同伦论, 2019 年春季

作业 3

上交时间: 5 月 29 日

- 1. 设 CW 复形 X 由 $S^1 \vee S^n (n > 1)$ 上粘贴一个 (n + 1) 维胞腔 e^{n+1} 得到,粘合映射由多项式 $p(t) \in \mathbb{Z}[t, t^{-1}] \cong \pi_n(S^1 \vee S^n)$ 给出,于是 $\pi_n(X) \cong \mathbb{Z}[t, t^{-1}]/(p(t))$ 。证明 $\pi'_n(X)$ 是循环群,并通过 p(t) 确定该群的阶数。
- 2. 证明单连通的闭三维流行与 S^3 同伦等价。
- 3. 如果 CW 复形 X 是 K(G,1) 空间,证明 $\pi_n(X^n)$ 对 $n \ge 2$ 是自由交换群。
- 4. 如果 X 是 (n-1) 连通的 CW 复形,证明 Hurewicz 同态 $h: \pi_{n+1}(X) \to H_{n+1}(X)$ 当 n>1 时是满射,当 n=1 时,证明有同构

$$H_2(X)/h(\pi_2(X)) \cong H_2(K(\pi_1(X),1))$$

- 5. 设 X 是连通的有限维 CW 复形,万有复叠为 \widetilde{X} ,证明 X 与 $\widetilde{X} \times K(\pi_1(X), 1)$ 具有同构的同伦群;如果 $pi_1(X)$ 有有限阶元素,证明它们不同伦等价。
- 6. 设 $S^k \to S^m \to S^n$ 是纤维从、证明 k = n 1、m = 2n 1。
- 7. 证明 $\pi_3(S^1 \vee S^2)$ 不是有限生成的 $\mathbb{Z}[\pi_1(S^1 \vee S^2)]$ -模。推广到 $\pi_{i+j-1}(S^1 \vee S^i \vee S^k)$ (设 i,j>1)。
- 8. 证明存在映射 $f: \mathbb{RP}^\infty \to \mathbb{CP}^\infty = K(\mathbb{Z},2)$,使得 f 在同调上的诱导同态平凡,但在上同调上的诱导同态不平凡(证明之)。
- 9. 给定 S^1 上从 $\mathbb C$ 上乘积而来的群结构。证明对任意 CW 复形 X, S^1 的群结构诱导了 $\langle X, S^1 \rangle$ 上的群结构,并且定理 4.57 给出的一一映射是群同构。
- 10. 给定交换群 G 和 H, 以及 CW 复形 K(G,n) 和 K(H,n), 证明映射

$$\langle K(G,n), K(H,n) \rangle \to Hom(G,H), \qquad [f] \longmapsto (f_* : \pi_n(K(G,n)) \to \pi_n(K(H,n)))$$

是一一映射。

- 11. 设 X 是 n 维 CW 复形,证明 $[X,S^n] \cong H^n(X;\mathbb{Z})$ 。
- 12. 证明映射 $p: E \to B$ 是纤维化当且仅当 $\pi: E^{[0,1]} \to E_p, \pi(\gamma) = (\gamma(0), p \circ \gamma)$ 有截面,即,存在映射 $s: E_p \to E^{[0,1]}$ 使得 $p \circ s = \mathrm{id}_{E_p}$ 。
- 13. 给定纤维化 $F \to E \to B$,用同伦提升性质定义 $\pi_1(E)$ 在 $\pi_n(F)$ 上的作用,即同态 $\pi_1(E) \to \operatorname{Aut}(\pi_n(F))$,使得 $\pi_1(F) \to \pi_1(E) \to \operatorname{Aut}(\pi_n(F))$ 是 $\pi_1(F)$ 在 $\pi_n(F)$ 上的作用(定义同伦群时给出)。
- 14. 给定映射 $f:A\to B$ 和同伦等价 $g:C\to A$,证明纤维化 $E_f\to B$ 和 $E_{fg}\to B$ 是纤维同伦等价的。
- 15. 如果纤维化 $p: E \to B$ 是同伦等价,证明 p 和平凡纤维化 $id: B \to B$ 是纤维同伦等价的。