
ar
X

iv
:1

80
9.

10
84

8v
1

 [
m

at
h.

O
C

]
 2

8
Se

p
20

18

EXPLOITING SPARSITY IN SOS PROGRAMMING AND

SPARSE POLYNOMIAL OPTIMIZATION

JIE WANG, HAOKUN LI, AND BICAN XIA

Abstract. In this paper, we consider a new pattern of sparsity for SOS Pro-
gramming named by cross sparsity patterns. We use matrix decompositions
for a class of PSD matrices with chordal sparsity patterns to construct sets of
supports for a sparse SOS decomposition. The method is applied to the cer-
tificate of the nonnegativity of sparse polynomials and unconstrained sparse
polynomial optimization problems. Various numerical experiments are given.
It turns out that our method can dramatically reduce the computational cost
and can handle really huge polynomials, for example, polynomials with 10
variables, of degree 40 and more than 5000 terms.

1. Introduction

Certificates of nonnegative polynomials and polynomial optimization problems
(POPs) arise from many fields such as mathematics, control, engineering, proba-
bility, statistics and physics. A classical method for these problems is using sums
of squares (SOS) programming which can be effectively solved by semidefinite pro-
gram (SDP) ([24, 25]). However, when the given polynomial has many variables
and a high degree, corresponding SDP problems are hard to be dealt with by ex-
isting SDP solvers due to the very large size of corresponding SDP matrices. On
the other hand, most polynomials coming from practice have certain structures
including symmetry and sparsity. So it is very important to take full advantage
of structures of polynomials to reduce the size of corresponding SDP problems.
Recently, a lot of work has been done on this subject.

For a polynomial f ∈ R[x] = R[x1, . . . , xn], if we choose a monomial basis
M = {xω1 , . . . ,xωr}, then the SOS condition can be converted to the problem of
deciding if there exists a positive semidefinite matrix Q (Gram matrix) such that
f(x) = MTQM . Generally speaking, there are three approaches to reduce compu-
tations by exploiting sparsity. One approach is reducing the size of the monomial
basis M ; such techniques include computing Newton polytopes ([28]), using the
diagonal inconsistency ([22]), the iterative elimination method ([19]), and the facial
reduction ([26, 31, 32]). The second approach is exploiting the non-diagonal spar-
sity of the Gram matrix Q; such techniques include using the correlative sparsity
([6, 23, 30, 34]), using the symmetry property ([11]), using the split property ([7]),

Date: October 1, 2018.
2010 Mathematics Subject Classification. Primary, 14P10,90C25; Secondary, 12D15,12Y05.
Key words and phrases. nonnegative polynomial, sparse polynomial, polynomial optimization,

sum of squares, chordal graph.
This work was supported partly by NSFC under grants 61732001 and 61532019.

1

http://arxiv.org/abs/1809.10848v1

2 JIE WANG, HAOKUN LI, AND BICAN XIA

minimal coordinate projections ([27]); the third approach is exploiting the spar-
sity of constrained conditions of corresponding SDP problems, such as coefficient
matching conditions ([4, 15, 36]).

In this paper, we consider a new pattern of sparsity for SOS programming named
by cross sparsity patterns. Given a polynomial f with the support set A ⊆ N

n,
choose a monomial basis M = {xω1 , . . . ,xωr}. The cross sparsity pattern associ-
ated with A is described in terms of an r × r symmetric (0, 1)-matrix RA whose
elements are given by

(1.1) Rij =

{
1, ωi + ωj ∈ (2N)n ∪ A ,

0, otherwise.

From the cross sparsity pattern matrix RA , we associate it with an undirected
graphG(VA , EA) with VA = {1, 2, . . . , r} and EA = {{i, j} | i, j ∈ VA , i < j,Rij =
1}. The key idea in this paper is to use matrix decompositions for a class of positive
semidefinite matrices with chordal sparsity patterns to construct sets of supports

for a sparse SOS decomposition. Concretely, suppose that G̃(VA , ẼA) is a chordal
extension of G(VA , EA), and C1, C2, . . . , Ct ⊆ VA denote the maximal cliques of

G̃(VA , ẼA). Let Bk = {ωi | i ∈ Ck} for k = 1, 2, . . . , t. Then we take f =
∑t

k=1 f
2
k

as a sparse SOS relaxation for the nonnegativity of the sparse polynomial f , where
fk has the support set Bk for k = 1, . . . , t. If the size of the cliques Ck, k = 1, . . . , t
is small, this can reduce the computational cost. This is somewhat similar to the
use of correlative sparsity patterns in [30]. However, correlative sparsity patterns
focus on the sparsity of variables while cross sparsity patterns are more general.

We test our method on various examples. It turns out that our method dramat-
ically reduces the computational cost and can handle really huge polynomials, for
example, polynomials with 10 variables, of degree 40 and more than 5000 terms.

The rest of this paper is organized as follows. Section 2 introduces some ba-
sic notions from nonnegative polynomials and graph theory. Section 3 defines a
cross sparsity pattern associated with a sparse polynomial. We show that how we
can exploit this sparsity pattern to obtain a sparse SOS relaxation for the non-
negativity of the sparse polynomial. In Section 4, this sparse SOS relaxation is
applied to unconstrained sparse POPs. We discuss in Section 5 when the sparse
SOS relaxation obtains the same optimal values as the dense SOS relaxation for
polynomial optimization problems. Section 6 includes numerical results on various
examples. We show that the proposed sparse SOS algorithm exhibits significantly
better performance in practice. Finally, the paper is concluded in Section 7.

2. Preliminaries

2.1. Nonnegative Polynomials. Let R[x] = R[x1, . . . , xn] be the ring of real n-
variate polynomial. For a finite set A ⊂ N

n, we denote by conv(A) the convex
hull of A , and by V (A) the vertices of the convex hull of A . Also we denote by
V (P) the vertex set of a polytope P . A polynomial f ∈ R[x] can be written as
f(x) =

∑
α∈A

cαx
α with cα ∈ R,xα = xα1

1 · · ·xαn

n . The support of f is defined by

supp(f) = {α ∈ A | cα 6= 0}, the degree of f is defined by deg(f) = max{
∑n

i=1 αi :
α ∈ supp(f)}, and the Newton polytope of f is defined as New(f) = conv({α :
α ∈ supp(f)}).

EXPLOITING SPARSITY IN SOS PROGRAMMING AND SPARSE POLYNOMIAL OPTIMIZATION3

A polynomial f ∈ R[x] which is nonnegative over R
n is called a nonnegative

polynomial. The class of nonnegative polynomials is denoted by PSD, which is a
convex cone.

A vector α ∈ N
n is even if αi is an even number for i = 1, . . . , n. A necessary

condition for a polynomial f(x) to be nonnegative is that every vertex of its Newton
polytope is an even vector, i.e. V (New(f)) = V (supp(f)) ⊆ (2N)n ([28]).

For a nonempty finite set B ⊆ N
n, R[B] denotes the set of polynomials in R[x]

whose supports are contained in B, i.e., R[B] = {f ∈ R[x] | supp(f) ⊆ B} and we
use R[B]2 to denote the set of polynomials which are sums of squares of polynomials
in R[B]. The set of r× r symmetric matrices is denoted by Sr and the set of r× r
positive semidefinite matrices is denoted by Sr

+. Let xB be the |B|-dimensional

column vector consisting of elements xβ ,β ∈ B, then

R[B]2 = {(xB)TQxB | Q ∈ S
|B|
+ },

where the matrix Q is called the Gram matrix.

2.2. Chordal Graphs. We introduce some basic notions from graph theory. A
graph G(V,E) consists of a set of nodes V = {1, 2, . . . , r} and a set of edges E ⊆
V ×V . A graphG(V,E) is said to be undirected if and only if (i, j) ∈ E ⇔ (j, i) ∈ E.
A cycle of length k is a sequence of nodes {v1, v2, . . . , vk} ⊆ V with (vk, v1) ∈ E
and (vi, vi+1) ∈ E, for i = 1, . . . , k − 1. A chord in a cycle {v1, v2, . . . , vk} is an
edge (vi, vj) that joins two nonconsecutive nodes in the cycle.

Definition 2.1. An undirected graph is called a chordal graph if all its cycles of
length at least four have a chord.

Chordal graphs include some common classes of graphs, such as complete graphs,
line graphs and trees, and have applications in sparse matrix theory. Note that any

non-chordal graph G(V,E) can always be extended to a chordal graph G̃(V, Ẽ) by
adding appropriate edges to E, which is called a chordal extension of G(V,E). A
clique C ⊆ V is a subset of nodes where (i, j) ∈ E, ∀i, j ∈ C, i 6= j. If a clique C is
not a subset of any other clique, then it is called a maximal clique. It is known that
maximal cliques of a chordal graph can be enumerated efficiently in linear time in
the number of vertices and edges of the graph. See [10, 12] for chordal graphs and
finding all maximal cliques.

Given an undirected graph G(V,E), we define an extended set of edges E⋆ :=
E∪{(i, i) | i ∈ V } that includes all selfloops. Then, we define the space of symmetric
sparse matrices as

(2.1) Sr(E, 0) := {X ∈ Sr | Xij = Xji = 0 if (i, j) /∈ E⋆}

and the cone of sparse PSD matrices as

(2.2) Sr
+(E, 0) := {X ∈ Sr(E, 0) | X � 0}.

Given a maximal clique Ck, we define a matrix PCk
∈ R

|Ck|×r as

(2.3) (PCk
)ij =

{
1, Ck(i) = j,

0, otherwise.

where Ck(i) denotes the i-th node in Ck, sorted in the natural ordering. Note that
Xk = PCk

XPT
Ck

∈ S|Ck| extracts a principal submatrix defined by the indices in

the clique Ck, and the operation PT
Ck

XkPCk
inflates a |Ck| × |Ck| matrix into a

4 JIE WANG, HAOKUN LI, AND BICAN XIA

sparse r× r matrix. Then, the following theorem characterizes, the membership to
the set Sr

+(E, 0) when the underlying graph G(V,E) is chordal.

Theorem 2.2 ([1]). Let G(V,E) be a chordal graph and {C1, . . . , Ct} be all of
the maximal cliques of G(V,E). Then X ∈ Sr

+(E, 0) if and only if there exist

Xk ∈ S
|Ck|
+ , k = 1, . . . , t such that X =

∑t

k=1 P
T
Ck

XkPCk
.

3. Exploiting sparsity in SOS programming

A basic problem that appears in many fields is checking global nonnegativity
of multivariate polynomials. This is difficult in general. A convenient approach
for this, originally introduced by Parrilo in [24], is the use of sums of squares as a
suitable replacement for nonnegativity. Given a polynomial f(x) ∈ R[x], if there
exist polynomials f1(x), . . . , fm(x) such that

(3.1) f(x) =

m∑

i=1

fi(x)
2,

then we say f(x) is a sum of squares (SOS). The existence of an SOS decomposition
of a given polynomial gives a certificate for its global nonnegativity. For d ∈ N, let
N

n
d := {α ∈ N

n |
∑n

i=1 αi ≤ d} and assume f ∈ R[Nn
2d]. The SOS condition (3.1)

can be converted to the problem of deciding if there exists a positive semidefinite
matrix Q such that

(3.2) f(x) = (xN
n

d)TQxN
n

d ,

which is a semidefinite programming (SDP) problem.
We say that a polynomial f ∈ R[Nn

2d] is sparse if the number of elements in its
support A = supp(f) is much smaller than the number of elements in N

n
2d that

forms a support of fully dense polynomials in R[Nn
2d]. When f(x) is a sparse poly-

nomial in R[Nn
2d], the size of the SDP problem (3.2) can be reduced by eliminating

redundant elements from N
n
d . In fact, Nn

d in problem (3.2) can be replaced by ([28])

(3.3) B = conv({
α

2
| α ∈ V (A)}) ∩ N

n ⊆ N
n
d .

There are also other methods to reduce the size of B further ([19, 26, 31]). However,
we assume in this paper that B is as (3.3).

3.1. Cross Sparsity Pattern. Let f(x) ∈ R[x] with supp(f) = A . Assume
that B is as (3.3) and B = {ω1, . . . ,ωr}. The sparsity considered in this paper
is measured by the different kinds of cross products of monomials arising in the
objective polynomial f(x). It is represented by an r × r cross sparsity pattern
matrix RA = (Rij) whose elements are given by

(3.4) Rij =

{
1, ωi + ωj ∈ (2N)n ∪ A ,

0, otherwise.

Given a cross sparsity pattern matrix RA = (Rij), the graph G(VA , EA) with
VA = {1, 2, . . . , r} and EA = {{i, j} | i, j ∈ VA , i < j,Rij = 1} is called the cross
sparsity pattern graph. To apply Theorem 2.2, we generate a chordal extension

G̃(VA , ẼA) of the cross sparsity pattern graph G(VA , EA) and use the extended

cross sparsity pattern graph G̃(VA , ẼA) instead of G(VA , EA).

EXPLOITING SPARSITY IN SOS PROGRAMMING AND SPARSE POLYNOMIAL OPTIMIZATION5

Remark 3.1. Given a graph G(VA , EA), there may be many different chordal
extensions and choosing anyone of them is valid for deriving the sparse relaxation
presented in this paper. For example, we can add edges to all of the connected
components of G(VA , EA) such that every connected component becomes a complete
subgraph to obtain a chordal extension. The chordal extension with the least number
of edges is called the minimum chordal extension. Finding the minimum chordal
extension of a graph is an NP-hard problem in general. Finding a chordal extension
of a graph is equivalent to calculating the symbolic sparse Cholesky factorization of
its adjacency matrix. The resulted sparse matrix represents a chordal extension.
The minimum chordal extension corresponds to the sparse Cholesky factorization
with the minimum fill-ins. Fortunately, several heuristic algorithms, such as the
minimum degree ordering, are known to efficiently produce a good approximation.
For more information on symbolic Cholesky factorizations with the minimum degree
ordering and minimum chordal extensions, see [2, 3, 14].

3.2. Sparse SOS relaxations. Given A ⊆ N
n with V (A) ⊆ (2N)n, B is as (3.3).

Let the set of SOS polynomials supported on A be

Σ(A) := {f ∈ R[A] | ∃Q ∈ Sr
+ s.t. f = (xB)TQxB}.

Generally the Gram matrix Q for a sparse SOS polynomial f(x) can be dense. Let

G(VA , EA) be the cross sparsity pattern graph and G̃(VA , ẼA) a chordal extension.
To maintain the sparsity of f(x) in the Gram matrix Q, we consider a subset of
SOS polynomials

Σ̃(A) := {f ∈ R[A] | ∃Q ∈ Sr
+(ẼA , 0) s.t. f = (xB)TQxB}.

With this restriction, we have the following theorem.

Theorem 3.2. Given A ⊆ N
n with V (A) ⊆ (2N)n, assume B = {ω1, . . . ,ωr} is

as (3.3) and a chordal extension of the cross sparsity pattern graph is G̃(VA , ẼA).

Let C1, C2, . . . , Ct ⊆ VA denote the maximal cliques of G̃(VA , ẼA) and Bk =

{ωi ∈ B | i ∈ Ck}, k = 1, 2, . . . , t. Then, f(x) ∈ Σ̃(A) if and only if there exist
fk(x) ∈ R[Bk], k = 1, . . . , t such that

(3.5) f(x) =

t∑

k=1

fk(x)
2.

Proof. By Theorem 2.2, Q ∈ Sr
+(ẼA , 0) if and only if there exist Qk ∈ S

|Ck|
+ , k =

1, . . . , t such that Q =
∑t

k=1 P
T
Ck

QkPCk
. So f(x) ∈ Σ̃(A) if and only if there exist

Qk ∈ S
|Ck|
+ , k = 1, . . . , t such that

f(x) = (xB)T (

t∑

k=1

PT
Ck

QkPCk
)xB

=

t∑

k=1

(PCk
xB)TQk(PCk

xB)

=
t∑

k=1

(xBk)TQkx
Bk ,

which is equivalent to that there exist fk(x) ∈ R[Bk], k = 1, . . . , t such that f(x) =∑t

k=1 fk(x)
2. �

6 JIE WANG, HAOKUN LI, AND BICAN XIA

4. Sparse polynomial optimization

We consider the unconstrained polynomial optimization problem:

(4.1) minimize f(x).

We first convert the POP (4.1) into an equivalent problem,

(4.2)

{
maximize ξ

subject to f(x)− ξ ≥ 0.

Let ξ∗ denote the optimal value of (4.2). Assume f ∈ R[Nn
2d]. Then we can replace

the constraint of the problem (4.2) by an SOS constraint to obtain

(4.3)

{
maximize ξ

subject to f(x)− ξ ∈ R[Nn
d]

2.

Let ξ∗sos denote the optimal value of (4.3). The SOS optimization problem (4.3)
serves as a relaxation of the POP (4.2). Note that we can rewrite the SOS constraint

of (4.3) as f(x)− ξ = (xN
n

d)TQxN
n

d and Q ∈ S
|Nn

d
|

+ .
When the objective function f(x) is a sparse polynomial in R[Nn

2d], the SOS
constraint of (4.3) can be replaced by f(x)− ξ ∈ R[B]2 with

(4.4) B = conv({
α

2
| α ∈ supp(f)} ∪ {0}) ∩ N

n ⊆ N
n
d .

Note that 0 is added as the support for the real number variable ξ. Therefore, we
obtain

(4.5)

{
maximize ξ

subject to f(x)− ξ ∈ R[B]2.

Let A = supp(f) ∪ {0}. We rewrite the SOS optimization problem (4.3) as

(4.6)

{
maximize ξ

subject to f(x)− ξ ∈ Σ(A).

To exploit the sparsity of f , we replace the constraint f(x) − ξ ∈ Σ(A) by the

stronger constraint f(x)− ξ ∈ Σ̃(A) to obtain

(4.7)

{
maximize ξ

subject to f(x)− ξ ∈ Σ̃(A).

Let ξ∗ssos denote the optimal value of (4.7). Assume B = {ω1, . . . ,ωr} and a chordal

extension of the cross sparsity pattern graph is G̃(VA , ẼA). Let C1, C2, . . . , Ct ⊆

VA denote the maximal cliques of G̃(VA , ẼA) and Bk = {ωi ∈ B | i ∈ Ck}, k =
1, 2, . . . , t. Then Theorem 3.2 allows us to decompose the single large SOS constraint

f(x)− ξ ∈ Σ̃(A) into a set of SOS constraints with smaller dimensions,

(4.8)

{
maximize ξ

subject to f(x)− ξ ∈
∑t

k=1 R[Bk]
2.

This can reduce the computational cost significantly if the sizes of the cliques
Ck, k = 1, . . . , t are small.

EXPLOITING SPARSITY IN SOS PROGRAMMING AND SPARSE POLYNOMIAL OPTIMIZATION7

The relation between the optimums of the polynomial optimization problem
(4.2), the SOS optimization problem (4.3) and the sparse SOS optimization problem
(4.7) is

ξ∗ ≥ ξ∗sos ≥ ξ∗ssos.

Theoretically, the proposed sparse SOS programming is not guaranteed to obtain
lower bounds of the same quality as the dense SOS programming for general polyno-
mial optimization problems. We acquire high efficiency at the cost of some accuracy.
However, there are cases in which we lose no accuracy as the next section shows.

5. When do Σ(A) and Σ̃(A) coincide

Given A ⊆ N
n with V (A) ⊆ (2N)n, we define in Section 3.2 two sets of non-

negative polynomials: Σ(A) and Σ̃(A). Generally we have Σ(A) ⊇ Σ̃(A). If

Σ(A) = Σ̃(A), then the sparse SOS relaxation obtains the same optimal value as
the dense SOS relaxation for the optimization of a polynomial f with the support

A . We give two cases in which the equality Σ(A) = Σ̃(A) holds.

Proposition 5.1. If for any α ∈ A ,
∑n

i=1 αi ≤ 2, then Σ(A) = Σ̃(A).

Proof. Suppose f ∈ Σ(A) is a quadratic polynomial with supp(f) = A . Let
M = [1, x1, . . . , xn] be a monomial basis and assume f = MTQM for a positive
semidefinite matrix Q = (qij)

n
i,j=0. Let R = (Rij)

n
i,j=0 be the corresponding cross

sparsity pattern matrix for f . To prove Σ(A) ⊆ Σ̃(A), we need to show Q ∈

Sn+1
+ (ẼA , 0), or Q ∈ Sn+1

+ (EA , 0). Note that Q ∈ Sn+1
+ (EA , 0) is equivalent to the

proposition that Rij = 0 implies qij = 0 for all i, j. Let {ek}
n
k=1 be the standard

basis. If i = 0, j > 0, from R0j = 0 we have ej /∈ A . If i > 0, j = 0, from Ri0 = 0
we have ei /∈ A . If i, j > 0, i 6= j, from Rij = 0 we have ei + ej /∈ A . In any of
these three cases, we must have qij = 0 as desired. �

Proposition 5.2. If A ⊆ (2N)n, then Σ(A) = Σ̃(A).

Proof. Assume B = {ω1, . . . ,ωr} is as (3.3). If A ⊆ (2N)n, the elements of the
cross sparsity pattern matrix RA satisfy

(5.1) Rij =

{
1, ωi + ωj ∈ (2N)n,

0, otherwise.

The corresponding cross sparsity pattern graph G(VA , EA) has t connected com-
ponents C1, C2, . . . , Ct, everyone of which is a complete subgraph. Moreover, i, j
belong to the same connected component if and only if ωi + ωj ∈ (2N)n.

Suppose f(x) ∈ Σ(A). We have f(x1, . . . , xi, . . . , xn) = f(x1, . . . ,−xi, . . . , xn)
for i = 1, . . . , n. It follows that the polynomial f(x) has n sign-symmetries defined
by the n standard basis vectors e1, . . . , en. Therefore, by Theorem 3 of [22], B

can be block partitioned into t blocks B1, . . . ,Bt, where ωi and ωj belong to the

same block if and only if ωi + ωj ∈ (2N)n, such that f(x) ∈
∑t

k=1 R[Bk]
2. Up to

a permutation, we have Bk = {ωi ∈ B | i ∈ Ck}, k = 1, 2, . . . , t. So f(x) ∈ Σ̃(A)

and hence Σ(A) = Σ̃(A). �

Remark 5.3. In [22], sign-symmetries is exploited to block diagonalize sums of
squares programming ([22, Theorem 3]). By a similar argument as Proposition 5.2,
it is easy to show that the blocking decomposition obtained by cross sparsity patterns
is always a refinement of the block-diagonalization obtained by sign-symmetries.

8 JIE WANG, HAOKUN LI, AND BICAN XIA

6. Algorithm

The SparseSOS algorithm is easily divided into the following four steps:

(1) Compute the support set of a monomial basis B;
(2) Generate the cross sparsity pattern graph G(VA , EA) and a chordal exten-

sion G̃(VA , ẼA);

(3) Compute all of the maximal cliques of G̃(VA , ẼA) and obtain the blocking
SOS problem;

(4) Use a SDP solver to solve the blocking SOS problem.

In step 2, different chordal extensions will lead to different blocking SOS decom-

positions. In the following experiments, we obtain a chordal extension G̃(VA , ẼA)
by adding edges to G(VA , EA) such that every connected component becomes a
complete subgraph.

Algorithm 1 SparseSOS

input: a polynomial f with support A ;
output: unknown or a representation f =

∑t

k=1 f
2
k ;

1. Compute the support set of a monomial basis B;
2. Generate the cross sparsity pattern graph G(VA , EA);
3. Take the connected components {C1, . . . , Ct} of G(VA , EA);

4. Solve the blocking SOS problem f =
∑t

k=1 f
2
k , fk ∈

∑t

k=1 R[Bk]
2 (∗), where

Bk = {ωi ∈ B | i ∈ Ck}, k = 1, 2, . . . , t;
5. If (∗) is unsolvable, then return unknown; if (∗) is solvable, then return

f =
∑t

k=1 f
2
k ;

7. Numerical results

In this section, we give examples and numerical results to illustrate the effec-
tiveness of our method. It turns out that our method is extremely powerful and
can deal with really huge polynomials that cannot be handled by other tools. All
numerical examples were computed on a 64-bit Intel i7-4760HQ@2.10GHz (core 4,
thread 8) CPU with 16GB RAM memory and ARCH LINUX SYSTEM. The SDP
solver is CSDP 6.2.0. Note that because there are several ways to compute the
support of a monomial basis B, we do not calculate the time of this step.

Example 7.1. Let Bm = (
∑3m+2

i=1 x2
i)((

∑3m+2

i=1 x2
i)

2 − 2
∑3m+2

i=1 x2
i

∑m

j=1 x
2
i+3j+1),

where x3m+2+r = xr. Note that Bm is modified from [24]. For any m ∈ N\{0},
Bm is homogeneous and is an SOS polynomial. For these Bm’s, the algorithm
SparseSOS dramatically reduces the problem sizes and the computation time (see
Table 1).

Example 7.2. Monotone Column Permanent (MCP) Conjecture was given in [13].
In the dimension 4, this conjecture is equivalent to decide whether particular poly-
nomials named by p1,2, p1,3, p2,2, p2,3 are nonnegative (the definitions of pi,j can be
found in [18]). Actually, it was proved that every pi,j multiplied by a small particular
polynomial is a SOS polynomial ([18]). Let

P1,2 = (a2 + 2b2 + c2) · p1,2,

P1,3 = p1,3,

EXPLOITING SPARSITY IN SOS PROGRAMMING AND SPARSE POLYNOMIAL OPTIMIZATION9

m #basis #block SOS SparseSOS
1 35 5× 5, 10× 1 0.03s 0.01s
2 120 8× 8, 56× 1 0.88s 0.04s
3 286 11× 11, 165× 1 38.90s 0.08s
4 560 14× 14, 364× 1 1001.40s 0.24s
5 969 17× 17, 680× 1 OOM 0.65s
6 1540 20× 20, 1140× 1 OOM 1.63s
10 5984 32× 32, 4960× 1 OOM 36.34s
20 41664 62× 62, 37820× 1 OOM 21600.10s

Table 1. Sizes of PSD constraints and timings before and after
using SparseSOS for Bm’s. The notion i× j represents i blocks of
size j. The notion OOM indicates an out-of-memory error.

P2,2 = (a2 + 2b2 + c2) · p2,2,

P2,3 = (a2 + 2b2 + c2) · p2,3.

We use the algorithm SparseSOS to certify the nonnegativity of P1,2, P1,3, P2,2, P2,3.
The result is listed in Table 2.

#supp #basis #block SOS SparseSOS
P1,2 159 77 15, 2× 12, 7× 4, 3, 2× 2, 3× 1 0.29s 0.05s
P1,3 53 29 8, 4× 3, 2× 2, 5× 1 0.29s 0.02s
P2,2 144 62 3× 12, 2× 4, 8× 2, 2× 1 0.24s 0.07s
P2,3 107 53 2× 10, 8, 4, 3, 8× 2, 2× 1 0.12s 0.05s

Table 2. Sizes of PSD constraints and timings before and after
using SparseSOS for P1,2, P1,3, P2,2, P2,3. #supp represents the
number of supports.

Example 7.3. The following polynomial Vor1 appears in [9]. It was proved that
Vor1 is nonnegative and its discriminant with respect to the variable u (denoted by
Vor2) is also nonnegative. We verify this using SparseSOS (see Table 3).

Vor1 =16a2(α2 + 1 + β2)u4 + 16a(−αβa2 + axα + 2aα2 + 2a+ 2aβ2 + ayβ−

αβ)u3 + ((24a2 + 4a4)α2 + (−24βa3 − 24aβ − 8ya3 + 24xa2 − 8ay)α+

24a2β2 + 4β2 − 8βxa3 + 4y2a2 + 24yβa2 − 8axβ + 16a2 + 4x2a2)u2+

(−4αa3 + 4ya2 − 4ax− 8aα+ 8βa2 + 4β)(β − aα+ y − ax)u + (a2 + 1)

(β − aα+ y − ax)2.

Example 7.4. The polynomials J40, J421, J50, J521
1 originating from some proba-

bility problems are given by Jeffrey Uhlmann, which are conjectured to be nonnega-
tive. The sizes of J40, J421, J50, J521 are listed in Table 4. One can see that J50, J521
are really huge and the corresponding SDPs are unsolvable by existing SDP solver.
However, SparseSOS can handle them in less than one minute (see Table 5).

1The polynomials are put in http://www.math.pku.edu.cn/teachers/wangjie/hugepolynomials.

http://www.math.pku.edu.cn/teachers/wangjie/hugepolynomials

10 JIE WANG, HAOKUN LI, AND BICAN XIA

#supp #basis #block SOS SparseSOS
Vor1 63 18 2× 8, 1× 2 0.01s 0.01s
Vor2 1571 597 121, 88, 2× 70, 2× 64, 2× 60 390.13s 2.18s

Table 3. Sizes of PSD constraints and timings before and after
using SparseSOS for Vor1,Vor2.

#supp #var deg
J40 138 6 12
J421 116 6 12
J50 5687 10 20
J521 5157 10 20

Table 4. Scales of J40,J421,J50,J521. The first column is the num-
ber of supports; the second column is the number of variables; the
third column lists the degrees.

#basis #block SOS SparseSOS
J40 64 14, 3× 10, 2× 6, 5, 3 0.24s 0.04s
J421 48 12, 10, 7, 4, 3, 2, 3× 1 0.13s 0.04s

J50 1014
121, 94, 92, 86, 84, 64, 62,

55, 2× 52, 51, 49, 45, 40, 39, 28
OOM 44.65s

J521 864
111, 80, 77, 76, 75, 55, 54,

52, 43, 2× 42, 39, 2× 34, 30, 20
OOM 35.23s

Table 5. Sizes of PSD constraints and timings before and after
using SparseSOS for J40,J421,J50,J521.

8. Conclusions

We prove a sparse SOS decomposition theorem for sparse polynomials via PSD
matrix decompositions with chordal sparsity patterns. A new sparse SOS algo-
rithm is proposed by exploiting the cross sparsity pattern and is tested on various
examples. The experimental results show that our new algorithm is efficient and
extremely powerful. The algorithm can be combined with other simplification meth-
ods, e.g. [4], to reduce computational costs further. We will apply the SparseSOS
algorithm to solve large scale unconstrained and constrained polynomial optimiza-
tion problems in a future work.

References

1. J. Agler, W. Helton, S. McCullough, L. Rodman, Positive semidefinite matrices with a given
sparsity pattern, Linear algebra and its applications, 107(1988):101-149.

2. P. R. Amestoy, T. A. Davis, I. S. Duff, Algorithm 837: AMD, an approximate minimum degree
ordering algorithm, ACM Transactions on Mathematical Software, 30(3)(2004):381-388.

3. A. Berry, J. R. S. Blair, P. Heggernes, B. W. Peyton, Maximum cardinality search for com-

puting minimal triangulations of graphs, Algorithmica, 39(4)(2004):287-298.
4. D. Bertsimas, R. M. Freund, X. A. Sun, An accelerated first-order method for solving

SOS relaxations of unconstrained polynomial optimization problems, Optim. Methods Softw.,
28(3)(2013):424-441.

EXPLOITING SPARSITY IN SOS PROGRAMMING AND SPARSE POLYNOMIAL OPTIMIZATION11

5. J. R. S. Blair, B. Peyton, An introduction to chordal graphs and clique trees, in Graph Theory
and Sparse Matrix Computation, A. George, J. R. Gilbert, and J. W. H. Liu, eds., Springer-
Verlag, New York, 1993:1-29.

6. J. S. Campos, P. Parpas, A Multigrid Approach to SDP Relaxations of Sparse Polynomial
Optimization Problems, Siam Journal on Optimization, 28(1)2016:1-29.

7. L. Dai, B. Xia, Smaller SDP for SOS decomposition, Journal of Global Optimization,
63(2)(2015):343-361.

8. I. Z. Emiris, E. P. Tsigaridas, Real algebraic numbers and polynomial systems of small degree,
Theoretical Computer Science, 409(2)(2008):186-199.

9. H. Everett, D. Lazard, S. Lazard, M. Safey El Din, The voronoi diagram of three lines,
Discrete and Computational Geometry, 42(1)(2009):94-130.

10. D. R. Fulkerson, O. A. Gross, Incidence matrices and interval graphs, Pacific J. Math.,
15(1965):835-855.

11. K. Gatermann, P. A. Parrilo, Symmetry groups, semidefinite programs, and sums of squares,
Journal of Pure and Applied Algebra, 192(1)(2002):95-128.

12. M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York,
1980.

13. J. Haglund, K. Ono, D. G. Wagner, Theorems and conjectures involving rook polynomials with
real roots, In: Proceedings of Topics in Number Theory and Combinatorics, 1997:207-221.

14. P. Heggernes, Minimal triangulations of graphs: a survey, Discrete Mathematics,
306(3)(2006):297-317.

15. D. Henrion, J. Malick, Projection methods in conic optimization, in Handbook on Semidefi-
nite, Conic and Polynomial Optimization, New York, NY, USA: Springer, 2012:565-600.

16. S. Iliman, T. de Wolff, Amoebas, nonnegative polynomials and sums of squares supported on
circuits, Res. Math. Sci., 3(2016), 3:9.

17. E. Kaltofen, B. Li, Z. Yang, L. Zhi, Exact certification in global polynomial optimization via
sums-of-squares of rational functions with rational coefficients, Journal of Symbolic Compu-
tation, 47(1)(2012):1-15.

18. E. Kaltofen, Z. Yang, L. Zhi, A proof of themonotone column permanent (mcp) conjecture for
dimension 4 via sums-of-squares of rational functions, In: Proceedings of the 2009 Conference
on Symbolic Numeric Computation, SNC 09, 2009:65-70, ACM, New York.

19. M. Kojima, S. Kim, H. Waki, Sparsity in sums of squares of polynomials, Math. Program.,
103(2005):45-62.

20. B. Li, J. Nie, L. Zhi, Approximate GCDs of polynomials and sparse SOS relaxations, Theo-
retical Computer Science, 409(2)(2008):200-210.

21. J. Löfberg, YALMIP: a toolbox for modeling and optimization in MATLAB, In 2004 IEEE
International Conference on Robotics and Automation (IEEE Cat. No.04CH37508), 284-289.

22. J. Löfberg, Pre- and Post-Processing Sum-of-Squares Programs in Practice, IEEE Transac-
tions on Automatic Control, 54(5)(2009):1007-1011.

23. A. Marandi, E. D. Klerk, J. Dahl, Solving sparse polynomial optimization problems with
chordal structure using the sparse bounded-degree sum-of-squares hierarchy, Discrete Applied
Mathematics, 2017.

24. P. A. Parrilo, Structured semidefinite programs and semialgebraic geometry methods in ro-
bustness and optimization, Ph.D. Thesis, California Institute of Technology, 2000.

25. P. A. Parrilo, B. Sturmfels, Minimizing Polynomial Functions, Proceedings of the Dimacs
Workshop on Algorithmic and Quantitative Aspects of Real Algebraic Geometry in Mathe-
matics and Computer Science, 32(1)(2001):83-100.

26. F. Permenter, P. A. Parrilo, Basis selection for SOS programs via facial reduction and poly-
hedral approximations, Decision and Control. IEEE, 2014:6615-6620.

27. F. Permenter, P. A. Parrilo, Finding sparse, equivalent SDPs using minimal coordinate projec-
tions, In 54th IEEE Conference on Decision and Control, CDC 2015, Osaka, Japan, December
15-18, 2015:7274-7279.

28. B. Reznick, Extremal PSD forms with few terms, Duke Math. J., 45(1978):363-374.
29. L. Vandenberghe, M. S. Andersen, Chordal Graphs and Semidefinite Optimization, Now Pub-

lisher, 1900.
30. H. Waki, S. Kim, M. Kojima, M. Muramatsu, Sums of squares and semidefinite program

relaxations for polynomial optimization problems with structured sparsity, SIAM Journal on
Optimization, 17(1)(2016):218-242.

12 JIE WANG, HAOKUN LI, AND BICAN XIA

31. H. Waki, M. Muramatsu, A facial reduction algorithm for finding sparse SOS representations,
Operations Research Letters, 38(5)(2009):361-365.

32. H. Waki, M. Muramatsu, An extension of the elimination method for a sparse SOS polyno-
mial, Journal of the Operations Research Society of Japan, 4(4)(2017):161-190.

33. J. Wang, Nonnegative Polynomials and Circuit Polynomials, 2018, arXiv:1804.09455.
34. T. Weisser, J. B. Lasserre, K. C. Toh, Sparse-BSOS: a bounded degree SOS hierarchy for

large scale polynomial optimization with sparsity, Mathematical Programming Computation,
10(1)(2018):1-32.

35. Z. Yang, G. Fantuzzi, A. Papachristodoulou, Decomposition and completion of sum-of-squares
matrices, 2018, arXiv:1804.02711.

36. Z. Yang, G. Fantuzzi, A. Papachristodoulou, Exploiting Sparsity in the Coefficient Matching
Conditions in Sum-of-Squares Programming Using ADMM, IEEE Control Systems Letters,
1(1)(2017):80-85.

Jie Wang, School of Mathematical Sciences, Peking University

E-mail address: wangjie212@pku.edu.cn

Haokun Li, School of Mathematical Sciences, Peking University

E-mail address: ker@protonmail.ch

Bican Xia, School of Mathematical Sciences, Peking University

E-mail address: xbc@math.pku.edu.cn

http://arxiv.org/abs/1804.09455
http://arxiv.org/abs/1804.02711

	1. Introduction
	2. Preliminaries
	2.1. Nonnegative Polynomials
	2.2. Chordal Graphs

	3. Exploiting sparsity in SOS programming
	3.1. Cross Sparsity Pattern
	3.2. Sparse SOS relaxations

	4. Sparse polynomial optimization
	5. When do (A) and "0365(A) coincide
	6. Algorithm
	7. Numerical results
	8. Conclusions
	References

