ¢q, we have

9
A1 A2\ Ao(A1 s + A2A3 + A3A1) ),
do = 4||Bo||(123 0(12 2A3 31))
Do = —2 (A)\D/\+A/\D)\+/\/\D)\
0 = 2A3 LAY 1A3 A2 1A20A3
4[Boll

— (M2 + Ads +23A) DA — Ao Y Aimj)
1<iAj<3
Let d;; be Kronecker delta. Since A;(a;) = d;; we obviously have, go(a;) = 0 and
Dgo(a;) =0 (0 < j < 3). Furthermore

DX B
4o (bo) = 0 _ 0

IBoll — 1IBoll’

D D D D = —
4“30”( A +DXo+DX3s—3 )\0)

1

; 9D\ — ) =0,1<j<3.
Dao(b)) = 4”BOH(D/\ ~ DX 2D\~ 3 D/\Z) 0, 1<j<3

1S;S3
Thanks to (3.1) the outer normal of each F; is just —B;. Hence %qo(bj) = 0g;,
0 < j < 3. For other ¢; we can use a completely similar argument. Thus the first
line of (3.3) is verified.

Let 0 < i,k < 3. Obviously p;(ax) = d;x and

4B;B]
Dpi =6(1— A\)AiDAi + Y ———-Dg;
et 3[1B;ll

This directly leads to that Dp;(ax) = 0. By the properties of ¢;, we have Dp;(b;) = 0
and
ip pr, ABiB
DTN
when k # i. Thus the second line of (3.3) is also verified.

Finally, we consider p;;. Let 0 <i # j < 3 and 0 < k < 3. Then p;j(ar) =0 by
definition, and

Dp;(bx)B) = Dqk(bk)B =0

Dpij = 2Mi\jDX\; + \?

||B (2B; + B;)B]"
a; + @Bi+ B)By, f,
<mz< 9|1 Bl
mZi m#j
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Now, for I # k, since D\;(a; — ax) = d;1 — Aj(ax) (see [8, p65]), we have
Dpyj(ar)(ar — ap) = A} (ax) DAj(ar — ag) = i (31 — Sjx) = dini-

Using the properties of ¢,,, 0 < m < 3, we deduce that

B;
D)7 =0, D8] = VLG5, 4 D087 =0,
T_2po7 1 T (QBi+B)BII
Dpij(bk) By = BBy + BBy + = Day(by) B =0, k # 1, ].
9 9 9| Bl
Hence the last line of (3.3) is varified. O

For 0 < i < 3, vectors aj — a;, j # i, form a basis of R3. Thus the degrees of
freedom of the cubic tetrahedral element can be replaced by

D), 0<j <3, Yoe k).
ov

For the cubic tetrahedral element, we can define the corresponding finite element
space Vo as follows: v € Vo if any only if (1) v|r € P5(T),YT € T, (2) v and Dv
are continuous at all vertices of elements in 73, and vanish at all vertices belonging
to 09, and (3) —v is continuous at the barycenters of all facets of elements in 7},
and vanishes at barycenters of all facets on 0f.

Unlike the Zienkiewicz element, this complete cubic finite element space is not
always contained in C°(Q). To see this, let us choose two different elements 7', 7" €
Tr such that they have a common facet F and T UT’ C Q. Denote by b the
barycenter of F' and by v the unit outer normal to F' with respective to T'. Let vy
be the function in Vo satisfying: v, = 0 outside T"U T" and —Uh(b) = 1. Then
vp|r is just one of the basis functions ¢; given by (3.2). From (3 2) vp|r does not
vanish at all relative inner points of each facet of T. Hence vy, is not continuous
through the facets of T' different from F'.

v(a;), Dv(a;)

Lemma 3.1. Let Vi be the finite element space of the cubic tetrahedral element.
If T,T' € Ty, have a common facet F, then

(35) | Dtnlr) = [ Dloulr), v € Vio
F F
If a facet F of T € Ty, is on OS) then
(3.6) / D(vp|r) =0, vp € Vyo-
F
Proof. Let v, € Vio and F be the common facet of T,T' € T;. Denote the unit
normal of F relative to T by v, and choose v, 7)), 7(2) an orthogonal unit basis of

R3. Let ay,das,as be vertices of F' and bo be barycenter of F. Denote by \; the
area coordinate of F' corresponding to vertex @;. Then

/J?:% |F|(Z>\2 )+ 9N%( bo)), 1<j<3,

/Fxx 1F] 'F'(i FOX M), 1<) AR <3,
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From the fact that P(F) = span{A3, A3, A2, X1 X2, A2 A3, A3 1 }, we obtain

(3.7 [ =15 '(Zpal )+ 99(0)), Vb € Po(F).

By the definition of Vho, 55 (vn]T) and —(Uh|Tr) are quadratic polynomials on
F, and they equal to 5 vh at by and a;, 1 <i < 3. Hence

(3.8) /M“T |F|(Z%U:( i)+ 9% bo /6””|T’ .

Denote all sides of F' by S;, S5, S5, and the unit out normal of S; by n(?, viewed
as the boundary of a triangle in the 2-dimensional space spanned by directions ()
and 7(2). Then for i € {1,2} Green’s formula gives

3 3
9(vn|T) -y (a)/ / thT' -y (J/
n; h|T> n; Uh|T'-
r 0T ol F |

j=1 Jj=1

By the definition of Vjo, vp|r = vl on Sj. Therefore

O(vn|r) / Ovnlr) .
. — = - =1,2.
(39 el A =
Equality (3.5) follows from (3.8) and (3.9). Similarly, we can show (3.6). O

3.2. The incomplete cubic tetrahedral element. We shall construct a new
element by removing the degrees of freedom %(bj) from the cubic tetrahedral
element.

For 0 <i < j <k <3, let ajjr = (a; +a; + ar)/3 and v, be the unit out
normal of the facet with a;, a;,ar as vertices. For v € C'(T), define 'QZ;Z']']C('U) €R
by

~ v 1 Ov
Yijk(v) = Bvir (aije) = 5 B

(ar)-

I=i,j,k
Define

P{(T) = {p € P5(T) | dijr(p) =0, 0<i < j <k<3}.
For a linear polynomial ¢, we have

q(aijr) — % Z q(a;) = 0.

I=i,j,k
Then ;1 (p) = 0 when p € P»(T), that is, P»(T) C Py (T). For incomplete cubic
tetrahedral element, (T, Py, ®7) is defined by (see Fig. 2)

1): T is a tetrahedron,
2): Pr=P{(T),
3): &7 is the vector with its component the following degrees of freedom,

v(a;), 0<§ <3, Du(ag)(aj —a;), 0<i#j <3, Yoe CHT)



NONCONFORMING TETRAHEDRAL ELEMENTS FOR 4TH ORDER PDES 9

Fig. 2

The basis functions of the incomplete cubic tetrahedral element can be derived
from ones of the cubic tetrahedral element. Set

~ 2||B; 2(B; — B;)B L,
(3.10) pij:AZ?Aj——Hgf”qﬁ > 20B: BBy ZQHBk]”) Lap, 0<i#j<3.

1<k<4

kFi h#tj
where {¢;} are given in (3.2). We can verify that these {p;;} together with the
{p;} given in (3.2) form a basis for the incomplete cubic tetrahedral element. The
corresponding interpolation operator Il can be written by,

(3.11) Hrv = Z piv(a;) + Z pijDv(a;)(a; —a;), Yve CY(T).

0<i<3 0<i#£j<3

For the incomplete cubic tetrahedral element, we can define the corresponding
finite element space Vyq as follows: Vi = {v € L*(Q) | v|r € Py (T),VT € Ty, v
and Dv are continuous at all vertices of elements in 7; and vanish at all vertices
belonging to 0€}.

Similar to the cubic tetrahedral element, Vjo here is still not a subspace of
Co(9Q). O

3.3. The 3-dimensional Zienkiewicz element. The incomplete tetrahedral el-
ement above is reminiscent to the 3-dimensional Zienkiewicz element, the element
of Hermite tetrahedron of type (3') in [8]. We shall now discuss this element and
its relevant questions.

For 0 <i < j <k <3, define

bije(v) = 6v(air) —2 Y vla)+ Y Do(a)(a — aij).
1=i,j,k I=i,j,k
Define
Py(T)={pe P(T) |¢ijr(p) =0, 0<i<j<k<3}
For the 3-dimensional Zienkiewicz element, (T, Pr, ®7) is given as follows.

1): The element T is a tetrahedron.
2): The shape function space Pr = P4(T).
3): For v € C'(T), its degree of freedom vector ®1(v) is given by

:
@7(v) = (v(ao), Dv(ao), v(a1), Dv(ar), v(a), Dv(aa), v(az), Dulas)) -
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The corresponding interpolation operator II7 is defined by

3

o= (3A$ —2xP 2N Y Aﬂk)v(ai)

=0 0<j<k<3
(3.12) S
1
+5 > AL+ N = Aj)Do(ai)(a; —ai), Yo e CHT).
0<izj<3

For the 3-dimensional Zienkiewicz element, we can define the corresponding finite
element space Vo as follows: Vio = {v € L%(Q) | v|r € P§(T),VT € T, v and Dv
are continuous at all vertices of elements in 7;, and vanish at all vertices belonging
to O0N}. From [8], we know that Vo C H(Q). O

3.4. The quasi-conforming tetrahedral element. The Zienkiewicz element is
not convergent in general. We will show in next section that the 3-dimensional
Zienkiewicz element is also divergent for a special tetrahedral grid. In 2-dimensional
case, a convergent element was proposed by the so-called quasi-conforming element
technique in [25,7]. Now we use the technique to give a new element by modifying
the 3-dimensional Zienkiewicz element.

Let (T, Pr,®r) be the 3-dimensional Zienkiewicz element. Given a tetrahedron
T, let IIL. be the linear interpolation operator with the function values at four
vertices as degrees of freedom. We define

1
Ni; = span {1, 5(& + X)) 1<i,j<3.

For p € Prp, define B;Jp € N¥ (1 <i,j <3), such that for any q € N;;,

; 1 Op Op 1 Oq Op dq Op
[P [t 1 I T - 4 %
(3.13) /anp— 2 /q(HT&riV] +HT63:]- VZ) 2 / (Ba:i Ox; + Oz, Ba:i)'
T aT T

Set,

.
(3.14) Er(p) = ( 7P, 07D, 0Fp, O p, 07 p, 3%310)

For the quasi-conforming tetrahedral element, we use Er(p) to approximate E(p).
Define

Nu R
N22 0
N33
N = - ,
N1 R
0 B
Na3
where Nj; = (1, (A +;)), 1 <i,5 <3,
& 2 & 2611621 2611631 2621631
130 €39 €3s 2612622 2€12€30 2€22€32
Hyp = &is €33 €33 2613623 2€13€33 2€23€33

E11€12 €21€22  E31€32 E12621 + &1 E12€31 + €132 €228€31 + €21630
11613 €21823  €31€33  &13€21 +€11€23  €13831 + 611833 €23831 + €21€33
12613 €22€23  E€a32€33  E13€2n + E12€23 €132 + E12€33  €23&32 + €22€33
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0-32 0 0 032 0 0 000 0 0 0 00
32 0 4 4-3224-4-4 0 40 0 0 4 00
0 0-32 0 00 0 0 0 032 0 0 0 00
32 4 0 4 00 4 0-32-424-4 0 0 4 0
0O 0 0-32 00 00 000 0 0 0 032
32 4 4 0 00 0 4 0 00 4-32-4-424
@=1 0-16-16 0 0016 0 0160 0 0 0 0 0
6 -1 -1 2 -8 4 4-1 -8 4 4-1 0 1 10
0-16 0-16 00 016 0 00 0 016 0 0
6 -1 2 -1 -8 4-1 4 0 1 0 1 —8 4-1 4
0 0-16-16 00 0 0 0 0 016 0 016 0
6 2 -1 -1 00 1 1 —8—-1 4 4 —8—-1 4 4
Ay
4 -10
Al:(-lo 40)’ A 0
Ay
A= A ,
A2:< 33 _138> 0 2A2
30 — A
and
1 0
0 Bj 0
1 0
0 B}
MT: Tl 0 )
0 B}
0 1 0
0 B}
then
(315) Br(p) = g HrNAQM1®1(p), Vp € Pr.

Now let Vjo be the finite element space corresponding to the 3-dimensional
Zienkiewicz element. Define

(3.16) dh(vh,wh) = Z / ET(wh)TKET(Uh), Yop, wp € Vio-
TeTh ' T

Instead of solving problem (2.6), the new element finds @ € Vo such that

(3.17) an(tn,vn) = (fivn),  VYop € Vo

The quasi-conforming tetrahedral element is a three dimensional analogue of the
element proposed in [25,7] (see also [33]).
For vy, € Vi and 4,5 € {1,2,3}, define 8; vy, by

azj’l)hh‘ = 8¥(vh|T), VT € 'Th
Let II7 be the interpolation operator of the 3-dimensional Zienkiewicz element.

Lemma 3.2. The quasi-conforming tetrahedral element has the following proper-
ties:
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(1) Er(p) = E(p), Vp € Po(T).
(2) There exist positive constants ¢; and co independent of h such that

(3.18) alpler < > 10¢plor < ealpler,  Vp € Pr.
1<4,j<3
(3) There exists a constant C independent of h such that

8%v i
(3.19) D A (%ZHTU‘ < Chlolsr, Yo HY(T).
s 0z;0x; 0,T

Proof. For 1 <1i,j <3, any p € Pr and any ¢ € N;;, Green’s formula gives

?p 1 op Op 1 8q Op  Oq Op
(3.20) q@xiaxj - i/q(axi Vit Ox; Vi) B 5/ (axi Ox; + Oz, Ba:i)'
T oT T

If p € Py(T), then E(p) is uniquely determined by (3.20). On the other hand,
op _ Op
o2 =
T 8:51 Ba:l ’
By (3.13) we obtain that Er(p) = E(p),Vp € P(T).

It can be verified that the rank of matrix @ is 12. Thus the rank of AQMr is
12 too. Let S be the subspace of R'® such that AQM7d = 0,¥d € S. Then the
dimension of S is 4. By conclusion (1) of the lemma, we have

S =span{®r (1), r(z1), Pr(xs), Pr(zs)}.

If Er(p) = 0 for some p € Pr then AQMr®r(p) = 0. It follows that p € Py (T).
Therefor, for all T € Ty,

(3.21) arr|ple,r < Z 04 plo,r < carlpler, Vp € Pr
1<d,j<3

Vp S PQ(T)

where oy and asr are positive constants perhaps dependent on T'. Now define

9= swp o > 10¢plo.r
s ao 2T 1<i<s

By (3.15), (3.1) and the following quality

3

p=3 (32 -2 +20 3 An)p(@)

=0 0<j<k<3
J,k#i
1
+§ Z /\z/\](]- + A\ — /\j)Dp(ai)(aj — ai), Vp € Pr,

0<i£j<3

we can treat |8%plo.r and |p|a,r as continuous functions with respect to Br and
&7 (p). Thus function ¢g(T") is a continuous function with respect to matrix Br, say
g(Br). By (3.21) and the property of continuous function, there exist two positive
constants ¢; and ¢s such that

3.22 max ¢g(Br) < ca, min Br) > ¢y,
(322 BRI S e in (B 2 e

where ||Br|| is a norm of matrix Br.
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For T € Ty, define T = { # | & = ||Br||~'x, Vo € T}. Then ||Bz|| = 1 and

(3.23) alplyr < Y 10EBlo s < calblyz, VD€ Pr
1<4,j<3

Given p € Py, let p() = p(||Br||Z), VZ# € T. Then

(3.24) 1Bla,7 = 1Bl [pl2,7-
On the other hand, by (3.13) we have, ¥§ € N;;, 1 <1i,j <3

nij 1 0p op oG 9p  0q Op
s 1 1 ) -
/qafp— 2[ (HTa~ vitHigs " vi) /(8371 oz, * oz 65:)

T oT T

_ v SO O
= 2/[B7| /q(HTaxi””HTamj”l)
oT
1 oq Op oq 8;0 /
2||BT||T/(6xi oz; * 9x; 0z 6371 ||B 1) @7

05 =Bl [ 0p, Ve Ny,

Hence

S—

By the fact that a;?p € N;j, we obtain

02p =||Brl? 33310,
and it follows that
(3.25) 102 plo 7 = | BrIl'/*10¢plo,r-

By (3.23), (3.24) and (3.25), we obtain (3.18).
Using the first two conclusions of the lemma and the interpolation theory, we
can prove (3.19). O

3.5. Remarks. In the coding for real computation, one prefers to use the degrees
of freedom at the element vertices than ones at the relative interior of element
edges and facets. In this sense, the incomplete cubic tetrahedral element, the
3-dimensional Zienkiewicz element and the quasi-conforming tetrahedral element
seem better than the cubic tetrahedral element. Although the interpolation error
(or the approximation error) of the cubic tetrahedral element is one order higher
than those of the incomplete cubic tetrahedral element and the quasi-conforming
element, the error of these elements, to solve the boundary value problem of fourth
order partial differential equation, are all same order (see the next section). As for
the 3-dimensional Zienkiewicz element, it is divergent and can not be used.

Using nonconforming element in real computation for problem (2.1), one needs
to derive the second order derivatives of the shape functions and to write these
derivatives in a form with respect to the vector of degrees of freedom. For the
quasi-conforming tetrahedral element above, this has been given by (3.15), though
the description of the element looks more complicated than ones of the cubic and
incomplete cubic tetrahedral elements.
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4. CONVERGENCE ANALYSIS

In this section, we discuss the convergence properties of the new elements in
previous sections. Toward the end of this section, we show that the 3-dimensional
Zienkiewicz element is not convergent in general.

First, let us derive the error estimates for the interpolation operator.

Theorem 4.1. Let II7 be the interpolation operator corresponding to the cubic
tetrahedral element, the incomplete cubic tetrahedral element and the 3-dimensional
Zienkiewicz elements. Then there exists a constant C' independent of h such that

(4.1) [v — Do < CAH " "lpr, 0<m<r, Yve H(T),
where 7 = 4 for the cubic tetrahedral element and r = 3 for other two elements.

From Lemma 3.1 and the argument [21] for Morley element, we can show the
following lemma.

Lemma 4.2. Let Vo be the finite element space of the cubic tetrahedral element
or the incomplete cubic tetrahedral element. Then there exists a constant C inde-
pendent of h such that for v € H3(Q) N H3(Q) with A%v € L*(Q),

(4.2) |ah(v,vh) — (A2’U,’Uh)| < Ch(|1)|379 + h||A2'U||07Q)|'Uh|27h, Yoy, € Vio.

Now let w and up, be the solutions of problems (2.4) and (2.6) respectively.
Combining Theorem 4.1 and Lemma 4.2, we get the following theorem.

Theorem 4.3. Let Vi be the finite element space of the cubic tetrahedral element
or the incomplete cubic tetrahedral element. Then

(4.3) tim | — o = 0,
and there exists a constant C' independent of h such that
(4.4) llu = unll2,n < Ch(|uls,o + Bl fllo,2)
when u € H?(Q).
Proof. By the generalized Poincare-Friedrichs inequality(see [24]), we have
loll3,, < Can(vn,vn), You € Vio,

That is, ap(-,-) is uniformly Vjg-elliptic. From the well-known Strang Lemma,(see
[8] or [22]),

(4.5) |lu—upll2,n < C (w in

ap\U, Wh ) — , Wh
f lu—wall2n+  sup Lan(u,wn) = (1 )|> :
h€Vho

wp € Vho wr#0 ||wh||27h

When u € H3(), we obtain (4.4) direcly from (4.5), (4.1) and (4.2).
For general case, we obtain from Lemma 3.1 and Green’s formula that

62Uh
(4.6) / =0, VYop €V, 1 <i,5 <3.
Tg’;’h T 8%8:5]

Then the patch test is passed on each 7. Because the assumption of Theorem 4.7
in [26] is satisfied, we obtain (4.3). O
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Now let II; be the interpolation operator corresponding to linear conforming
element for second order partial differential equation and 7. For the cubic tetra-
hedral element and the incomplete cubic tetrahedral elements, we can also consider
another finite element method: to find @ € V¢ such that

(4.7) an(in,vn) = (f, Ojon), Vo € Vio.

For the finite element solution @y of problem (4.7), we can obtain its convergence
and the error estimate.

Theorem 4.4. Let Vi be the finite element space of the cubic tetrahedral element
or the incomplete cubic tetrahedral element. Then

(48) limn [[u = o = 0,

and there exists a constant C' independent of h such that
(4.9) |l —tpl|2,n < Chluls,q
when u € H?(Q).

For the convergence of the quasi-conforming tetrahedral element, we can follow
the way used in [32 or 33]. We give the result without proof.

Theorem 4.5. For the quasi-conforming tetrahedral element, problem (3.17) has
unique solution up and

0%u i
410 lim (o — @ ‘7—6”11‘ —0
(4.10) fim e =+ 3 |5 = ofm, =0
1<4,j<3

and there exists a constant C' independent of h such that

9%u i
(4.11) lu—tnllon+ Y |5om— - 8}{%‘ < Chluls.q-
Tes O0x;0x; 0,0

when u € H3(Q).

It is known that the Zienkiewicz element is not convergent for general meshes in
2 dimensions (see [20]). As an analogue in 3 dimensional case, the 3-dimensional
Zienkiewicz element has the same divergence property. Now we show that it is
divergent for a special grid.

In Fig.3, a cube is divided into 8 sub-cubes, and then each sub-cube is divided 6
tetrahedrons, where the tetrahedrons not represented by dashed lines are symmetric
with respect to the centric point of the cube.

Now let Q be the cube [—1,1]>. For k = 1,2,---, let T; be a triangulation
of Q0 defined as follows. First, 2 is subdivided into equal cubes with side length
hy = 2/k, then each cube is subdivided into tetrahedrons like one shown in Fig. 3.
The cases of £k =1 and k = 2 are shown in Fig. 3 and Fig. 4 respectively.
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Theorem 4.6. The 3-dimensional Zienkiewicz element is divergent for triangula-
tions Ty,.

Fig. 3 Fig. 4

Proof. Let Vip be the finite element space of the 3-dimensional Zienkiewicz
element on 7;. Let v, € Vjo be the function such that vy, is 1 at the center point
of  and vanishes at other vertices of all elements in 7y, and Dv, vanishes at all
vertices of all elements in 77. It can be computed that

82’Uh 8
= __ r=1.2
z/ =2 =123

82
Z/ o0, 1<i<3,i<j<3.

That is, the 3-dimensional Zienkiewicz element does not pass the patch test. On
the other hand, for 7; the number of the patches reduced from 7; is k® and the
number of elements in 7y, is 48k®. By Theorem 6.1 in [26], we obtain the conclusion
of the lemma. O

5. CONCLUDING REMARKS

In this paper, we proposed and analyzed several tetrahedral complete or incom-
plete cubic finite elements for fourth order elliptic partial differential operators.

More work needs to be done for constructing other types of nonconforming ele-
ments. One noticeable element that is missing from our work is a three dimensional
extension of the Morley triangular element in two dimensions that only makes use
of quadratic polynomials (although the cubic tetrahedral element, a Ps-element in
3-dimensions, may be viewed as a 3D extension of the P,-Morley element in 2D).
As it turns out, in three and higher dimensions, the construction of the P»-Morley
element is possible but it no longer uses the element vertices as part of the degrees
of freedom. We will report an extension of the Morley element in any dimensions
in [28]. Another type of elements are hexehedral nonconforming elements that may
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be extended from rectangular nonconforming elements in two dimensions. We will
report these extensions in any dimensions in [27].
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