14 射影变换

14.1 射影变换

定义 **14.1.** 设 $\phi: P(\Sigma) \to P(\Sigma')$ 是射影平面间的双射,若 ϕ 将 $P(\Sigma)$ 中的直线映为 $P(\Sigma')$ 中的直线,则称 ϕ 是一个射影映射 (homography)。特别地,当 $\Sigma = \Sigma'$ 时,称射影映射为射影变换 (projective transformation)。

由定义,设 Σ 和 Σ' 是空间中的两张不同的平面,则过两平面外一点 O 的中心投影 ϕ : $P(\Sigma) \to P(\Sigma')$ 是一个射影映射。

命题 14.2. 设 $\phi: P(\Sigma) \to P(\Sigma)$ 是射影映射,则 $\phi^{-1}: P(\Sigma') \to P(\Sigma)$ 也是射影映射。

证明. 设 A', B', C' 是射影平面 $P(\Sigma')$ 中直线 ℓ' 上三点,设 $A = \phi^{-1}(A'), B = \phi^{-1}(B'), C = \phi^{-1}(C')$ 。若 A, B, C 不共线,如图 30所示,则 A, B, C 中至少有一点不是无穷远点,不妨设 A

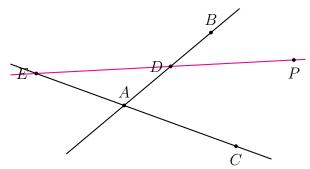


图 30: 射影映射的逆映射

不是无穷远点。对 Σ 中任何点 P,若 P 在直线 AB 或 AC 上,则因 ϕ 是射影映射,把直线映为直线,故 $\phi(P)$ 在 $\phi(A),\phi(B)$ 或 $\phi(A),\phi(C)$ 所决定的直线 ℓ' 上。若 P 不在直线 AB 或 AC 上,取过 P 的直线 ℓ_1 ,不与直线 AB 或 AC 平行,并且交点 $\ell_1 \cap AB = D, \ell_1 \cap AC = E$ 均不等于 A,则 $\phi(D)$ 及 $\phi(E)$ 均在直线 ℓ' 上,从而 $\phi(P)$ 也在直线 ℓ' 上。由 P 的任意性, ϕ 将 $P(\Sigma)$ 映入 ℓ' 中,与 ϕ 是一一对应矛盾。

射影平面 $P(\Sigma)$ 上的所有射影变换构成一个群, 称为 $P(\Sigma)$ 上的射影变换群 (projective transformation group), 记为 $Proj(P(\Sigma))$ 。

设 $\phi: \Sigma \to \Sigma'$ 是仿射映射, 则 ϕ 将 Σ 上的每条直线 ℓ 映为 Σ' 中的某条直线 ℓ' 。补充定义

$$\phi(\infty(\ell)) = \infty(\ell')$$

因仿射变换 ϕ 将与 ℓ 平行的直线映为与 ℓ' 平行的直线,故定义是良定的,即与 $\infty(\ell)$ 的代表元的选取无关。于是,每个仿射映射 $\phi: \Sigma \to \Sigma'$ 可以唯一地扩充为射影映射 $\phi: P(\Sigma) \to P(\Sigma)$ 。

反之,设射影映射 $\phi: P(\Sigma) \to P(\Sigma')$ 将无穷远直线 ℓ_{∞} 映为无穷远直线 ℓ_{∞} 。因 ϕ^{-1} 也是射影映射,将 ℓ_{∞}' 映为直线 ℓ_{∞} 。故 ϕ 是 Σ 到 Σ' 的双射,并将直线映为直线,故 ϕ 在 Σ 上的限制 $\phi|_{\Sigma}$ 是 Σ 到 Σ' 的仿射映射,而 $\phi: P(\Sigma) \to P(\Sigma')$ 是仿射映射 $\phi|_{\Sigma}$ 的扩充。

当 $\Sigma = \Sigma'$ 时, Aff(Σ) 自然地同构于 Proj($P(\Sigma)$) 的子群

$$\mathcal{A}_2 = \{ \phi \in \operatorname{Proj}(P(\Sigma)) \mid \phi(\ell_\infty) = \ell_\infty \}$$
(14.1)

 A_2 称为 Σ 上射影变换群 $P(\Sigma)$ 的**仿射子**群。 A_2 中的射影变换称为 $P(\Sigma)$ 上的仿射变换。

命题 14.3. 设 ℓ 是射影平面 $P(\Sigma)$ 的一条直线,则存在射影变换 $\phi: P(\Sigma) \to P(\Sigma)$,它将直线 ℓ 映为无穷远直线 ℓ_{∞} 。

证明. 如图 26所示,取平面 Σ' ,使得 Σ' 与 Σ 的相交直线与 ℓ 平行但不相等。取平面 Σ 和 Σ' 外的点 O,使得过 O 与 ℓ 的平面与 Σ' 平行。则以 O 为中心的中心投影 $\phi_1: P(\Sigma) \to P(\Sigma')$ 将直线 ℓ 应为射影平面 $P(\Sigma')$ 的无穷远直线 ℓ'_{∞} 。取仿射映射 $\phi_2: P(\Sigma') \to P(\Sigma)$,则 ϕ_2 将 $P(\Sigma')$ 的无穷远直线 ℓ'_{∞} 映为 $P(\Sigma)$ 的无穷远直线 ℓ 映为无穷远直线 ℓ 。

给定 $P(\Sigma)$ 中的直线 ℓ , $P(\Sigma) \setminus \ell$ 上不相交的直线称为平行的。故直线的补集都是仿射平面。

14.2 对偶原理

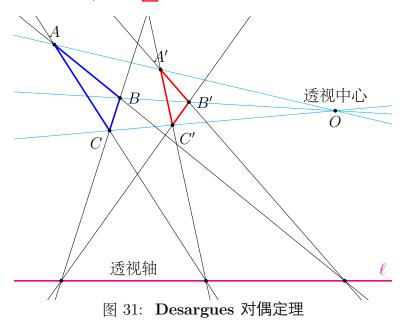
设 $P(\Sigma)$ 是一个射影平面,记 $P^*(\Sigma)$ 为 $P(\Sigma)$ 上所有的直线构成的集合。取定平面 Σ 外一点 O,定义 $P(\Sigma) \to P^*(\Sigma)$ 如下:对 $A \in P(\Sigma)$,记过 O 点且垂直于 OA 的平面与平面 Σ 相交的直线 为 $A^* \in P^*(\Sigma)$,称映射 $A \mapsto A^*$ 为射影平面的对偶对应。

射影平面上点和直线的地位是对称的,设 φ (点,线) 是射影平面上关于点和线的命题,如果 改写为 φ (线,点),称为原命题 φ (点 线) 的对偶命题。对偶字典如下

 $\mathbb{R}P^2$ 中的点 $| \mathbb{R}P^2$ 中的直线 共点的线 + 共线的点

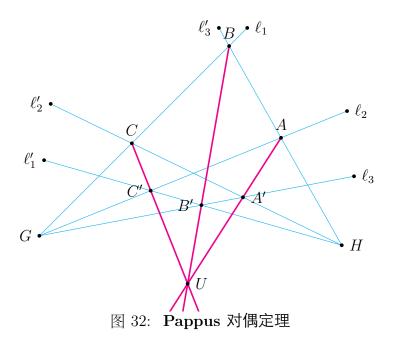
命题 14.4 (射影平面上的对偶原理). 射影平面上,如果一个命题 $\varphi(点, 3)$ 可以证明是一条定理,则其对偶命题 $\varphi(3, 4)$ 也可以证明是一条定理。

定理 14.5 (Desargues 对偶定理). 如图 31, 若三角形 $\triangle ABC$ 和 $\triangle A'B'C'$ 的对应边之交点必共



线于直线 ℓ ,则其对应顶点连线共点于某点 O。

定理 **14.6** (Pappus 对偶定理). 如图 32, 设直线 ℓ_1, ℓ_2, ℓ_2 共点于 G, 直线 $\ell'_1, \ell'_2, \ell'_2$ 共点于 G, 设直线 ℓ_2, ℓ'_3 交于 A, ℓ'_2, ℓ_3 交于 A', ℓ_1, ℓ'_3 交于 B, ℓ'_1, ℓ_3 交于 B', ℓ_1, ℓ'_2 交于 C, ℓ'_1, ℓ_2 交于 C'。则直线 AA', BB', CC' 共点。



在球面 S^2 的对径点模型中,对偶原理相应于对径点到与该直径垂直的大圆的一一对应。在线把模型上,本质上,对偶原理是 $V\cong V^*$ 诱导 $P(V)\cong P(V^*)$ 。利用 \mathbb{E}^3 的典范內积,可以写出

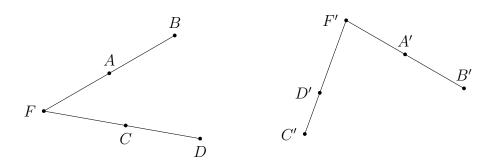
$$L \longleftrightarrow L^{\perp}$$

L 对应于 P(V) 中的点, 而 L^{\perp} 对应于 P(V) 中的直线。

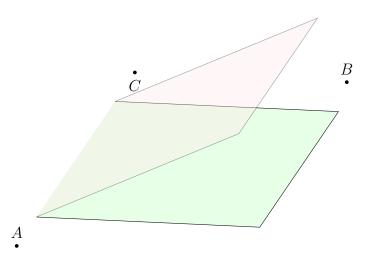
14.3 仿射变换由四点决定

设射影平面 $P(\Sigma)$ 中四点 A,B,C,D 中任何三点不共线,四点 A',B',C',D' 中任何三点不共线,则存在射影变换 $\phi:P(\Sigma)\to P(\Sigma)$ 将 A,B,C,D 分别映为 A',B',C',D'。

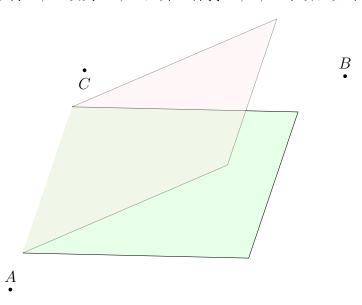
设直线 AB 交 CD 于 F , A'B' 交 C'D' 于 F' , 并且通过射影变换,可设所有点属于 Σ , 如下图所示



通过射影映射,可设 F=F', $A,B,C,D\in\Sigma$, $A',B',C',D'\in\Sigma'$,则 F,A,B,A',B' 共面,设 AA' 与 BB' 交于点 P,则 P 点为中心的中心投影将 A,B,F 映为 A',B',F',如下图所示



通过绕直线 ABF 旋转,设 $A,B,C,D\in\Sigma$, $A',B',C',D'\in\Sigma''$,设 CC' 与 DD' 交于点 Q,则 Q 点为中心的中心投影将 C,D 映为 C',D',并且保持 A,B,F 不动,如下图所示



以下设平面 $\Sigma \subset \mathbb{E}^3$,点 $O \in \mathbb{E}^3 \setminus \Sigma$ 。记 $\mathrm{Aff}_{\mathbb{E}^3}(O)$ 为所有保持 O 不动的空间仿射变换构成的变换群。 $\Phi \in \mathrm{Aff}_{\mathbb{E}^3}(O)$ 诱导向量变换 $\Phi_* \in GL(\mathbb{V}(\mathbb{E}^3))$,事实上, $\Phi \mapsto \Phi_*$ 是一一对应,并由下面公式刻画

$$\Phi_*\left(\overrightarrow{OP}\right) = \overrightarrow{O\Phi(P)}.$$

 $\Phi_* \in GL(\mathbb{V}(\mathbb{E}^3))$ 进而诱导映射(仍记为 Φ_*)

$$\Phi_*: \mathbb{R}P^2 \to \mathbb{R}P^2, \qquad \Phi_*\left([\boldsymbol{v}]\right) = [\Phi_*(\boldsymbol{v})]$$

 Φ_* 是一一对应,并且对任何实数 λ ,有

$$(\lambda \Phi)_* = \Phi_* : \mathbb{R}P^2 \to \mathbb{R}P^2$$

回顾 $\sigma: P(\Sigma) \to \mathbb{R}P^2$ 定义为

$$\sigma(x) = \begin{cases} \text{过 } O \text{ 与 } x \text{ 的直线}, & \text{若 } x \in P(\Sigma) \setminus \ell_{\infty}, \\ \text{过 } O \text{ 与 } \ell \text{ 平行的直线}, & \text{若 } x = \infty(\ell) \in \ell_{\infty}. \end{cases}$$

其逆映射为 $\sigma^{-1}: \mathbb{R}P^2 \to P(\Sigma)$ 为

 $\sigma^{-1}\left([\ell]\right) = \begin{cases} \ell \cap \Sigma, & \text{若直线 } \ell \in \mathbb{R}P^2 \text{ 与 } \Sigma \text{ 相交}, \\ \Sigma \text{ 中与 } \ell \text{ 平行的直线 } \ell' \text{ 对应的无穷远点 } \infty(\ell'), & \text{若直线 } \ell \in \mathbb{R}P^2 \text{ 与 } \Sigma \text{ 平行}. \end{cases}$

命题 14.7. 对 $\forall \Phi \in \mathrm{Aff}_{\mathbb{E}^3}(O), \ \phi = \sigma^{-1} \circ \Phi_* \circ \sigma$ 是射影变换。

证明. 因 $\sigma: P(\Sigma) \to \mathbb{R}P^2$ 及 $\Phi_*: \mathbb{R}P^2 \to \mathbb{R}P^2$ 均为一一对应,故 $\phi = \sigma^{-1} \circ \Phi_* \circ \sigma$ 是一一对应。设 A, B, C 是 $P(\Sigma)$ 中共线三点,属于直线 ℓ 。设 $\sigma(A) = [\boldsymbol{u}], \sigma(B) = [\boldsymbol{v}], \sigma(C) = [\boldsymbol{w}], 则$ $\phi(A) = \sigma^{-1} \left(\Phi_*([\boldsymbol{u}])\right), \phi(B) = \sigma^{-1} \left(\Phi_*([\boldsymbol{v}])\right), \phi(C) = \sigma^{-1} \left(\Phi_*([\boldsymbol{w}])\right).$

- 1. 若 ℓ 不是无穷远直线 ℓ_{∞} ,则无论 A,B,C 中是否有无穷远点,u,v,w 平行于过 O 与 ℓ 的平面,即 u,v,w 线性相关,故 $\Phi_*(u),\Phi_*(v),\Phi_*(w)$ 线性相关。设过 O 点且平行于 $\Phi_*(u),\Phi_*(v),\Phi_*(w)$ 的平面为 Σ' 。若 Σ' 与 Σ 相交,则 $\phi(A),\phi(B),\phi(C)$ 属于直线 $\Sigma \cap \Sigma'$ 。若 Σ' 与 Σ 平行,则 $\phi(A),\phi(B),\phi(C)$ 属于无穷远直线 ℓ_{∞} 。
- 2. 若 $\ell = \ell_{\infty}$,则 $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ 均平行于过的平面 Σ , 故 $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ 线性相关。类似可得 $\phi(A), \phi(B), \phi(C)$ 共线。

故 $\phi = \sigma^{-1} \circ \Phi_* \circ \sigma$ 是射影变换。

命题 14.8. 任给仿射变换 $\phi: \Sigma \to \Sigma$, 存在唯一的仿射变换 $\Phi \in \mathrm{Aff}_{\mathbb{E}^3}(O)$, 使得 $\Phi(\Sigma) = \Sigma$, 并且 $\Phi = \phi: \Sigma \to \Sigma$, 于是有

$$\sigma^{-1} \circ \Phi_* \circ \sigma = \phi : P(\Sigma) \to P(\Sigma)$$
(14.2)

证明. 任取 $A \in \Sigma$ 。对任何 $P \in \mathbb{E}^3$,有唯一分解

$$\overrightarrow{OP} = \lambda \overrightarrow{OA} + \overrightarrow{AB}, \qquad \lambda \in \mathbb{R} \left\{ 0 \right\}, B \in \Sigma.$$

$$\overrightarrow{O\Phi(P)} = \lambda \overrightarrow{O\phi(A)} + \overrightarrow{\phi(A)\phi(B)}$$
(14.3)

不难验证 Φ 的定义(14.3)不依赖于 A 点的选取, 并且 $\Phi: \mathbb{E}^3 \to \mathbb{E}^3$ 是仿射变换。

反之,若仿射变换 $\Phi: \mathbb{E}^3 \to \mathbb{E}^3$ 使得 $\Phi(\Sigma) = \Sigma$ 且 $\Phi|_{\Sigma} = \phi$,则 Φ 满足(14.3),故唯一。 \Box

命题 14.9. 设 ℓ 是射影平面 $P(\Sigma)$ 上的一条直线,则存在 $\Phi \in \mathrm{Aff}_{\mathbb{E}^3}(O)$,使得 $\phi := \sigma^{-1} \circ \Phi_* \circ \sigma : P(\Sigma) \to P(\Sigma)$ 将直线 ℓ 变为无穷远直线 ℓ_{∞} 。

证明. 若 $\ell=\ell_{\infty}$, 取 $\Phi=\mathbb{1}$ 即可,故下设 ℓ 不是无穷远直线 ℓ_{∞} 。

任取两不同点 $A_1, A_2 \in \ell$ 及两不同无穷远点 $\infty(\ell_1), \infty(\ell_2) \in \ell_\infty$,设

$$\sigma(A_1) = [\boldsymbol{u}_1], \qquad \sigma(A_2) = [\boldsymbol{u}_2], \qquad \sigma(\infty(\ell_1)) = [\boldsymbol{v}_1], \qquad \sigma(\infty(\ell_2)) = [\boldsymbol{v}_2].$$

则 $\{u_1, u_2, u_1 \times u_2\}$, $\{v_1, v_2, v_1 \times v_2\}$ 是 \mathbb{E}^3 的两组基,故存在 $\Phi \in \mathrm{Aff}_{\mathbb{E}^3}(O)$,使得

$$\Phi_*(u_1) = v_1, \qquad \Phi_*(u_2) = v_2, \qquad \Phi_*(u_1 \times u_2) = v_1 \times v_2.$$

则射影变换 $\phi := \sigma^{-1} \circ \Phi_* \circ \sigma : P(\Sigma) \to P(\Sigma)$ 满足

$$\phi(A_1) = \infty(\ell_1), \qquad \phi(A_2) = \infty(\ell_2).$$

因射影变换将直线映为直线,故 $\phi = \sigma^{-1} \circ \Phi_* \circ \sigma$ 将 A_1, A_2 所在的直线 ℓ 映为 $\infty(\ell_1), \infty(\ell_2)$ 所在的无穷远直线 ℓ_{∞} 。

定理 **14.10.** 任给射影变换 $\phi: P(\Sigma) \to P(\Sigma)$,存在唯一的(除一个非零因子外) $\Phi \in \mathrm{Aff}_{\mathbb{E}^3}(O)$,使得 $\phi = \sigma^{-1} \circ \Phi_* \circ \sigma_\circ$

证明. 设 $\phi(\ell_{\infty}) = \ell$,则由命题 14.9,存在 $\Phi_1 \in \mathrm{Aff}_{\mathbb{E}^3}(O)$,使得射影变换 $\phi_1 := \sigma^{-1} \circ (\Phi_1)_* \circ \sigma$ 将 ℓ 映为 ℓ_{∞} 。则射影变换 $\phi_1 \circ \phi$ 将 ℓ_{∞} 映为 ℓ_{∞} ,从而 $(\phi_1 \circ \phi)|_{\Sigma}$ 是 Σ 上的仿射变换。由命题 14.8,存在 $\Phi_2 \in \mathrm{Aff}_{\mathbb{E}^3}(O)$,使得

$$\phi_1 \circ \phi = \sigma^{-1} \circ (\Phi_2)_* \circ \sigma$$

 $\diamondsuit \Phi = \Phi_1^{-1} \circ \Phi_2 \in \mathrm{Aff}_{\mathbb{E}^3}(O), \ \$ 则有

$$\phi = \sigma^{-1} \circ \left(\Phi_1^{-1}\right)_* \circ \sigma \circ \sigma^{-1} \circ \left(\Phi_2\right)_* \circ \sigma = \sigma^{-1} \circ \left(\Phi_1^{-1} \circ \Phi_2\right)_* \circ \sigma = \sigma^{-1} \circ \Phi_* \circ \sigma$$

存在性得证。唯一性可参照定理14.12的证明。

定理14.10给出射影变换群 $Proj(P(\Sigma))$ 的如下刻画

$$\operatorname{Proj}(P(\Sigma)) \cong PGL(3) := GL(3) / (T \sim \lambda T : \lambda \in \mathbb{R}^*). \tag{14.4}$$

定义 **14.11.** 射影平面中四个点 A, B, C, D 若其中任何三点不共线,则称它们处于一般位置 (general position)。

定理 **14.12.** 给定射影平面 $P(\Sigma)$ 上任意两组处于一般位置的四点 $\{A_1, A_2, A_3, A_4\}$ 和 $\{B_1, B_2, B_3, B_4\}$,则存在唯一的射影变换 ϕ ,使得

$$\phi(A_i) = B_i, \qquad i = 1, 2, 3, 4.$$

证明. 设 $\sigma^{-1}(A_i) = [v_i]$,则 $\{A_1, A_2, A_3, A_4\}$ 处于一般位置意味着 v_1, v_2, v_3 不共面,从而构成向量空间 $\mathbb{V}(\mathbb{E}^3)$ 的一组基,故存在 $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$,使得

$$\boldsymbol{v}_4 = \lambda_1 \boldsymbol{v}_1 + \lambda_2 \boldsymbol{v}_2 + \lambda_3 \boldsymbol{v}_3$$

所有 λ_i 非零:若某个 $\lambda_i \neq 0$,则 \mathbf{v}_4 与另外两个对应的向量共面,与 $\{A_1, A_2, A_3, A_4\}$ 处于一般位置矛盾。用 $\lambda_i \mathbf{v}_i$ 取代 \mathbf{v}_i ,则有

$$\boldsymbol{v}_4 = \boldsymbol{v}_1 + \boldsymbol{v}_2 + \boldsymbol{v}_3$$

由一般位置的假设, v_4 的上述分解是唯一的。

类似的,可设 $\sigma^{-1}(B_i) = [w_i]$,使得

$$\boldsymbol{w}_4 = \boldsymbol{w}_1 + \boldsymbol{w}_2 + \boldsymbol{w}_3$$

其中 $\boldsymbol{w}_1, \boldsymbol{w}_2, \boldsymbol{w}_3$ 是向量空间 $\mathbb{V}(\mathbb{E}^3)$ 的一组基。

于是,存在仿射变换 $T \in GL(3)$,使得 $T(v_i) = w_i$, i = 1, 2, 3。由 T 的线性性质,可知

$$T(\boldsymbol{v}_4) = \boldsymbol{w}_4$$

于是对射影变换 $\tau = \sigma^{-1} \circ T \circ \sigma$, 有

$$\tau(A_i) = B_i, \qquad i = 1, 2, 3, 4$$

若另有 $S \in GL(3)$,使得 $\sigma^{-1} \circ S \circ \sigma$ 将 A_i 映为 B_i ,则存在 $\mu_i \in \mathbb{R}_0$ i = 1, 2, 3, 4,使得

$$S(\mathbf{v}_i) = \mu_i \mathbf{w}_i, \qquad i = 1, 2, 3, 4$$

于是有

$$\mu_4 \mathbf{w}_4 = S(\mathbf{v}_4) = S(\mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3) = \mu_1 \mathbf{w}_1 + \mu_2 \mathbf{w}_2 + \mu_3 \mathbf{w}_3$$

故

$$m{w}_4 = rac{\mu_1}{\mu_4} m{w}_1 + rac{\mu_2}{\mu_4} m{w}_2 + rac{\mu_3}{\mu_4} m{w}_3$$

由 \mathbf{w}_4 在基 $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3$ 表示的唯一性,可知 $\mu_1 = \mu_2 = \mu_3 = \mu_4$ 。故 $S = \mu_1 T$, $\sigma^{-1} \circ S \circ \sigma = \tau$ 。 口推论 14.13. 射影变换由一般位置四点的像唯一决定,并且是 4 传递的。

各种几何的变换和不变量如下图所示

	欧氏几何	相似几何	仿射几何	射影几何
	Euclidean	Similarity	Affine	Projective
变换 Transformation				
旋转 rotation	X	X	X	X
平移 translation	X	X	X	X
整体压缩 uniform scaling		X	X	X
压缩 nonuniform scaling			X	X
错切 shear			X	X
中心投影 perspective projection				X
投影的复合 composition of projections				X
不变量 Invariants				
长度 length	X			
角度 angle	X	X		
长度比值 ratio of lengths	X	X		
平行 parallelism	X	X	X	
简单比 ratio	X	X	X	
共点或共线 incidence	X	X	X	X
分比 cross ratio	X	X	X	X

各种几何可以如图33所示

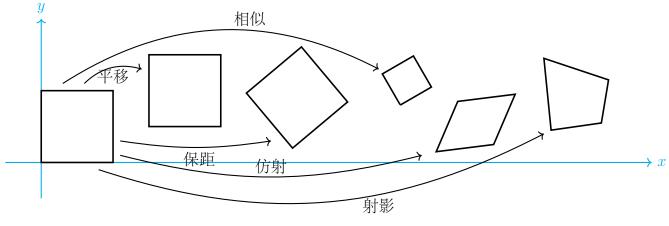


图 33: 几何变换