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1. INTRODUCTION. Ask anyone why a square matrix of complex numbers has 
an eigenvalue, and you'll probably get the wrong answer, which goes something 
like this: The characteristic polynomial of the matrix which is defined via 
determinants has a root (by the fundamental theorem of algebra); this root is an 
eigenvalue of the matrix. 

What's wrong with that answer? It depends upon determinants, that's what. 
Determinants are difficult, non-intuitive, and often defined without motivation. As 
we'll see, there is a better proof one that is simpler, clearer, provides more 
insight, and avoids determinants. 

This paper will show how linear algebra can be done better without determi- 
nants. Without using determinants, we will define the multiplicity of an eigenvalue 
and prove that the number of eigenvalues, counting multiplicities, equals the 
dimension of the underlying space. Without determinants, we'll define the charac- 
teristic and minimal polynomials and then prove that they behave as expected. 
Next, we will easily prove that every matrix is similar to a nice upper-triangular 
one. Turning to inner product spaces, and still without mentioning determinants, 
we'll have a simple proof of the finite-dimensional Spectral Theorem. 

Determinants are needed in one place in the undergraduate mathematics 
curriculum: the change of variables formula for multi-variable integrals. Thus at 
the end of this paper we'll reviveN determinants, but not with any of the usual 
abstruse definitions. We'll define the determinant of a matrix to be the product of 
its eigenvalues (counting multiplicities). This easy-to-remember definition leads to 
the usual formulas for computing determinants. We'll derive the change of 
variables formula for multi-variable integrals in a fashion that makes the appear- 
ance of the determinant there seem natural. 

A few friends who use determinants in their research have expressed unease at 
the title of this paper. I know that determinants play an honorable role in some 
areas of research, and I do not mean to belittle their importance when they are 
indispensable. But most mathematicians and most students of mathematics will 
have a clearer understanding of linear algebra if they use the determinant-free 
approach to the basic structure theorems. 

The theorems in this paper are not new; they will already be familiar to most 
readers. Some of the proofs and definitions are new, although many parts of this 
approach have been around in bits and pieces, but without the attention they 
deserved. For example, at a recent annual meeting of the AMS and MAA, I 
looked through every linear algebra text on display. Out of over fifty linear algebra 
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texts offered for sale, only one obscure book gave a determinant-free proof that 
eigenvalues exist, and that book did not manage to develop other key parts of 
linear algebra without determinants. The anti-determinant philosophy advocated 
in this paper is an attempt to counter the undeserved dominance of determinant- 
dependent methods. 

This paper focuses on showing that determinants should be banished from 
much of the theoretical part of linear algebra. Determinants are also useless in the 
computational part of linear algebra. For example, Cramer's rule for solving 
systems of linear equations is already worthless for 10 x 10 systems, not to 
mention the much larger systems often encountered in the real world. Many 
computer programs efficiently calculate eigenvalues numerically none of them 
uses determinants. To emphasize the point, let me quote a numerical analyst. 
Henry Thacher, in a review (SIAM News, September 1988) of the Turbo Pascal 
Numerical Methods Toolbox, writes, 

I find it hard to conceive of a situation in which the numerical value of a determinant is needed: 
Cramer's rule, because of its inefficiency, is completely impractical, while the magnitude of the 
determinant is an indication of neither the condition of the matris nor the accuracy of the 
solution. 

2. EIGENVALUES AND EIGENVIECTORS. The basic objects of study in linear 
algebra can be thought of as either linear transformations or matrices. Because a 
basis-free approach seems more natural, this paper will mostly use the language of 
linear transformations; readers who prefer the language of matrices should have 
no trouble making the appropriate translation. The term linear operator will mean 
a linear transformation from a vector space to itself; thus a linear operator 
corresponds to a square matrwix (assuming some choice of basis). 

Notation used throughout the paper: n denotes a positive integer, V denotes an 
n-dimensional complex vector space, T denotes a linear operator on V, and I 
denotes the identity operator. 

A complex number A is called an eigenvalue of T if T-AI is not injective. 
Here is the central result about eigenvalues, with a simple proof that avoids 
determinants. 

Theorem 2.1. Every linear operator on a finite-dimensional complex vector space has 
an eigenvalue. 

Proof: To show that T (our linear operator on V) has an eigenvalue, fix any 
non-zero vector v E V. The vectors v, Tv, T2v, . . ., Tnv cannot be linearly inde- 
pendent, because V has dimension n and we have n + 1 vectors. Thus there exist 
complex numbers aO, . . ., an, not all 0, such that 

aOv + alEv + *T +anTnv = O. 

Make the a's the coefficients of a polynomial, which can be written in factored 
form as 

aO + alz + *0 +anzn = C(Z-t1) *Z (Z - rm) 

where c is a non-zero complex number, each rj is complex, and the equation holds 
for all complex z. We then have 

O = (aOI + alT + * * * +anTn)v 

= c(T-r1I) *n (T-rmI)US 
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which means that T-rjI is not injective for at least one j. In other words, T has 
an eigenvalue. o 

Recall that a vector v E V is called an eigenvector of T if Tv = Av for some 
eigenvalue A. The next proposition which has a simple, determinant-free proof 
- obviously implies that the number of distinct eigenvalues of T cannot exceed the 
dimension of V. 

Proposition 2.2. Non-zero eigenvectors corresponding to distinct eigenvalues of T are 
linearly independent. 

Proof: Suppose that v1, . . . ,vm are non-zero eigenvectors of T corresponding to 
distinct eigenvalues A1,...,Am. We need to prove that v1,...,vm are linearly 
independent. To do this, suppose a1, . . ., am are complex numbers such that 

alvl + *-r +amUm ° 

Apply the linear operator (T- A2I)(T- A3I) *Uv (T-AmI) to both sides of the 
equation above, getting 

a1(Al-A2)(A1-A3) ** * (A1-Am)v1 = 0. 

Thus a1 = 0. In a similar fashion, aj = O for each j, as desired. O 

3. GENERATS7,F1) EIGENVECTORS. Unfortunately, the eigenvectors of T need 
not span V. For example, the linear operator on c2 whose matrix is 

[0 1 
L° 

has only one eigenvalue, namely 0, and its eigenvectors form a one-dimensional 
subspace of C2. We will see, however, that the generalized digenvectors (defined 
below) of T always span V. 

A vector v E V is called a generalized elgenvector of T if 

(T-AI)kv = 0 

for some eigenvalue A of T and some positive integer k. Obviously, the set of 
generalized eigenvectors of T corresponding to an eigenvalue A is a subspace of V. 
The following lemma shows that in the definition of generalized eigenvector, 
instead of allowing an arbitrary power of T- AI to annihilate v, we could have 
restricted attention to the nth power where n equals the dimension of V. As 
usual, ker is an abbreviation for kernel (the set of vectors that get mapped 0). 

Lemma 3.1. The set of generalized eigenvectors of T corresponding to an eigenvalue 
A equals ker(T-AI)n. 

Proof: Obviously, every element of ker(T - AI)n is a generalized eigenvector of T 
corresponding to A. To prove the inclusion in the other direction, let v be a 
generalized eigenvector of T corresponding to A. We need to prove that 
(T-AI)nV = O. Clearly, we can assume that v + 0, so there is a smallest non- 
negative integer k such that (T- AI)kV = 0. We will be done if we show that 
k < n. This will be proved by showing that 

v, (T-AI)v, (T-AI)2v, . . ., (T-AI)k 1V (3.2) 
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are linearly independent vectors; we will then have k linearly independent eleB 
ments in an n-dimensional space, which implies that k < n. 

To prove the vectors in (3.2) are linearly independent, suppose aO, . . ., ak_1 are 
complex numbers such that 

aOv+al( T-AI) V+***+ak_l(T-AI)k 1V= O. (3.3) 

Apply (T-AI)k-1 to both sides of the equation above, getting a0(T-AI)k-lD- 

0, which implies that aO = 0. Now apply (T - AI)k-2 to both sides of (3.3), getting 
a1(T - AI)k-1v - 0, which implies that a1 = 0. Continuing in this fashion, we see 
that aj-O for each j, as desired. O 

The next result is the key tool we'll use to give a description of the structure of a 
linear operator. 

Proposition 3.4. The generalized eigenzsectors of T span V. 

Proof: The proof will be by induction on n, the dimension of V. Obviously, the 
result holds when n-1. 

Suppose that n > 1 and that the result holds for all vector spaces of dimension 
less than n. Let A be any eigenvalue of T (one exists by Theorem 2.1). We first 
show that 

V=ker(T- AI) fE3ran(T- AI) ; (3.5) 

V1 V2 

here, as usual, ran is an abbreviation for range. To prove (3.5), suppose v E V1 n 
V2. Then (T-AI)nv = 0 and there exists u E V such that (T-AI)nu = v. 
Applying (T-AI)n to both sides of the last equation, we have (T-AI)2nu = 0. 
This implies that (T-AI)nu = 0 (by Lemma 3.1), which implies that v = 0. Thus 

z1 n V2= {0}. (3.6) 

Because V1 and V2 are the kernel and range of a linear operator on V, we have 

dim V = dim V1 + dim V2. (3.7) 

Equations (3.6) and (3.7) imply (3.5). 
Note that V1 + {0} (because A is an eigenvalue of T), and thus dim V2 < n. 

Furthermore, because T commutes with (T- AI)n, we easily see that T maps V2 
into V2. By our induction hypothesis, V2 is spanned by the generalized eigenvec- 
tors of Tlr2, each of which is obviously also a generalized eigenvector of T. 
Everything in V1 is a generalized eigenvector of T, and hence (3.5) gives the 
desired result. [] 

A nice corollary of the last proposition is that if 0 is the only eigenvalue of T, 
then T is nilpotent (recall that an operator is called nilpotent if some power of it 
equals 0). Proof: If 0 is the only eigenvalue of T, then every vector in V is a 
generalized eigenvector of T corresponding to the eigenvalue 0 (by Proposition 
3.4); Lemma 3.1 then implies that Tn _ 0. 

Non-zero eigenvectors corresponding to distinct eigenvalues are linearly inde- 
pendent (Proposition 2.2). We need an analogous result with generalized eigenvec- 
tors replacing eigenvectors. This can be proved by following the basic pattern of 
the proof of Proposition 2.2, as we now do. 
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Proposition 3.8. Non-zero generalized eigenvectors corresponding to distinct eigen- 
values of T are linearly independent. 

Proof: Suppose that vl, . . ., vm are non-zero generalized eigenvectors of T corre- 
sponding to distinct eigenvalues A1, . . ., Am. We need to prove that v1, . . ., vm are 
linearly independent. To do this, suppose a1, . . ., am are complex numbers such 
that 

a 1V 1 + * + a mvm O . 

Let k be the smallest positive integer such that (T - A1I)ksl = 0. Apply the linear 
operator 

(T-A1I)k 1(T-A2I)n * ** ( T-A I)n 

to both sides of (3.9), getting 

al(T-AlI)k 1(T-A2I) * (T-AmI) vl = O, (3.10) 
where we have used Lemma 3.1. If we rewrite (T-A2I)n * * * (T-AmI)n in (3.10) 
as 

((T-A1I) + (A1 -A2) I) ** ((T-A1I) + (A1-Am) I) S 

and then expand each ((T - A1I) + (A1 - Aj)I)n using the binomial theorem and 
multiply everything together, we get a sum of terms. Except for the term 

(A1-A2) * (A1-Am) IS 
each term in this sum includes a power of (T - A1I), which when combined with 
the (T - A1I)k-l on the left and the v1 on the right in (3.10) gives 0. Hence (3.10) 
becomes the equation 

al(Al-A2) * * * (A1-Am) (T-A1I)k 1vl = O. 
Thus a1 = 0. In a similar fashion, aj = O for each j, as desired. o 

Now we can pull everything together into the following structure theorem. Part 
(b) allows us to interpret each linear transformation appearing in parts (c) and (d) 
as a linear operator from Uj to itself. 

Theorem 3.11. Let A1, . . ., Am be the distinct eigenvalues of T, with U1, . . ., Um 
denoting the corresponding sets of generalized eigenvectors. Then 

(a) V= U1 @ *@ @ Um; 
(b) T maps each Uj into itself; 
(c) each (T-AjI ) I uj is nilpotent; 
(d) each Tl uj has only one eigenvalue, namely Aj. 

Proof: The proof of (a) follows immediately from Propositions 3.8 and 3.4. 
To prove (b), suppose v E Uj. Then (T-AjI)kv = 0 for some positive integer 

k. We have 

(T-AjI)kEv = T(T-AjI)kv = T(O) = O. 

Thus Tv E Uj, as desired. 
The proof of (c) follows immediately from the definition of a generalized 

eigenvector and Lemma 3.1. 
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To prove (d), let A' be an eigenvalue of Tlui with corresponding non-zero 
eigenvector v E Uj. Then (T-AjI)v = (A'-Aj)v, and hence 

(T-AjI)kv = (A'-A )kV 

for each positive integer k. Because v is a generalized eigenvector of T corre- 
sponding to Aj, the left-hand side of this equation is 0 for some k. Thus A' = Aj, as 
desired. O 

4. THE MINIMAL POLYNOMIAL. Because the space of linear operators on V is 
finite dimensional, there is a smallest positive integer k such that 

I,T,T2, Tk 

are not linearly independent. Thus there exist unique complex numbers 
aO, . . ., ak_ 1 such that 

aOI + alT + a2T2 + * * * ak_lTk-l + Tk = O. 

The polynomial 

aO + alz + a2z2 + * * * ak_lZk-l + Zk 

is called the minimal polynomial of T. It is the monic polynomial p of smallest 
degree such that p(T)= 0 (a monic polynomial is one whose term of highest 
degree has coefficient 1). 

The next theorem connects the minimal polynomial to the decomposition of V 
as a direct sum of generalized eigenvectors. 

Theorem 4.1. Let A11 . . . S Am be the distinct eigenvalues of T, let Uj denote the set of 
generalized eigenvectors corresponding to Aj, and let agj be the smallest positive 
integer such that (T-AjI)iv = O for every v E Uj. Let 

p(z) = (z-A1) 1 * * (z _ Am) m. (4.2) 
Then 

(a) p is the minimal polynomial of T; 
(b) p has degree at most dim V; 
(c) if q is a polynomial such that q(T) = O, then q is a polynomial multiple of p. 

Proof: We will prove first (b), then (c), then (a). 
To prove (b), note that each agj is at most the dimension of Uj (by Lemma 3.1 

applied to TlUi). Because V= U1 @ *@ @ Um (by Theorem 3.11(a)), the agj's can 
add up to at most the dimension of V. Thus (b) holds. 

To prove (c), suppose q is a polynomial such that q(T) = O. If we show that q is 
a polynomial multiple of each (z - Aj)i, then (c) will hold. To do this, fix j. The 
polynomial q has the form 

q(z) = c(z - r1) l * * (z _ rM) M(Z - Aj), 
where c E C, the rk's are complex numbers all different from Aj, the Ak'S are 
positive integers, and 8 is a non-negative integer. If c = 0, we are done, so assume 
that c + 0. Suppose v E Uj. Then (T-AjI)8v is also in Uj (by Theorem 3.11(b)). 
Now 

c(T-r1I)8l *8 (T-rMI)8M(T-AjI) v = q(T)v = OS 
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and (T-r1I)6l ** * (T-rMI)8M is injective on Uj (by Theorem 3.11(d)). Thus 
(T - AjI)8s = O. Because v was an arbitrary element of Uj, this implies that 
s}j < b. Thus q is a polynomial multiple of (z-Aj)j, and (c) holds. 

To prove (a), suppose v is a vector in some Uj. If we commute the terms of 
(T-A1I)l * *- (T- AmI)m (which equals p(T)) so that (T-AjI)i is on the 
right, we see that p(T)v = O. Because U1, . . ., Um span V (Theorem 3.11(a)), we 
conclude that p(T) = O. In other words, p is a monic E>olynomial that annihilates 
T. We know from (c) that no monic polynomial of lower degree has this property. 
Thus p must be the minimal polynomial of T, completing the proof. O 

Note that by avoiding determinants we have been naturally led to the descrip- 
tion of the minimal polynomial in terms of generalized eigenvectors. 

5. MULTIPLICITY AND THE CHARACTERISTIC POLYNOMSAL. The multi- 
plicity of an eigenvalue A of T is defined to be the dimension of the set of 
generalized eigenvectors of T corresponding to A. We see immediately that the 
sum of the multiplicities of all eigenvalues of T equals n, the dimension of V 
(from Theorem 3.11(a)). Note that the definition of multiplicity given here has a 
clear connection with the geometric behavior of T, whereas the usual definition (as 
the multiplicity of a root of the polynomial det(zI- T)) describes an object 
without obvious meaning. 

Let A1, . . ., Am denote the distinct eigenvalues of T, with corresponding multi- 
plicities ,lS1, . . ., pm. The polynomial 

(-Al)l *-- (z-A )X3m (5.1) 

is called the characteristic polynomial of T. Clearly, it is a polynomial of degree n. 
Of course the usual definition of the characteristic polynomial involves a 

determinant; the characteristic polynomial is then used to prove the existence of 
eigenvalues. Without mentioning determinants, we have reversed that procedure. 
We first showed that T has n eigenvalues, counting multiplicities, and then used 
that to give a more natural definition of the characteristic polynomial ('4counting 
multiplicities" means that each eigenvalue is repeated as many times as its 
multiplicity). 

The next result is called the Cayley-Hamilton Theorem. With the approach 
taken here, its proof is easy. 

Theorem 5.2. Let q denote the characteristic polynomial of T. Then q(T) = O. 

Proof: Let Uj and CXj be as in Theorem 4.1, and let /3j equal the dimension of Uj. 
As we noted earlier, (Xj < /3j (by Lemma 3.1 applied to TlUj). Hence the character- 
istic polynomial (5.1) is a polynomial multiple of the minimal polynomial (4.2). 
Thus the characteristic polynomial must annihilate T. O 

6. UPPER TRLiNGULAR FORM. A square matrix is called upper-triangular if all 
the entries below the main diagonal are 0. Our next goal is to show that each linear 
operator has an upper-triangular matrix for some choice of basis. We'll begin with 
nilpotent operators; our main structure theorem will then easily give the result for 
arbitrary linear operators. 
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I*mma 6.1. Suppose T is nilpotent. Then there is a basis of V with respect to which 
the matrix of T contains only O's on and below the main diagonal. 

Proof: First choose a basis of ker T. Then extend this to a basis of ker-T2. Then 
extend to a basis of ker T3. Continue in this fashion, eventually getting a basis of 
V. The matrix of T with respect to this basis clearly has the desired form. [1 

By avoiding determinants and focusing on generalized eigenvectors, we can now 
give a simple proof that every linear operator can be put in upper-triangular form. 
We actually get a better result, because the matrix in the next theorem has many 
more 0's than required for upper-triangular form. 

Theorem 6.2. Let A11 . . . S Am be the distinct eigenvalues of T. Then there is a basis of 
V with respect to which the matrix of T has the form 

A1 * 

O 

O A1 

A2 * 
. 

O A2 

Am * 

* . 

O Am 

Proof: This follows immediately from Theorem 3.11 and Lemma 6.1. o 

For many traditional uses of the Jordan form, the theorem above can be used 
instead. If Jordan form really is needed, then many standard proofs show (without 
determinants) that every nilpotent operator can be put in Jordan form. The result 
for general linear operators then follows from Theorem 3.11. 

7. THE SPECTRiL THEOREM. In this section we assume that <, > is an inner 
product on V. The nicest linear operators on V are those for which there is an 
orthonormal basis of V consisting of eigenvectors. With respect to any such basis, 
the matrix of the linear operator is diagonal, meaning that it is 0 everywhere 
except along the main diagonal, which must contain the eigenvalues. The Spectral 
Theorem, which we'll prove in this section, describes precisely those linear opera- 
tors for which there is an orthonormal basis of V consisting of eigenvectors. 

Recall that the adjoint of T is the unique linear operator T* on V such that 

<Tu, v> = <u, T*v> 

for all u, v E V. The linear operator T is called nortnal if T commutes with its 
adjoint; in other words, T is normal if TT* = T* T. The linear operator T is called 
self-adjoint if T= T*. Obviously, every self-adjoint operator is normal. We'll see 
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that the normal operators are precisely the ones that can be diagonalized by an 
orthonormal basis. Before proving that, we need a few preliminary results. Note 
that the next lemma is trivial if T is self-adjoint. 

Lemma 7.1. If T is normal, then ker T = ker T*. 

Proof: If T is normal and v E V, then 

<Tu, Tv> = (T*Tv, v> = <TT*v, v> = <T*v, T*v>. 
Thus Tu = O if and only if T* v = O. O 

The next proposition, combined with our result that the generalized eigenvec- 
tors of a linear operator span the domain (Proposition 3.4), shows that the 
eigenvectors of a normal operator span the domain. 

Proposition 7.2. Every generalized eigenvector of a normal operator is an eigenvector 
of the operator. 

Proof: Suppose T is normal. We will prove that 

ker Tk = ker T (7.3) 

for every positive integer k. This will complete the proof of the proposition, 
because we can replace T in (7.3) by T - AI for arbitrary A E C. 

We prove (7.3) by induction on k. Clearly, the result holds for k = 1. Suppose 
now that k is a positive integer such that (7.3) holds. Let v E ker Tk+1. Then 
T(Tkv) = Tk+1v = O. In other words, Tkv E ker T, and so T*(Tkv) = O (by 
Lemma 7.1). Thus 

O=(T*(Tkv),Tk-1v) = <Tkv Tkv> 

Hence v E ker Tk, which implies that v E ker T (by our induction hypothesis). 
Thus ker Tk+1 = ker T, completing the induction. O 

The last proposition, together with Proposition 3.4, implies that a normal 
operator can be diagonalized by some basis. The next proposition will be used to 
show that this can be done by an orthonormal basis. 

Proposition 7.4. Eigenvectors of a normal operator corresponding to distinct eigen- 
values are orthogonal. 

Proof: Suppose T is normal and ce, A are distinct eigenvalues of T, with corre- 
sponding eigenvectors u,v. Thus (T-AI)v = O, and so (T*-AI)v = O (by 
Lemma 7.1). In other words, v is also an eigenvector of T*, with eigenvalue A. 
Now 

(a-A)<u, v) = <cgu, v>-<u, Av> 

= <Tu,v>-<u,T*v> 

= <Tu,v>-<Tu,v> 
= O. 

Thus <u, v > = O, as desired. z 
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Now we can put everything together, getting the finite-dimensional Spectral 
Theorem for complex inner product spaces. 

Theorem 7.5. There is an orthonormal basis of V consisting of eigenvectors of T if 
and only if T is normal. 

Proof: To prove the easy direction, first suppose that there is an orthonormal basis 
of V consisting of eigenvectors of T. With respect to that basis, T has a diagonal 
matrix. The matrix of T* (with respect to the same basis) is obtained by taking the 
conjugate transpose of the matrix of T; hence T* also has a diagonal matrix. Any 
two diagonal matrices commute. Thus T commutes with T*, which means that T is 
normal. 

To prove the other direction, now suppose that T is normal. For each eigen- 
value of T, choose an orthonormal basis of the associated set of eigenvectors. The 
union of these bases (one for each eigenvalue) is still an orthonormal set, because 
eigenvectors corresponding to distinct eigenvalues are orthogonal (by Proposition 
7.4). The span of this union includes every eigenvector of T (by construction), and 
hence every generalized eigenvector of T (by Proposition 7.2). But the generalized 
eigenvectors of T span V (by Proposition 3.4), and so we have an orthonormal 
basis of V consisting of eigenvectors of T. O 

The proposition below will be needed in the next section, when we prove the 
Spectral Theorem for real inner product spaces. 

Proposition 7.6. Every eigenvalue of a self-adjoint operator is real. 

Proof: Suppose T is self-adjoint. Let A be an eigenvalue of T, and let v be a 
non-zero vector in V such that Tv = Av. Then 

A|| vll2 = <Av, v > = <Tv , v > = < v , Tv > = < v , Av > = A|| v112. 
Thus A = A, which means that A is real, as desired. C1 

8. GE1YING REAL. So far we have been dealing only with complex vector spaces. 
As we'll see, a real vector space U can be embedded, in a natural way, in a 
complex vector space called the complexification of U. Each linear operator on U 
can be extended to a linear operator on the complexification of U. Our results 
about linear operators on complex vector spaces can then be translated to 
information about linear operators on real vector spaces. Let's see how this 
process works. 

Suppose that U is a real vector space. As a set, the complexification of U, 
denoted Uc, equals U x U. Formally, a typical element of Uc is an ordered pair 
(u,v), where u, v E U, but we will write this as u + iv, for obvious reasons. We 
define addition on Uc by 

(U1 + irl) + (U2 + iv2) = (U1 + U2) + i(Vl + v2). 

The notation shows how we should define multiplication by complex scalar on Uc: 

(a + ib)(u + iv) = (au - bv) + i(av + bu) 
for a, b E R and u, v E U. With these definitions of addition and scalar multipli- 
cation, Uc becomes a complex vector space. We can think of U as a subset of Uc 
by identiiFying u E U with u + i0. Clearly, any basis of the real vector space U is 
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also a basis of the complex vector space Uc. Hence the dimension of U as a real 
vector space equals the dimension of Uc as a complex vector space. 

For S a linear operator on a real vector space U, the complexification of S, 
denoted Sc, is the linear operator on Uc defined by 

Sc(u + iv) = Su + isV 

for u, v E U. If we choose a basis of U and also think of it as a basis of Uc, then 
clearly S and Sc have the same matrix with respect to this basis. 

Note that any real eigenvalue of Sc is also an eigenvalue of S (because if a E R 
and Sc(u + iv) = a(u + iv), then Su = au and Sv = av). Non-real eigenvalues of 
Sc come in pairs. More precisely, 

(Sc-AI)i(u + iv) = O (Sc-AI) (u-iv) = ° (8.1) 

for j a positive integer, A E C, and u, v E U, as is easily proved by induction on j. 
In particular, if A E C is an eigenvalue of Sc, then so is A, and the multiplicity of 
A (recall that this is defined as the dimension of the set of generalized eigenvectors 
of Sc corresponding to A) is the same as the multiplicity of A. Because the sum of 
the multiplicities of all the eigenvalues of Sc equals the (complex) dimension of Uc 
(by Theorem 3.11(a)), we see that if Uc has odd (complex) dimension, then Sc 
must have a real eigenvalue. Putting all this together, we have proved the following 
theorem. Once again, a proof without determinants offers more insight into why 
the result holds than the standard proof using determinants. 

Theorem 8.2. Every linear operator on an odd-dimensional real vector space has a 
real eigenvalue. 

The minimal and characteristic polynomials of a linear operator S on a real 
vector space are defined to be the corresponding polynomials of the complexifica- 
tion Sc. Both these polynomials have real coefficients this follows from our 
definitions of minimal and characteristic polynomials and (8.1). The reader should 
be able to derive the properties of these polynomials easily from the corresponding 
results on complex vector spaces (Theorems 4.1 and 5.2). 

Our procedure for transferring results from complex vector spaces to real vector 
spaces can also be used to prove the real Spectral Theorem. To see how that 
works, suppose now that U is a real inner product space with inner product (, >. 
We make the complexification Uc into a complex inner product space by defining 
an inner product on Uc in the obvious way: 

(U1 + irl, U2 + iV2) = (U1, U2) + (V1, V2) + i(Vl, U2)-i(Ul, V2). 

Note that any orthonormal basis of the real inner product space U is also an 
orthonormal basis of the complex inner product space Uc. 

If S is a self-adjoint operator on U, then obviously Sc is self-adjoint on Uc. We 
can then apply the complex Spectral Theorem (Theorem 7.5) to Sc and transfer to 
U, getting the real Spectral Theorem. The next theorem gives the formal statement 
of the result and the details of the proof. 

Theorem 8.3. Suppose U is a real inner product space and S is a linear operator on 
U. Then there is an orthonormal basis of U consisting of eigenvectors of S if and only 
if S is self-adjoint. 
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Proof: To prove the easy direction, first suppose that there is an orthonormal basis 
of U consisting of eigenvectors of S. With respect to that basis, S has a diagonal 
matrix. Clearly, the matrix of Se (with respect to the same basis) equals the matrix 
of S. Thus S is self-adjoint. 

To prove the other direction, now suppose that S is self-adjoint. As noted 
above, this implies that Sc is self-adjoint on Uc. Thus there is a basis 

{u1 + iv1, . . *, un + isn} (8.4) 

of Uc consisting of eigenvectors of Sc (by the complex Spectral Theorem, which is 
Theorem 7.5); here each u; and rj is in U. Each eigenvalue of Sc is real 
(Proposition 7.6), and thus each Uj and each rj is an eigenvector of S. Clearly, 
{u1,vl,...,un,vn} spans U (because (8.4) is a basis of Uc). Conclusion: The 
eigenvectors of S span U. 

For each eigenvalue of S, choose an orthonormal basis of the associated set of 
eigenvectors in U. The union of these bases (one for each eigenvalue) is still 
orthonormal, because eigenvectors corresponding to distinct eigenvalues are or- 
thogonal (Proposition 7.4). The span of this union includes every eigenvector of S 
(by construction). We have just seen that the eigenvectors of S span U, and so we 
have an orthonormal basis of U consisting of eigenvectors of S, as desired. C1 

9. DElERMINANTS. At this stage we have proved most of the major structure 
theorems of linear algebra without even defining determinants. In this section we 
will give a simple definition of determinants, whose main reasonable use in 
undergraduate mathematics is in the change of variables formula for multi-variable 
integrals. 

The constant term of the characteristic polynomial of T is plus or minus the 
product of the eigenvalues of T, counting multiplicity (this is obvious from our 
definition of the characteristic polynomial). Let's look at some additional motiva- 
tion for studying the product of the eigenvalues. 

Suppose we want to know how to make a change of variables in a multi-variable 
integral over some subset of Rn. After linearization, this reduces to the question of 
how a linear operator S on Rn changes volumes. Let's consider the special case 
where S is self-adjoint. Then there is an orthonormal basis of Rn consisting of 
eigenvectors of S (by the real Spectral Theorem, which is Theorem 8.3). A 
moment's thought about the geometry of an orthonormal basis of eigenvectors 
shows that if E is a subset of Rn, then the volume (whatever that means) of S(E) 
must equal the volume of E multiplied by the absolute value of the product of the 
eigenvalues of S, counting multiplicity. We'll prove later that a similar result holds 
even for non-self-adjoint operators. At any rate, we see that the product of the 
eigenvalues seems to be an interesting object. An arbitrary linear operator on a 
real vector space need not have any eigenvalues, so we will return to our familiar 
setting of a linear operator T on a complex vector space V. After getting the basic 
results on complex vector spaces, we'll deal with real vector spaces by using the 
notion of complexification discussed earlier. 

Now we are ready for the formal definition. The determinant of T, denoted 
det T, is defined to be the product of the eigenvalues of T, counting multiplicity. 
This definition would not be possible with the traditional approach to eigenvalues, 
because that method uses determinants to prove that eigenvalues exist. With the 
techniques used here, we already know (by Theorem 3.11(a)) that T has dim V 
eigenvalues, counting multiplicity. Thus our simple definition makes sense. 
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In addition to simplicity, our definition also makes transparent the following 
result, which is not at all obvious from the standard definition. 

Theorem 9.1. An operator as invertible if and only if its determinant is non-zero. 

Proof: Clearly, T is invertible if and only if O is not an eigenvalue of T, and this 
happens if and only if det T si 0. O 

With our definition of determinant and characteristic polynomial, we see 
lmmediately that the constant term of the characteristic polynomial of T equals 
(-l)n det T, where n = dim V. The next result shows that even more is true our 
definitions are consistent with the usual ones. 

Proposition 9.2. The characteristic polyn,omaal of T equals det(zI-T). 

Proof: Let A1, .. ., Am denote the eigenvalues of T, with multiplicities ,B1, . . .,wSm 
Thus for z E C, the eigenvalues of zI-T are z - A1, . . ., z-AmS with multiplici- 
ties ,l31, *vvZl3mX Hence the determinant of zI-T is the product 

(z-A1)' *-- (z-Am)m, 

which equals the characteristic polynomial of T. O 

Note that determinant is a similarity invariant. In other words, if S is an 
invertible linear operator on V, then T and STS-1 have the same determinant 
(because they have the same eigenvalues, counting multiplicity). 

We define the determinant of a square matrix of complex numbers to be the 
determinant of the corresponding linear operator (with respect to some choice of 
basis, which doesn't matter, because two different bases give rise to two linear 
operators that are similar and hence have the same determinant). Fix a basis of V, 
and for the rest of this section let's identify linear operators on V with matrices 
with respect to that basis. How can we find the determinant of T from its matrix, 
without finding all the eigenvalues? Although getting the answer to that question 
will be hard, the method used below will show how someone might have discovered 
the formula for the determinant of a matrix. Even with the derivation that follows, 
determinants are difficult, which is precisely why they should be avoided. 

We begin our search for a formula for the determinant by considering matrices 
of a special form. Let al, . . ., an E C. Consider a linear operator T whose matrix 
iS 

_ _ 

O an 

al O 

a2 ° ; (9 3) 

an-1 0 

here all entries of the matrix are O except for the upper right-hand corner and 
along the line just below the main diagonal. Let's find the determinant of T. Note 
that Tn = al S . . . S an I. Because the first columns of {I, T, . . . s Tn - l} are linearly 
independent (assuming that none of the aj is 0), no polynomial of degree less than 
n can annihilate T. Thus zn - al *a- an iS the minimal polynomial of T. Hence 
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zn _ al * * * an iS also the characteristic polynomial of T. Thus 

det T = (-l)n 1a1 * * * an. 

(If some aj is 0, then clearly T is not invertible, so det T = O, and the same 
formula holds.) 

Now let r be a permutation of {1, . . ., n}, and consider a matrix T whose jth 

column consists of all zeroes except for aj in the T(j)th row. The permutation r is 
a product of cyclic permutations. Thus T is similar to (and so has the same 
determinant as) a block diagonal matrix where each block of size greater than one 
has the form of (9.3). The determinant of a block diagonal matrix is obviously the 
product of the determinants of the blocks, and we know from the last paragraph 
how to compute those. Thus we see that det T = (sign r)a1 * * * an. To put this 
into a form that does not depend upon the particular permutation , let ti j denote 
the entry in row i, column j, of T (so ti j = O unless i = T(j)), and let P(n) denote 
the set of all permutations of {1, . . ., n}. Then 

det T = E (sign Tr) t7r(l),l * * * t(n), ns (9 4) 
r sP(n) 

because each summand is O except the one corresponding to the permutation r. 
Consider now an arbitrary matrix T with entries ti jv Using the paragraph above 

as motivation, we guess that the formula for det T is given by (9.4). The next 
proposition shows that this guess is correct and gives the usual formula for the 
determinant of a matrix. 

Proposition 9.5. det(T) = LT E p(n)(sign r)t(1) 1 * * * t(n) n- 

Proof: Define a function d on the set of n x n matrices by 

d(T) = E (sign )t(1) l * * * t(n) n. 
FreP(n) 

We want to prove that det T = d(T). To do this, choose S so that STS- 1 is in the 
upper triangular form given by Theorem 6.2. Now d(STS-l) equals the product of 
the entries on the main diagonal of STS- 1 (because only the identity permutation 
makes a non-zero contribution to the sum defining d(STS-l)). But the entries on 
the main diagonal of STS-1 are precisely the eigenvalues of T, counting multiplic- 
ity, so det T = d(STS-1). Thus to complete the proof, we need only show that d is 
a similarity invariant; then we will have det T = d(STS-l) = d(T). 

To show that d is a similarity invariant, first prove that d is multiplicative, 
meaning that d(AB) = d(A)d(B) for all n x n matrices A and B. The proof that 
d is multiplicative, which will not be given here, consists of a straightforward 
rearrangement of terms appearing in the formula defining d(AB) (see any text 
that defines det(T) to be d(T) and then proves that det AB = (det A)(det B)). 
The multiplicativity of d now leads to a proof that d is a similarity invariant, as 
follows: 

d(STS-l) = d(ST)d(S-l) = d(S-l)d(ST) = d(S-lST) = d(T). 
Thus det T = d(T), as claimed. O 

All the usual properties of determinants can be proved either from the (new) 
definition or from Proposition 9.5. In particular, the last proof shows that det is 
multiplicative . 
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The determinant of a linear operator on a real vector space is defined to be the 
determinant (product of the eigenvalues) of its complexification. Proposition 9.5 
holds on real as well as complex vector spaces. To see this, suppose that U is a real 
vector space and S is a linear operator on U. If we choose a basis of U and also 
think of it as a basis of the complexification Uc, then S and its complexification Sc 
have the same matrix with respect to this basis. Thus the formula for det S, which 
by definition equals det Sc, is given by Proposition 9.5. In particular, det S is real. 
The multiplicativity of det on linear operators on a real vector space follows from 
the corresponding property on complex vector spaces and the multiplicativity of 
complexification: (AB)C=AcBc whenever A and B are linear operators on a 
real vector space. 

The tools we've developed provide a natural connection between determinants 
and volumes in Rn. To understand that connection, first we need to explain what is 
meant by the square root of an operator times its adjoint. Suppose S is a linear 
operator on a real vector space U. If A is an eigenvalue of S8S and u E U is a 
corresponding non-zero eigenvector, then 

A(u, u) = (Au, u) = (S8Su, u) = (Su, Su), 

and thus A must be a non-negative number. Clearly, S8S is self-adjoint, and so 
there is a basis of U consisting of eigenvectors of S8S (by the real Spectral 
Theorem, which is Theorem 8.3). We can think of S8S as a diagonal matrix with 
respect to this basis. The entries on the diagonal, namely the eigenvalues of S8S, 
are all non-negative, as we have just seen. The square root of S8S, denoted , 
is the linear operator on U corresponding to the diagonal matrix obtained by 
taking the non-negative square root of each entry of the matrix of S8S. Obviously, 

is self-adjoint, and its square equals S8S. Also, the multiplicativity of det 

shows that 

(det ) = det(S8S) = (det Se )(det S) = (det S)2. 

Thus det = | det S | (because det must be non-negative). 

The next lemma provides the tool we will use to reduce the question of volume 
change by a linear operator to the self-adjoint case. It is called the polar 
decomposition of an operator S, because it resembles the polar decomposition of a 

complex number z = eior. Here r equals S (analogous to in the lemma), 

and multiplication by eio is an isometry on C (analogous to the isometric property 
of A in the lemma). 

Lemma 9.6. Let S be a linear operator on a real inner product space U. Then there 
exists a linear isometry A on U such that S = A. 

Proof: For u E U we have 

llull = (u, u) = (sesu, u) - (su, su) = Ilsu112 

In other words, llull= IISull. Thus the function A defined on ran by 

A(u) = Su is well defined and is a linear isometry from ran onto ran S. 

Extend A to a linear isometry of U onto U by first extending A to be any isometry 
of (ran )1 onto (ran S)1 (these two spaces have the same dimension, 

because we have just seen that there is a linear isometry of ran onto ran S), 

and then extend A to all of U by linearity (with the Pythagorean Theorem 
showing that A is an isometry on all of U). The construction of A shows that 
S = A , as desired. cl 
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- - - - 

NQW we are ready to give a clean, illuminating proof that a linear operator 
changes volumes by a factor of the absolute value of the determinant. We will not 
formally define volume? but only use the obvious properties that volume should 
satisfy. In particular, the subsets E of Rn considered in the theorem below should 
be restricted to whatever class the reader uses most comfortably (polyhedrons, 
open setsS or measurable sets). 

Theorem 9.7. Let S be a linear operator on Rn. Then 

vol S(E) = [det Sl vol E 
for E c Rn. 

Proof: Let S = A be the polar decomposition of S as given by Lemma 9.6. 
Let E c Rn. Because A is an isometry? it does not change volumes. Thus 

vol S(E) = vol A(;X(E)) = vol ( E) * 

But is self-adJ^oint? and we already noted at the beginning of this section that 

each self-adjoint operator changes volume by a factor equal to the absolute value 
of the determinant. Thus we have 

vol S(E) = vol (E) = ldet | vol E = Idet Sl vol E, 
as desired. D 

10. CONCLUSION. As mathematiciansS we often read a nice new proof of a 
known theorem? enjoy the different approach? but continue to derive our internal 
understanding from the method we originally learned. This paper aims to change 
drastically the way mathematicians think about and teach crucial aspects of linear 
algebra. The simple proof of the existence of eigenvalues given in Theorem 2.1 
should be the one imprinted in our minds, written on our blackboards, and 
published in our textbooks. Generalized eigenvectors should become a central tool 
for the understanding of linear operators. As we have seen, their use leads to 
natural definitions of multiplicity and the characteristic polynomial. Every mathe- 
matician and every linear algebra student should at least remember that the 
generalized eigenvectors of an operator always span the domain (Proposition 3.4) 

this crucial result leads to easy proofs of upper-triangular form (Theorem 6.2) 
and the Spectral Theorem (Theorems 7.5 and 8.3). 

Determinants appear in many proofs not discussed here. If you scrutinize such 
proofs, you?ll often discover better alternatives without determinants. Down with 
Determinantst 
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(p. 138) 

Mary Ellen Rudin, in 1970. 
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