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Abstract. This paper proposes a modified Morley element method for a fourth order elliptic
singular perturbation problem. The method also uses Morley element or rectangle Morley element,
but linear or bilinear approximation of finite element functions is used in the lower part of the bilinear
form. It is shown that the modified method converges uniformly in the perturbation parameter.
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1. Introduction

Let © be a bounded polygonal domain of R%. Denote the boundary of Q by 9Q. For
f € L*(Q), we consider the following boundary value problem of fourth order elliptic singular
perturbation equation:
2 A%u — Au = f, in Q,
B} (1.1)
- 0

uloa = ovlaa
where v = (v,15) " is the unit outer normal to 90, A is the standard Laplacian operator
and ¢ is a real small parameter with 0 < ¢ < 1. When ¢ — 0 the differential equation
formally degenerates to Poisson equation.

To overcome the C*! difficult, it is prefer to using nonconforming finite element to solve
problem (1.1). Since the differential equation degenerates to Poisson equation as € — 0, C°
nonconforming elements seem better to be used. An C° nonconforming finite element was
proposed in [4], and its uniform convergence in £ was shown.
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It is known that Morley element is not C° element and it is divergent for Poisson equation
(see [6]). When Morley element is applied to solve problem (1.1), it fails when ¢ — 0 (see
[4]). On the other hand, we have noticed the remark in the end of paper [4]: the best result
uniformly in & seems to be order of O(h'/?) for any finite element method to problem (1.1).
Here h is the mesh size. Since Morley element has the least number of element degrees of
freedom, we prefer to use a method which still uses the degrees of freedom of Morley element
to solve problem (1.1).

In this paper, we will propose a modified Morley element method for problem (1.1). The
method also uses Morley element, but the linear approximation of finite element functions is
used in the part of the bilinear form corresponding to the second order differential term. The
modified method degenerates to the conforming linear element method for Poisson equation
when £ = 0, and this is consistent with the degenerate case of problem (1.1). We will show
that the modified method converges uniformly in perturbation parameter ¢.

The modified rectangle Morley element method is also considered in this paper.

The paper is organized as follows. The rest of this section lists some preliminaries.
Section 2 gives the detail descriptions of the modified Morley element method. Section 3
shows the uniform convergence of the method. The last section gives some numerical results.

For nonnegative integer s, H*(Q2), ||-||s,o and |- |s,o denote the usual Sobolev space, norm
and semi-norm respectively. Let H§() be the closure of C§°(Q2) in H*(Q2) with respect to
the norm || - ||5,o and (-,-) denote the inner product of L*(Q). Define

2
a(v,w) / E 8:6 8:6] Bwlam] ———dz, VYv,we H*(Q). (1.2)
Ov Bw L
b(v, w) / E . B, oz, dz, Yv,w e H (Q). (1.3)

The weak form of problem (1.1) is: ﬁnd u € HZ(Q) such that
e2a(u,v) + b(u,v) = (f,v), Yo € HF(Q). (1.4)
Let u° be the solution of following boundary value problem:
—Au° = f, in Q,
{ u’lsq =0
The following lemma is shown in paper [4].
Lemma 1.1 If Q is convez, then there exists a constant C' independent of € such that
lul2.0 + eluls.o < C=™2||fllo.o (1.6)

lu—u’l.0 < Ce3||fllog (1.7)
for all f € L?(Q).

2. Modified Morley Element Method

For a subset B C R? and r a nonnegative integer, let P.(B) be the space of all polynomials
with degree not greater than r.



Morley Element

Given a triangle T, its three vertices is denoted by a;, 1 < j < 3. The edge of T' opposite a;
is denoted by Fj, 1 < j < 3. Denote the measures of T' and F; by |T'| and |F;| respectively.
Morley element can be described by (T, Py, ®r) with

1) T is a triangle.
2) Pr =P(T).
3) @ is the vector of degrees of freedom whose components are:

1 ov

i)y, — —ds, 1<j5<
U(G’J)7 |F]| ¥ 81/ S, _.7_3

for v € C'(T).

Rectangle Morley Element

Given a rectangle T, its four vertices and edges are denoted by a; and Fj, 1 < j < 4,
respectively. Rectangle Morley element can be described by (T, Py, ®7) with

1) T is a rectangle with its edges parallel to some coordinate axes respectively.
2) Pr = Py(T) + span{ z$, 23 }.
3) @ is the vector of degrees of freedom whose components are:

1 ov

)y, — —ds, 1<j<4
U(G’J)7 |F]| F 81/ S, S7s

for v € C(T).

The degrees of freedom of these two elements are shown in Fig. 1.

!

Morley element Rectangle Morley element

Fig. 1

The Morley element and its convergence for biharmonic equations can be found in [1-3,5],
while the rectangle Morley element in [7].

For mesh size h, take T a triangulation of Q2. For Morley element 7T}, consists of triangles,
otherwise 7Ty consists of rectangles with their edges parallel to some coordinate axes respec-
tively. For each T € T, let hr be the diameter of the smallest disk containing 7" and pr be



the diameter of the largest disk contained in T'. Let {73} be a family of triangulations with
h — 0. Throughout the paper, we assume that {73} is quasi-uniform, namely it satisfied
that hr < h < npr, VT € Ty for a positive constant 1 independent of h.

For each Ty, let Vj, and Vjo be the corresponding finite element spaces associated with
Morley element or with rectangle Morley element for the discretization of H?(Q) and HZ ()
respectively. This defines two family of finite element spaces {V;} and {Vjo}. It is known
that Vi, ¢ H2(Q) and Vo ¢ H3(Q). Let IIj, be the interpolation operator corresponding to
Tr and Morley element or the rectangular Morley element.

We define
2
) = 2 / Z axlaxj 61‘ 63:] 92,00, 0% vw € HI(Q) + Vi (2.1)
TE']’h
ov 0
() Z/ a; oode, vw e HY(Q) + Vi (2.2)
TETH i O

The standard finite element method for problem (1.4) corresponding to Morley element or
to rectangle Morley element is: find u; € Vjg such that

82ah(uh,vh) + bh(uh,vh) = (f, ’Uh), Yoy, € Vio. (23)

For Morley element, let H}L be the interpolation operator corresponding to linear con-
forming element for second order partial differential equation and 7;. For the rectangle
Morley element let II} be the bilinear interpolation operator. We consider the following
modified Morley element method: to find u, € V}o such that

e2an(un, vn) + br (M un, Wyon) = (f,0n),  You € Vio (2.4)
Problem (2.4) has unique solution when ¢ > 0. When & = 0, the problem degenerates to
bn (W un, o) = (f, Mvn),  You € Vi (2.5)

Although the solution of problem (2.5) is not unique yet, Il uj is uniquely determined.
Actually, IT} uy, is the exact finite element solution of linear or bilinear conforming elemet
for problem (1.5). Hence the modified Morley element method seems to give a more natural
way to solve problem (1.1).

We introduce the following mesh dependent norm || - ||;,n and semi-norm | - |,
1/2
ol = (D2 oliZr)
TET
" Yo € Vi, + H™(Q).
.\ /2
Ol = (D 10Br)
TETh

3. Convergence Analysis

In this section, we discuss the convergence properties of the modified Morley element meth-
ods in previous section.
Let uw and up be the solutions of problem (1.4) and (2.4) respectively.



Lemma 3.1 There exists a constant C independent of h and € such that Yv, € Vi
| br, (T, T v) + (Au, I vg)| < Chlule,o|T vk |10 (3.1)

| an(u,vn) — (A%u, T vp)| < Chluls,alva|2,n (3.2)
when u € H3(Q).

Proof. Let vy, € Vio. Then II} v, € Hy(£2) and
| bn (W, T on) + (Au, hop)] = | by (u — Ihu, I vs))-

By the interpolation theory and Schwarz inequality we obtain (3.1).

Now take ¢ € H*(Q). Given T € 7Tj, and an edge F of T, let P2 be the orthogonal
projection operator from L2(F) to Py(F).

Let i,5 € {1,2}. It is known that the integral average of %vh on F is continuous
through F' and vanishes when F' C 9Q. Then Green formula gives

Z / 0%vy, 8¢ %)dx
ox; 61'] 61‘, 69:]-

TeTh
= Z ¢ l/zds— Z Z /q&avhulds
]

TETh TeTw FCOT

= Z/ %_ppavh) ids

TeT, FCOT a

-y / (6 — PF¢ 8”" PFavh)Vids
TeTn FCOT Oz

From Schwarz inequality and the interpolation theory we have

Y Y [w-ro a—”’J’—Ppg””) vid|

TET;LFC(?T
8’Uh 8’Uh
PRollor | g, = P |
<Y X o Pholor| 5 - Pig

TeT, FCoT

<C > hlglirlvnlar < Chiglialvalzn.

TETh

Consequently, we obtain that V¢ € H*(Q2), Vv, € Vio, 4,5 € {1,2},

& 8¢ v
‘ Z / awlgl;j 8;-: h)d ‘ < Ch’|¢|1 Q|’Uh,|2 h- (33)

We obtain the conclusion of the lemma from (3.3), the interpolation theory and the



following equality,

ap(u,vp) —(A%u, H}Lvh)

_Zz/aaiuaﬂh’l)h—’l}h)d

i=1 TET

2vh O0Au vy,
+Z Z / 8:61 axz)dx

i=1 TET

2U’ 82vh 83U th
+ / + — |dz
1<;<2 Tg— Ox;0x; Ox;0x;  Oxidx; aarj)
Z Z / a2u 62Uh aBU %)dx
dx? 3:6 Bw%&nj Ox;

1<i#j<2TET

From lemma 3.1, we have
Theorem 3.1 There exists a constant C independent of h and € such that
ellu = unllan + lu = Mhunllie < Cheluls.a + lul.0)

when u € H3(Q).
Proof. Let wy, = IIpu, then

ellu = unllzp + llu = Myunllie < ellu = wallzn + [Ju = Myws 10

+ellun — whllo,n + 1, (un — wa)lh 0
Set v, = up, — wy. From (2.4) and (1.1), we have
52ah(vh,Uh)-l-bh(H}LUh,H}Lvh)

=e%an(u — wp,vp) + by (O} (u — wy), T} vg)
+¢&? ((A2u, I} vp) — ap(u, vh))
~ ((Au, T on) + by (T, o))

From the interpolation theory, (3.1) and (3.2),

e2an(vn,vn) + ba(yon, Myon) < Chlelulz,o + [ul2,0) (Elval2n + Mhvn| ).

Since
E|lvnllzp + IMvnllf o < C(E2Gh(vh,vh) + by (I}, vp, H}Lvh))

we obtain that
ellun — wallz,n + T, (un — wa)llLe < Chlelulsq + [ul2,0)-

The theorem follows from the interpolation theory, (3.6) and (3.7).

(3.4)

(3.7)



Theorem 3.2 If Q) is convex, then there exists a constant C independent of h and € such

that
ellu — unllz,n + llu — Mhupll,0 < ChY?|| fllo.o-

Proof. From the interpolation theory,
lu — Tyull3, < Clulsallu — Myullan < Chluls.alulso

By lemma 1.1, we have
llu = Tyl < CHY2||fllo 0.

Similar to (4.4) in [4], we can show that
lv =Tl o < Chlvlielvlg, Vo€ Hy(Q).
Using (3.10), we obtain
lu— u® =TI} (= u®) 2. < Chlu = u®ly.0u — ]z
and by the interpolation theory,
|u® =’ 0 < Chlu’|s 0.
From lemma 1.1 and the following inequalities
[u’ll2.2 < ClIfllo.e

llu = Wullie < llu—u® =1 (u = u)[h o + lu® = e’ 0

we have

lu — MhullLe < CRY2||fllo.0-
Set vy, = up — Mpu. Then I} v, € Hy(Q) and

| o (T w, Ty vn) + (Au, Ion)| = [ by (u — Tu, Tvp )]
From (3.11) and Schwarz inequality,

| bn (I, Tvp) + (Au, I vs)| < CBY?|| fllo,olITT,vall1 0.

Now take ¢ € HY(Q) and i,5 € {1,2}. From the proof of lemma 3.1, we have

> [ Cama: + e 5ot
< S lo-Pholor] g - peg

TeTn FCOT

Since

6 — P2ollo.r < 2ll8llo,r < 2ll8llo,or < Cliglls/ 2SI 7

(3.8)

(3.11)

(3.12)

(3.13)



we have, by the interpolation theory

O on 8(15 Ovn 1/2 1/2 1/2
‘ Z / Oz;0x; 61‘2 )d ‘< Ch Il ol 'qlvnl2,h- (3.14)

If ¢ < h, then by Green formula

Z / 6(15 6 Hh’l}h — Uh Z Hh’l}h h)V'dS
Ter, /T O%i TeT i
2( _
_ Z /¢8 hvh 'Uh)dw
TETh

From Schwarz inequality, the interpolation thoery and (3.13), we obtain
8¢ 8 h’l}h ( hvh - 'Uh)
< - 7
‘ Z / ox; d ‘ Z 191lo, BTH ox; H
TETh

+ Y llllo.r|Thvn — valor
TEThH

<C (W16l llBIl 5 + 1llo.c) [vn]2..

0,0T

Hence when ¢ < h

v
2|3 [ 22 =) gy < on (NI + < ol ks (315

TeTh
When ¢ > h, by Schwarz inequality and the interpolation theory we have,
d¢ oIk v
2| ¥ [ e M| < Chlolialonlen < OBl alonlon. (310
TETh ¢

From lemma 1.1, (3.4), (3.14), (3.15) and (3.16) we obtain
62| ap(u,vy) — (AQU,H}LvhH < Csh1/2||f||0,9|vh|2,h. (3.17)

Combining (3.9), (3.11), (3.12), (3.17) and the proof of theorem 3.1, we obtain the
theorem. n

4. Numerical Results

In this section, we will show some numerical results of the modified Morley element methods.
We will use the same example used in [4] for comparison.

Let Q = [0,1] x [0,1] and u(z) = (sin(rzy) sin(7m:2))2. For € > 0, set f = e2A%u — Au.
Then u is the solution of problem (1.1) when € > 0, and is the solution of problem (1.5)
when € = 0. For the rectangle Morley element, 2 is divided into h x h squares, and for



Morley element, each square is further divided into two triangles by the diagonal with a
negative slash.
Define
lvnlle,n = (e%an(vn,vn) + bh(H}LvhaH}Lvh))lﬂy Yun € Vho.

Different values of € and h are chosen to demonstrate the behaviors of the following relative
error of two modified Morley element methods,

_ ik = unllen

E.p, = (4.1)
) llu,ll-n

)

where uy, is the solution of problem (2.4) and ui denote the interpolant of u by Morley
element or rectangular Morley element.
Let g = A2y, then u is the solution of the following boundary value problem of bihar-
monic equation,
A’y =g, in Q,

ou (4.2)

u = — =
o0 ov 1o

For comparison, we also consider the error of finite element solution to problem (4.2). Let
@y, € Vo be the solution of the following problem,

an(@n,vn) = (9,1vn), You € Vao. (4.3)

In this situation, the relative error Ej, is presented by

I _ ~ I _ ~
iz = Gl o @n) (4.4)
an (up,, uy,)

For the modified Morley element method and the modified rectangular Morley element
method, E.; and Ej, corresponding some ¢ and h, are listed in Table 1 and Table 2
respectively.

L eNn [ 27 [ 27% [ 277 | 27° |

| 0 [ 0.0576 | 0.0145 | 0.0036 | 0.0009 |
210 0.0577 | 0.0146 | 0.0037 | 0.0009
2% 0.0586 | 0.0156 | 0.0046 | 0.0017
20 0.0713 | 0.0266 | 0.0119 | 0.0057
2 7 0.1653 | 0.0832 | 0.0418 | 0.0210
22 0.3404 | 0.1749 | 0.0885 | 0.0451
20 0.3869 | 0.1979 | 0.1000 | 0.0512

[ Biharmonic ]| 0.3908 | 0.1998 | 0.1010 | 0.0517

Table 1. Modified Morley Element Method



[ e\n [ 277 | 277 | 27° | 277 |

| 0 [ 0.0205 | 0.0046 | 0.0011 | 0.0002 |
2 10 0.0205 | 0.0047 | 0.0011 | 0.0003
2-F 0.0211 | 0.0052 | 0.0016 | 0.0006
20 0.0285 | 0.0107 | 0.0049 | 0.0024
27 0.0757 | 0.0360 | 0.0179 | 0.0091
2 0.1568 | 0.0770 | 0.0392 | 0.0211
20 0.1774 | 0.0875 | 0.0449 | 0.0246

| Biharmonic [| 0.1791 | 0.0884 | 0.0453 | 0.0249

Table 2. Modified Rectangular Morley Element Method

From Table 1 we see that the modified Morley element method, unlike Morley element
method (see Table 1 in [4]), converges for all € € [0, 1]. More precisely, the result shows that
E.  tends to Ey j as € approaches 0, while E, ;, is linear with respect to h as well as Ej, is
when ¢ is large. That is, the modified Morley element method behaves in the way that the
conforming linear element does for Poisson equation when ¢ is small, while it likes Morley
element for the biharmoni equation when ¢ is large.

We can get the similar discussion about the modified rectangular Morley element method
from Table 2.
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