微分拓扑, 2018 年春季

作业 2

上交时间及方式: 2017.04.10

REQUIRED:

- 1. Let X and Z be transversal submanifolds of Y. Show that if $y \in X \cap Z$, then $T_y(X \cap Z) = T_y(X) \cap T_y(Z)$, that is, the tangent space to the intersection is the intersection of the tangent spaces.
- 2. If $f: M \to Y$ and $g: N \to Y$ are smooth morphisms of manifolds, the fiber product $M \times_Y N$ is defined by

$$M \times_Y N = \{ (m, n) \mid m \in M, n \in N, f(m) = g(n) \}$$

We say that f and g are transverse if for all pairs $(m,n) \in M \times_Y N$ we have that $Df_m(T_mM) + Dg_n(T_nN) = T_{f(m)}Y$. Show that if $g: N \to Y$ is an embedding of a submanifold, that f is transverse to g in this sense if and only if f is transverse to g(N). Show that if f and g are transverse, the fiber product $M \times_Y N$ is a manifold.

(Hint: Consider the map $f \times g : M \times N \to Y \times Y$.)

3. If $M \subset \mathbb{R}^n$ is a submanifold, define the tangent bundle to M to be the set

$$TM = \{(m, v) \mid m \in M, v \in T_mM\} \subset M \times R^n$$

Show that TM is a smooth manifold. Show that if $f: M \to N$ is a smooth morphism, that the natural map $Df: TM \to TN$ defined by $Df(m, v) = (f(m), Df_m(v))$ is a smooth morphism. Conclude that if M is diffeomorphic to N, then TM is diffeomorphic to TN. (So that TM does not depend on how M was embedded into \mathbb{R}^n .)

- 4. Show that diffeomorphism is a stable property for maps of compact manifolds. That is, if $f_0: X \to Y$ is a diffeomorphism between compact smooth manifolds, and $f_t: X \to Y$ is a homotopy of f_0 , then, for some $\varepsilon > 0$, each f_t with $t < \varepsilon$ is also a diffeomorphism. Here we suppose X and Y are connected.
- 5. Suppose Z is a submanifold of X with $\dim Z < \dim X$. Show that Z has measure zero in X WITHOUT using Sard.
- 6. Let X be a compact manifold. Show that there exist Morse functions on X which take distinct values at distinct critical points.

(Hint: Let x_1, \dots, x_N be the list of critical points of f. Let ρ_i be a smooth function which is one on a small neighborhood of x_i and zero outside a slightly larger neighborhood. Choose numbers a_1, \dots, a_N such that

$$f(x_i) + a_i \neq f(x_j) + a_j$$
 if $i \neq j$

Show that for a_i small enough, the function $f + \sum a_i \rho_i$ is Morse and has the same critical points as f and is even arbitrarily close to f.)

- 7. A vector field \vec{v} on a manifold X in \mathbb{R}^N is a smooth map $\vec{v} : X \to \mathbb{R}^N$ such that $\vec{v}(x)$ is always tangent to X at x. Show that a vector field \vec{v} is a cross section of T(X) (that is, a smooth map $\vec{v} : X \to T(X)$ such that $p \circ \vec{v} = \mathbb{1}_X$), and vice versa. Here p is the projection map $p : T(X) \to X$ defined by p(x, v) = x.
- 8. (*The Whitney Immersion Theorem*) Show that every k-dimensional manifold X may be immersed into \mathbb{R}^{2k} .
- 9. (*The Smooth Urysohn Theorem*) If A and B are disjoint, smooth, closed subsets of a manifold X, prove that there is a smooth function ϕ on X such that $0 \le \phi \le 1$ with $\phi = 0$ on A and $\phi = 1$ on B.

(Hint: Partition of Unity.)

SUGGESTED:

- 1. * If f and g are two smooth maps from a smooth manifold M to S^n , show that if for all $m \in M$ one has that ||f(m) g(m)|| < 2 then f is smoothly homotopic to g.
- 2. * Exhibit a smooth map $f : \mathbb{R} \to \mathbb{R}$ whose set of critical values is dense.

(Hint: Write the rationals in a sequence r_0, r_1, \cdots . Now construct a smooth function on [i, i + 1] that is zero near the endpoints and that has r_i as a critical value.)

- 3. * Show that the sphere S^k is simply connected if k > 1 using Sard. (Hint: If $f : S^1 \to S^k$ and k > 1, Sard gives you a point $p \notin f(S^1)$. Now use stereographic projection.)
- 4. * Show that $T(X \times Y)$ is diffeomorphic to $T(X) \times T(Y)$, and the projection $p: T(X) \to X$, p(x, v) = x is a submersion.
- 5. * Let S(X) be the set of points $(x, v) \in T(X)$ with |v| = 1. Show that S(X) is a smooth submanifold of T(X) of dimension 2k 1. S(X) is called the *unit tangent bundle* or *sphere tangent bundle* of X.

(Hint: Consider the map $(x, v) \mapsto |v|$.)