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Summary In this paper, the well-known nonconforming Morley element for biharmonic
equations in two spatial dimensions is extended to any higher dimensions in a canonical
fashion. The general �-dimensional Morley element consists of all quadratic polynomials
defined on each �-simplex with degrees of freedom given by the integral average of the
normal derivative on each �����-subsimplex and the integral average of the function value
on each ��� ��-subsimplex. Explicit expressions of nodal basis functions are also obtained
for this element on general �-simplicial grids. Convergence analysis is given for this ele-
ment when it is applied as a nonconforming finite element discretization for the biharmonic
equation.

Key words Nonconforming finite element, forth order elliptic equation, biharmonic, Mor-
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1 Introduction

In this paper we consider nonconforming finite elements for higher dimensional fourth order
elliptic equations. There are some well-known nonconforming finite elements in two dimen-
sional case (cf. [1]-[4]). Among them, the Morley element is perhaps the most interesting
one. The Morley element has the least number of degrees of freedom on each element for
fourth order boundary value problems as its shape function space consists of only quadratic
polynomials.

Motivated by both theoretical and practical interests, in our recent paper [9], we pro-
posed and analyzed several tetrahedron nonconforming finite elements for three dimen-
sional fourth order elliptic partial differential operators. But the extension of the Morley
� The work was supported by the National Natural Science Foundation of China (10571006)
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element to three dimensions was then not obvious. In [5] an extension of the Morley ele-
ment to �-dimensional case (� � �) was given in a special manner, but it is interesting to
note that this extension does not recover the two dimensional Morley element in the gen-
eralized family. In this paper, we generalize the two dimensional Morley element to any
�-dimensional case (� � �) in a more canonical fashion . Our generalization naturally re-
covers the two dimensional Morley element and also the three dimensional element given
in [5]. Our new element is different from the element in [5] when � � �. An error estimate
was given in [5] for (and only for) the three dimensional case, but this estimate is not as
sharp as the one that is obtained in this paper for any � � � in a unified analysis.

With quadratic polynomial as shape function on a general �-simplex, the degrees of
freedom of the general Morley element presented in this paper are given by the integral
average of the normal derivative on each ��� ��-subsimplex and the integral average of the
function value on each ��� ��-subsimplex. It is intriguing that everything just fits together
very nicely.

The paper is organized as follows. The rest of this section gives some notation. Section
2 describes the Morley element for the �-dimensional case with � � �. Section 3 shows the
convergence of the element (following the work of Shi [6]). The final section contains some
brief concluding remarks.

We will use the following standard notation. � denotes a general bounded polyhedral
domain in �� (� � �), �� the boundary of �, and � � ���� ��� � � � � ���

� the unit outer
normal to �� . For a nonnegative integer �, �����, � � ���� and � � ���� denote the usual
Sobolev space, its corresponding norm and semi-norm respectively, ��

���� the closure of
	�
� ��� in ����� with respect to the norm ������ , and ��� �� the inner product of 
����. For

a subset � � �� and a nonnegative integer �, ���� denotes the space of all polynomials
on � with degree not greater than �.

2 The �-Dimensional Morley element

In this section, we will give a detailed description of our new �-dimensional Morley element
and discuss some basic properties. In �2.1, we will give the definition of the element and its
justification. In �2.2, we will give an explicit construction of the nodal basis functions. In
�2.3, we will discuss some basic properties.

2.1 The definition of the new element

Let � be a general �-simplex with � � � vertices denoted by �� � ����� ���� � � � � ����
�

(� � � � ���) and with its barycentric coordinates denoted by ��� ��� � � � � ����. We will
use �� (� � � � � � �) to denote the �� � ��-dimensional subsimplex of � without ��
as its vertices and �� its barycenter and ��� (� � � � � � � � �) to denote the �� � ��-
dimensional subsimplex without �� and �� as its vertices. As usual, �� �, ���� and ���� � denote
the measures of � , �� and ��� respectively.

Definition 1 (The �-dimensional Morley element) The Morley element of �-dimension is
defined by ��� � � �� � with
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1. � is an �-simplex.
2. � � ��� �, the space of all quadratic polynomials.
3. �� is the vector with its components the following degrees of freedom,

�

���� �

�
	��

�� � � � � � � �� ��
�

��� �

�

�

��

��
� � � � � �� �� �� 	 	��� �� (1)

Remark 1. For � � �, ��� � �� is a vertex of � . We have

�

�����

�
	��

� � ������

We thus recover the definition of the Morley element in two dimensions, see Fig. 1.

�

��

Fig. 1





 


Remark 2. For � � �, ��� are edges of the simplex, the degrees of freedom are illustrated
in Fig. 2.

Fig. 2
�

��

Remark 3. Just like the 2-dimensional Morley element, the degrees of freedom of the
element can be replaced by

�

���� �

�
	��

�� � � � � � � �� ��
��

��
����� � � � � �� �� �� 	 	��� ��

In this situation, the corresponding basis functions remain unchanged and the corresponding
finite element spaces are the same as the previous case.
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Remark 4. Let ��� (� � � � � � � � �) be the edge of � with �� and �� as its endpoints,
and let ���� � be its length and ��� its midpoint. The �-dimensional Morley element given in
[5] has the following degrees of freedom:

������� �
�� �

���� �

�
���

�� � � � � � � ����
��

��
����� � � � � ���� �� 	 	��� �� (2)

where � � � � ���� and � � �. This family of elements exclude the existing Morley
element for � � �. It is interesting to note that this element is identical to our new element
for � � � but is quite different from our element for � � �.

Lemma 1 Given � 	 	��� �, the degrees of freedom given in (1) uniquely determine the
integrals of all first order derivatives �


�

��

on each ��� ��-dimensional subsimplex �� of � .

Proof Given � � � � � � �, denote the unit normal of �� by �, all �� � ��-dimensional
subsimplexes of �� by ��� ��� � � � � ��, and the unit out normal of �� by ����, viewed as the
boundary of an ��� ��-simplex in ��� ��-dimensional space. Given any constant �-vector
� 	 ��, let  � �� �� � ���. Then  � � � �, namely  is tangent to � . It follows that�


�

�! � � � �� � ��

�

�

�!

��
�

��
���

 � ����
�
	�

!� (3)

This gives an explicit expression of
�

�
�! � � in terms of the degrees of freedom (1) for

any � 	 ��. The desired result then follows.

We now prove that the �-dimensional Morley element is well-defined.

Lemma 2 For the Morley element of �-dimension, �� is � -unisolvent.

Proof Because the dimension of ��� � and the number of degrees of freedom are all �����
���� � ��, it is enough to show that if ! 	 ��� � and�

	��

! � �� � � � � � � �� ��

�

�

�!

��
� �� � � � � �� � (4)

then ! � �.
By Lemma 1 and its proof, we deduce that�


�

�! � �� � � � � �� �� (5)

Now let � � "� # � �. By Green’s formula and (5) we have

��!

�����
�

�

�� �

�
�

��!

�����
�

�

�� �

����
���

�

�

�!

���
� � ��

That is, ! 	 ��� �. From (5), �! � � and ! is a constant on � . Hence ! � � by (4).
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2.2 The nodal basis functions and the nodal value interpolant

For both theoretical and practical interests, we now give an explicit construction of the nodal
basis functions for our new �-dimensional Morley element. Explicit nodal basis functions
of course allow an explicit definition of the canonical nodal basis interpolant for the �-
dimensional Morley element.

The nodal basis functions Let us first give the formulae for nodal basis functions.

Theorem 1 The nodal basis functions associated with the degrees of freedom given by (1)
for the �-dimensional Morley element are give by��������

�������

$� �
�

������
������ � ��� � � � � �� ��

!�� � �� ��� ����� � ��� � ���� ������

���� ������ ���
�
�����

������ � ��

�������
� � � � � � � �� ��

(6)

where ����� is the Euclidean norm of ���.

Proof Let � � � � � � �, � � " � # � � � �. If " � � or # � � then $��	�� � �. If " � �
and # � � then

�

����

�
	��

$� �
��� ��	

������

�
��

�	
�

�

��� ��	

�
� ��

For � 	 ��� �� � � � � � � ��, ���� is the outer normal of �� and the integral average of a
linear polynomial over �� equals to its value at point �� . Since

�$� �
�

�����
���� � ������ �$����� �

���
��
�

���
�����

� � � ��

� � � ��

we obtain that for � 	 ��� �� � � � � �� �������
����

�

����

�
	��

$� � �� � � " � # � �� ��

�

����

�

�

�$�
��

� Æ��� � � " � �� ��

(7)

where Æ�� is the Kronecker delta.
Now let � � � � � � ��� and � � " � # � ���. If " � � and # � � then !���	�� � �.

If ��� �� � �"� #� has only one element, for example " � � and # � �, then

�

����

�
	��

!�� �
�

����

�
	��

	
�� ��� ����



� ��� ��	

	 �

��� ��	
�

�� �

��� ��	



� �
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where we have used the first equality of (7). If ��� �� � �"� #� is empty then

�

����
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	��

!�� �
�

����

�
	��

	
�� ��� ����� � ��� � ���� ������
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	 �
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�
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�	



� ��

By virtue of the following equality

�!�� � ��� ��
	
���� ���� � ������� � ����������� ���

�
�����

���� � �����
������




we have

�!������ �

�������
������

���� ����� ���
���

������
� " � ��

���� ����� ���
���

������
� " � ��

� " � �� ��

Therefore
�!��
��

���� � �� � � " � �� ��

In summary, we have, for � � � � � � �� ������
����

�

����

�
	��

!�� � Æ��Æ�� � � " � # � �� ��

�

����

�

�

�!��
��

� �� � � " � �� ��

(8)

From (7) and (8), !�� and $� are the nodal basis functions with respect to the degrees of
freedom (1).

Theorem 1 can of course be used directly to give another proof of Lemma 2.
For practical interests, let us take a closer look at the nodal basis functions in three

dimensional case. We note that ��� is a constant vector and can be represented by the
components of vertices. Set

%� �

�
� ���� � �������� � ����� ���� � �������� � ����

���� � �������� � ����� ���� � �������� � ����
���� � �������� � ����� ���� � �������� � ����


� �

%� �

�
� ���� � �������� � ����� ���� � �������� � ����

���� � �������� � ����� ���� � �������� � ����
���� � �������� � ����� ���� � �������� � ����


� �
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%� �

�
� ���� � �������� � ����� ���� � �������� � ����

���� � �������� � ����� ���� � �������� � ����
���� � �������� � ����� ���� � �������� � ����


� �

%� �

�
� ���� � �������� � ����� ���� � �������� � ����

���� � �������� � ����� ���� � �������� � ����
���� � �������� � ����� ���� � �������� � ����


� �

Then, for the 3-dimensional Morley element, its nodal basis function can be written as�����
����

$� �
��� �

�%��
������ � ��� � � � � ��

!�� � �� ���� � ��� � 
���� � %�� %�
�
�����

������ � ��

�%���
� � � � � � � ��

(9)

The nodal value interpolant With the nodal basis functions given above, the corresponding
interpolation operator &� can then be given by

&� � �
�

���������

!��
�����

�
	��

� �
����
���

$�
��� �

�

�

��

��
� �� 	 ���� �� (10)

By construction, we have
&�! � !� �! 	 ��� �� (11)

Using (11) and the interpolation theory [2], we obtain the following lemma.

Lemma 3 For the �-dimensional Morley element, there exists a constant 	 independent of
' such that

�� �&� ����� � 	'��������� � � � � � �� �� 	 ���� �� � 	 � �� (12)

Define &� by �&����� � &� ���� �, �� 	 ��, where � is appropriately smooth. By (7),
(8) and (10), we have, for � 	 ���� �,�����

����

�

���� �

�
	��

&�� �
�

�����

�
	��

�� � � � � � � �� ��

�

��� �

�

�

�&� �

��
�

�

��� �

�

�

��

��
� � � � � �� ��

(13)

The �-dimensional Morley finite element space Let '� be the diameter of the smallest ball
containing � and (� be the diameter of the largest ball contained in � . Let ���� be a family
of triangulations of �, consisting of �-simplexes, with mesh size ' � �. Throughout the
paper, we assume that ���� satisfies: '� � ', �� 	 ��, and there exists a positive constant
) independent of ', such that )' � (� , �� 	 ��.

For the �-dimensional Morley element, the corresponding finite element spaces *� and
*�� are defined as follows. *� consists of all piecewise quadratic functions on �� such
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that, their integral average over each �� � ��-dimensional subsimplex of elements in��
are continuous, and their normal derivatives are continuous at the barycentric point of each
�� � ��-dimensional subsimplex of elements in ��, and *�� consists of functions in *�
whose degrees of freedom (1) vanish on ��.

2.3 Some properties

For �� 	 *� and � 	 ��, denote by ��� the continuous extension of �� from the interior
of � to � . Given any ��� ��-dimensional subsimplex � , let us define the jumps of �� and
��� across � as follows:

���� � ��� � ��
�

� and ����� � ���� ����
�

�

if � � � � � � for some �� � � 	 �� and

���� � ��� and ����� � ����

if � � � � ��.
The first property we will state now is a direct consequence of Lemma 1.

Lemma 4 If � is a common ��� ��-dimensional subsimplex of �� �� 	 ��, then�


����� � �� ��� 	 *�� (14)

If an ��� ��-dimensional subsimplex � of � 	�� is on �� then�


����� � �� ��� 	 *��� (15)

Lemma 5 There exists a constant 	 independent of ' such that����������
 � '
�������

��
��


� 	'���
	
������� � ������� �



� ��� 	 *� (16)

if � � � � � � is a common ��� ��-dimensional subsimplex of some �� �� 	 ��, and����������
 � '
�������

��
��


� 	'���������� � ��� 	 *�� (17)

if � � � � ��.

Proof Let �� 	 *� and � � � � � �. From (14) we know that ����� vanishes at a point on
� . Then

��
��


����������
�� � '��

��


��
�����

���� ���
������

�
���
���� (18)

By a standard scaling argument (or inverse inequality), we obtain�������
��
��


� 	'���
	
������� � ������� �



� (19)
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From the definition of *�, ���� vanishes at some point on � . Then����������
 � '������� ��
��


����������� � '������� ��
��


����������
�� � 	'

�������
��
��


�

(20)
Inequality (19) leads to ����������
 � 	'���

	
������� � ������� �



� (21)

Inequality (16) follows from (19) and (21).
Let �� 	 *�� and � � � � ��. Then ���� � ���
 and ����� � ����
 . From the

definition of *�� and (15), ���� and ����� vanish at some points on � respectively. Then
inequalities (18) and (20) can be proved similarly in this case. Thus inequality (17) is true.

3 The convergence analysis for the biharmonic equations

For + 	 
����, we consider the following boundary value problem of the biharmonic
equation ��

�
,�- � +� �� ��

-��� �
�-

��

���
��

� �
(22)

where , is the standard Laplacian operator. Define

���� .� �

�
�

��
�����

���

������

��.

������
� ��� . 	 ������ (23)

The weak form of problem (22) is: find - 	 ��
� ��� such that

��-� �� � �+� ��� �� 	 ��
� ���� (24)

The 2-dimensional Morley element is a convergent element for the fourth order elliptic
equations (see [2,3,6,7]), while it is divergent in general for the second order equations (see
[8]). In this section, we discuss some convergence properties of the �-dimensional Morley
element for problem (22). The main idea of the analysis follows from Shi [6].

We introduce the following mesh dependent norm � � ���� and semi-norm � � ����:

������ �
	 �
����

�������


���
� ������ �

	 �
����

�������


���

for all function � 	 
���� that ��� 	 ���� �� �� 	 ��.

Lemma 6 For any �� 	 *�� there exist functions .�� 	 ��
� ���, � � " � �, such that

.���� 	 	��� ���� 	 ��, and

��� � .������ � 	'����������� � � � � �� (25)������
���

� .��

���
���

� 	'����������� � � � � �� � � " � � (26)

where 	 is a constant independent of '.
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Proof Let �� 	 *��, and let  �
� � 
��� � � ��� � be the 
�-orthogonal projection. Define

 �
� � 
���� � 
���� as follows: for any � 	 
����,  �

���� �  �
� �, �� 	 ��. Set

/�� �  �
���� /�� �  �

�

���
���

� � � " � ��

By a standard error analysis, we have��
�
��� � /������ � 	'����������� � � � � ��������
���

� /��

���
���

� 	'����������� � � � � �� � � " � ��
(27)

Given a set � � ��, let ����� � �� 	 �� �� � � � � � and 0���� the number of
the elements in �����.

For " 	 ��� �� � � � � ��, we define .�� 	 ��
� ��� as follows: for any � 	 ��, .���� 	

��� � and for � 	 ��� �� � � � � �� ��

.������ �
�

0�����

�
� ��������

/�
�

������

when vertex �� of � is in �. Obviously, .�� is well-defined. To prove the lemma, we only
need to show that��

�
��� � .������ � 	'���������� � � � � ��������
���

� .��

���
���

� 	'����������� � � � � �� � � " � ��
(28)

Let � 	 ��, by a standard scaling argument, we have

�!����� � 	'����
����
���

�!�����
�� � � � � �� �! 	 ��� �� (29)

If vertex �� of � is in � then by the definition of .��,

�/��� � .������� � /��������
�

0�����

�
� ��������

/�
�

������

�
�

0�����

�
� ��������

	
/�������� /�

�

������


�

For � � 	 ������ there exist ��� � � � � �� 	 ������ such that �� � � , �� � � � and ��� �

�� � ���� is a common �� � ��-dimensional subsimplex of �� and ���� and �� 	 ��� ,
� � � � 1 . By standard inverse inequalities, we have

���/�������� /�
�

������
���� �

��� ����
���

�
/
��
������� /

����
�� ����

�����
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�	

����
���

���/��������� /
����
�� ����

���� � 	'���
����
���

���/���� � /
����
��

����
�� 	
�

�	'���
����
���

	 ������� � /
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when � � " � �. By a standard analysis, we obtain
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From Lemma 5 we have
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Since 0��� � is bounded, we get�����
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If vertex �� of � is on ��, there exists � � 	 ������ with an �� � ��-dimensional sub-
simplex � of � � belonging to �� and �� 	 � . By the definitions of .�� and /��,
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and for � � " � �
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By scaling argument and Lemma 5, we have
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Using a routine analysis, we have
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By a similar analysis for �/��������/�
�

�������, � � " � �, we conclude that (30) is also true
in this case.

Combining (29) and (30), we have
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Summing the above inequalities over all � 	��, we obtain that
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Consequently
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Then (28) follows from (31), (32) and (27).

For �� . 	 ����� � *�, we define
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The finite element method for problem (24) is: find -� 	 *�� such that

���-�� ��� � �+� ���� ��� 	 *��� (34)
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Lemma 7 There exists a constant 	 independent of ' such that for � 	 ����� ���
� ���

with ,�� 	 
����,

������ ���� �,��� ���� � 	'������� � '�,��������������� ��� 	 *��� (35)

Proof For � 	 ��������
� ��� with ,�� 	 
���� and �� 	 *��, let .�� 	 ��

� ��� be as
in (25). We write
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� �,��� .�� � ���� (36)

By (25) and the Schwarz inequality we obtain immediately that
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For the first term on the right of (36), an integration by parts gives
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Now let �� � 	 ��� �� � � � � ��. By (25) and the Schwarz inequality we have������
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For an �����-subsimplex �� of � 	 ��, let  �
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�-orthogonal
projection. By Green’s formula and Lemma 4, we have
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which implies that������
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������ � 	'������ �������� (40)

Equality (38) together with (39) and (40) leads to�� ����� ���� �,��� .���
�� � 	'������ �������� (41)

Inequality (35) follows from (36), (37) and (41).
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Lemma 8 There exists a constant 	 independent of ' such that, for any �� 	 *��,

������� � ������� � 	�������� (42)

Proof For �� 	 *��, let .�� 	 ��
� ���, � � " � �, such that inequalities (25) and (26)

hold. Then from (25) and (26)
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The above inequalities lead to the second inequality of (42).

Theorem 2 Let - and -� be the solutions of problem (24) and (34) respectively. Then there
exists a constant C independent of ' such that

�-� -����� � 	'��-���� � '�+����� (43)

when - 	 �����.

Proof The well-known Strang’s Lemma (see [7] or [2]) says that

�-� -����� � 	
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�-� .����� � ���

������ �� ���

� ���-�.��� �+� .���

�.�����

�
� (44)

By (42), we may replace the semi-norm � � ���� above by the full norm � � ����. The desired
estimate (43) then follows from Lemma 3 and Lemma 7.

4 Concluding remarks

The two dimensional nonconforming Morley element is a very simple but peculiar ele-
ment for biharmonic equations. In this paper, this element is extended to the general �-
dimensional case in a canonical fashion. The new class of nonconforming elements con-
structed in this paper for fourth order partial differential equations is hoped to shed some
new insight to the finite element theory on nonconforming elements. In addition to its the-
oretical interest, as pointed out in [9], this type of element is potentially useful in practice
such as in computational material sciences.
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