拓扑学, 2025 年秋季

作业 2

上交时间: 10 月 14 日

- 1. 是否存在满的连续映射 $f:[0,1] \to \mathbb{E}^2$? 为什么?
- 2. 构造从 [0,1] 到 S^2 的连续满映射。
- 3. 若 X,Y 可分,证明 $X \times Y$ 可分。
- 4. 设 Y 是 Hausdorff 空间, $f: X \to Y$ 连续,则 f 的图像 $G_f := \{(x, f(x)) \in X \times Y \mid x \in X\}$ 是 $X \times Y$ 的闭子集。
- 5. 证明 T_2 公理和 C_2 公理都有可乘性和遗传性。
- 6. 令 $\mathcal{B} = \{[a,b) \mid a < b\}$ 。证明 \mathcal{B} 所生成的 ℝ 上的拓扑不是第二可数的。
- 7. 记 S 为所有无理数的集合,在 \mathbb{R} 上,定义 \mathcal{T} 为所有形如 $U\setminus A$ 的子集组成的集合,其中 U 为 \mathbb{E}^1 中的开集,A 是 S 的子集。
 - (a) 证明 \mathcal{T} 给出了 \mathbb{R} 上可分的拓扑;
 - (b) 证明 T 满足 C_1 公理但不满足 C_2 公理;
 - (c) 证明 T 满足 T_2 公理但不满足 T_3 公理;
 - (d) 证明 \mathcal{T} 在 S 上的子空间拓扑 \mathcal{T}_S 是离散拓扑,从而 (S,\mathcal{T}_S) 是不可分的。
- 8. 设 X 满足 T_4 公理, A 是 X 的闭子集, 证明连续映射 $f: A \to \mathbb{E}^n$ 可连续扩张到 X 上。
- 9. 证明度量空间的任意闭子集都是可数多个开集的交。
- 10. 设 S^n 是 \mathbb{E}^{n+1} 的单位球面。设 X 是度量空间,A 是 X 的闭子集。证明任意连续函数 $f:A\to S^n$ 可以连续延拓到 A 的一个开邻域(即连续延拓到 X 中某个包含 A 的开子集)。