微分拓扑， 2022 年春季

作业 1

上交时间及方式：2022．03．18

1．Let $X \subset \mathbb{R}^{N}, Y \subset \mathbb{R}^{M}$ and $Z \subset \mathbb{R}^{L}$ be arbitrary subsets in certain Euclidean spaces，and let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be smooth maps．Show that the composite $g \circ f: X \rightarrow Z$ is smooth， and if f and g are diffeomorphisms，so is $g \circ f$ ．

2．The graph of a map $f: X \rightarrow Y$ is the subset of $X \times Y$ defined by

$$
\operatorname{graph}(f)=\{(x, f(x)): x \in X\}
$$

Define $F: X \rightarrow \operatorname{graph}(f)$ by $F(x)=(x, F(x))$ ．Show that if f is smooth，then F is a diffeomor－ phism．；thus $\operatorname{graph}(f)$ is a manifold if X is．

3．（a）An extremely useful function $f: \mathbb{R}^{1} \rightarrow \mathbb{R}^{1}$ is

$$
f(x)= \begin{cases}e^{-1 / x^{2}} & x>0 \\ 0 & x \leq 0\end{cases}
$$

Prove that f is smooth．
（b）Show that $g(x)=f(x-a) f(b-x)$ is a smooth function，positive on (a, b) and zero elsewhere． （Here $a<b$ ．）Then

$$
h(x)=\frac{\int_{-\infty}^{x} g(t)}{\int_{-\infty}^{\infty} g(t)}
$$

is a smooth function satisfying $h(x)=0$ for $x<a, h(x)=1$ for $x>b$ ，and $0<h(x)<1$ for $x \in(a, b)$ ．
（c）Now construct a smooth function on \mathbb{R}^{k} that equals 1 on the ball of radius a zero outside the ball of radio b ，and is strictly between 0 and 1 at intermediate points．（Here $0<a<b$ ．）

4．If U is an open subset of the manifold X ，check that

$$
T_{x}(U)=T_{x}(X) \quad \text { for } \quad x \in U
$$

5．（a）Let $f: X \rightarrow X \times X$ be the mapping $f(x)=(x, x)$ ．Check that $d f_{x}(v)=(v, v)$ ．
（b）Let $\Delta=\{(x, x): x \in X\}$ be the diagonal of $X \times X$ ，show that its tangent space $T_{(x, x)}(\Delta)$ is the diagonal of $T_{x}(X) \times T_{x}(X)$ ．

6．（a）Suppose that $f: X \rightarrow Y$ is a smooth map，and let $F: X \rightarrow Y$ be $F(x)=(x, f(x))$ ．Show that $d F_{x}(v)=\left(v, d f_{x}(v)\right)$ ．
（b）Prove that the tangent space to $\operatorname{graph}(f)$ at the point $(x, f(x))$ is the graph of $d f_{x}: T_{x}(X) \rightarrow$ $T_{f(x)}(Y)$ ．

7．（a）Let x_{1}, \cdots, x_{N} be the standard coordinate functions on \mathbb{R}^{N} ，and let X be a k－dimensional submanifold of \mathbb{R}^{N} ．Prove that every point $x \in X$ has a neighborhood on which the restrictions of some k－coordinate functions $x_{i_{1}}, \cdots, x_{i_{k}}$ form a local coordinate system．
（b）For simplicity，assume that x_{1}, \cdots, x_{k} form a local coordinate system on a neighborhood V of x in X ．Show that there are smooth functions g_{k+1}, \cdots, g_{N} on an open set U in \mathbb{R}^{K} such that V may be taken to be the set

$$
\left\{\left(a_{1}, \cdots, a_{k}, g_{k+1}(a), \cdots, g_{N}(a)\right) \in \mathbb{R}^{N}: a=\left(a_{1} \cdots, a_{k}\right) \in U\right\}
$$

8．If X is compact and Y is connected，show that every submersion $f: X \rightarrow Y$ is surjective．Show that there exist no submersions of compact manifolds into Euclidean spaces．

9．Verify that the tangent space to $O(n)$ at the identity matrix I is the vector space of skew symmetric $n \times n$ matrices－that is，A satisfying $A^{t}=-A$ ．
10. Show that the set of $m \times n$ matrices of rank r is a submanifold of $\mathbb{R}^{m n}$ of codimension $(m-r)(n-r)$. (Hint: Suppose, for simplicity, that an $m \times n$ matrix A has the form $A=\left(\begin{array}{cc}B_{r \times r} & C \\ D & E\end{array}\right)$, where the $r \times r$ matrix B is nonsingular. Postmultiply by the non singular matrix $\left(\begin{array}{cc}I & -B^{-1} C \\ 0 & I\end{array}\right)$ to prove that $\operatorname{rank}(A)=r$ if and only if $E-D B^{-1} C=0$.)

