1. Example 1: Take n=1 and $\operatorname{char}(k)=0$, then $\mathbb{Q}\subset k$. Then the functor $\mathbb{Z}\colon \mathscr{A}lg_k\to \mathscr{S}et$ defined by $\mathbb{Z}(A)=\mathbb{Z}$ is a constant functor. It is a subfunctor of \mathscr{A}_k^1 , but \mathbb{Z} is not an affine variety. In fact if \mathbb{Z} is an affine variety, then there exists an integer $n\geqslant 1$ and an ideal I of $k[T_1,T_2,\ldots,T_n]$ such that

$$\mathbb{Z}(A) = \operatorname{Hom}_k(k[T_1, T_2, \dots, T_n]/I, A)$$

for all $A \in \mathcal{A}lg_k$. Taking $A = k[T_1, T_2, \dots, T_n]/I$, we have

$$\mathbb{Z}(A) = \text{Hom}_k(k[T_1, T_2, \dots, T_n]/I, k[T_1, T_2, \dots, T_n]/I) \neq \mathbb{Z}).$$

2. If n=1, then (S)=(S'). So S and S' define the same algebraic varieties. If n=2, we have

$$\sigma_{1}(x_{1}, x_{x}) = T_{1} + T_{2} \in S'$$

$$S \cap S' \ni \sigma_{1}(T_{1}T_{2})^{2} = x_{1}^{2} + x_{2}^{2} - 2x_{1}x_{2}$$

$$\therefore x_{1}^{2} + x_{2}^{2} \in (S) \cap (S') \iff 2x_{1}x_{2} \in (S) \cap (S')$$

$$\therefore \operatorname{char}(k) \neq 2, \quad (S) = (S')$$

By induction, we can prove that if char(k) > n - 1, then (S) = (S').

3. Note that

$$T_2^2T_1^2 + T_1^2 + T_2^3 + T_2 + T_1T_2 = T_2^2(T_1^2 + T_2) + (T_1^2 + T_2) + T_2T_1 \in (T_1^2 + T_2, T_1)$$

and

$$T_2T_1^2 + T_2^2 + T_1 = T_2(T_1^2 + T_2) + T_1 \in (T_1^2 + T_2, T_1)$$

So we have

$$(T_2^2T_1^2 + T_1^2 + T_2^3 + T_2 + T_1T_2, T_2T_1^2 + T_2^2 + T_1) \subset (T_1^2 + T_2, T_1)$$

Conversely, we have

$$T_2^2T_1^2 + T_1^2 + T_2^3 + T_2 + T_1T_2 - (T_2T_1^2 + T_2^2 + T_1)T_2 = T_1^2 + T_2 \in (T_2^2T_1^2 + T_1^2 + T_2^3 + T_2 + T_1T_2, T_2T_1^2 + T_2^2 + T_1)$$

$$T_1 = (T_2T_1^2 + T_2^2 + T_1) - T(T_1^2 + T_2) \in (T_2^2T_1^2 + T_1^2 + T_2^3 + T_2 + T_1T_2, T_2T_1^2 + T_2^2 + T_1)$$

4. If $X\subset \mathbf{A}^n_k$ and $X'\subset \mathbf{A}^m_k$ are two varieties, then there exists two ideals $I(X)\subset k[x_1,x_2,\ldots,x_n]$ and $I(X')\subset k[y_1,y_2,\ldots,y_m]$ such that

$$X(K) = \operatorname{Hom}_{k}(k[x_{1}, x_{2}, \dots, x_{n}]/I(X), K)$$

 $X'(K) = \operatorname{Hom}_{k}(k[y_{1}, y_{2}, \dots, y_{m}]/I(X'), K)$

Thus

$$X(K) \times X'(K) = \text{Hom}_k(k[x_1, x_2, \dots, x_n]/I(X), K) \times \text{Hom}_k(k[y_1, y_2, \dots, y_m]/I(X'), K)$$

So we have only to prove that there exists a bijective of

$$X(K) \times X'(K) = \text{Hom}_k(k[x_1, x_2, \dots, x_n]/I(X), K) \times \text{Hom}_k(k[y_1, y_2, \dots, y_m]/I(X'), K)$$

to

$$\operatorname{Hom}_{k}(k[x_{1}, x_{2}, \dots, x_{n}, y_{1}, y_{2}, \dots, y_{m}]/(I(X), I(X')), K),$$

i.e.,

$$X(K) \times X'(K) = \operatorname{Sol}(I(X) \cup I(X'), K)$$
.

5.Since X and X' are two subvarieties of \mathbf{A}_k^n , there exists ideals $I(X), I(X') \subset k[x_1, x_2, \dots, x_n]$ such that

$$X(K) = \text{Hom}_{k}(k[x_{1}, x_{2}, \dots, x_{n}]/I(X), K) = \text{Sol}(I(X), K)$$

$$X'(K) = \text{Hom}_{k}(k[x_{1}, x_{2}, \dots, x_{n}]/I(X'), K) = \text{Sol}(I(X'), K)$$

$$X(K) \cap X'(K) = \text{Sol}(I(X), K) \cap \text{Sol}(I(X'), K)$$

$$= \text{Sol}(I(X) \cup I(X'), K)$$

$$= \text{Hom}_{k}(k[x_{1}, x_{2}, \dots, x_{n}]/(I(X), I(X')), K)$$

but the functor $K \to X(K) \cup X'(K)$ is not a subvariety of \mathbf{A}_k^n :

For example take $k=\mathbb{Q}$, n=1, let X be the affine variety associated to the equation x=1, and X' be the variety defined by x=0. If (f(x)) is the ideal defined by the functor $K\to X(K)\cup X'(K)$, then

$$X(K) \cup X'(K) = \operatorname{Hom}_{\mathbb{Q}}(k[x]/(f(x)), K)$$

Now we let $K = \mathbb{Q} \times \mathbb{Q}$ be a \mathbb{Q} -algebra. Then

$$X(K) \cup X'(K) = \operatorname{Hom}_{\mathbb{Q}}(k[x]/(f(x)), \mathbb{Q} \times \mathbb{Q})$$

$$= \operatorname{Hom}_{\mathbb{Q}}(k[x]/(f(x)), \mathbb{Q}) \times \operatorname{Hom}_{\mathbb{Q}}(k[x]/(f(x)), \mathbb{Q})$$

$$= (X(\mathbb{Q}) \cup X'(\mathbb{Q})) \times (X(\mathbb{Q}) \cup X'(\mathbb{Q}))$$

$$= \{0, 1\} \times \{0, 1\}$$

$$= \{(0, 0), (0, 1), (1, 0), (1, 1)\}$$

But

$$X(K) = \operatorname{Hom}_{\mathbb{Q}}(\mathbb{Q}[x]/(x), \mathbb{Q}) = \{(0,0)\}$$

$$X'(K) = \operatorname{Hom}_{\mathbb{Q}}(\mathbb{Q}[x]/(x-1), \mathbb{Q} \times \mathbb{Q}) = \{(1,1)\}$$

a contradiction.

6. \Longrightarrow is easy. \Longleftrightarrow . Note that

$$Sol(S, k) = Hom_k(k[T]/(S), k)$$
$$Sol(S', k) = Hom_k(k[T]/(S'), k)$$

Since S, S' are two system of linear equations over k and Sol(S, k) = Sol(S', k), there is an invertible linear transformation L such that S = L(S'). So (S) = (S'). (This is the linear algebra).

- 1. Since $T_1^2=T_2^3$ in A, we have $T_1^2/T_2^2=T_2$. Hence T_1/T_2 is contained in the quotient field of A. But $T_1/T_2 \neq A$. T_1/T_2 is integral over A, since T_1/T_2 satisfies the equation $x^2-T_2=0$.
 - 6. We have

$$\overline{\{(z_1, z_2) \in \mathbb{C} \mid |z_1|^2 + |z_2|^2 = 1\}_{\text{Zar}}} = \mathbb{C}^2$$

Let $z_1=x_1+y_1i$ and $z_2=x_2+y+2i$. Then the equation $|z_1|^2+|z_2|^2=1$ becomes

$$x_1^2 + y_1^2 + x_2^2 + y_2^2 = 1,$$

which is a 3-dimensional sphere. But any polynomial $f(z_1, z_2)$ is equivalent to a system of polynomials

$$\begin{cases} P(x_1, y_1, x_2, y_2) &= 0 \\ Q(x_1, y_1, x_2, y_2) &= 0 \end{cases}$$

which is a 2-dimensional geometrical object. So $\overline{|z_1|^2 + |z_2|^2} = 1_{\text{Zar}}$ is not contained in the proper algebraic set of \mathbb{C}^2 .

§3

- **2.** In fact the coordinate ring of the variety defined by the polynomial xy-1=0 is $k[x,y]/(xy-1)\cong k[x,\frac{1}{x}]\not\cong k[x].$
 - **3.** $\text{Im}(f) = \mathbf{A}_k^2(K) \{(0, y) \mid y \neq 0\}$ open dense.
 - **4.** $\text{Hom}_k(k[x], k[x]) \cong K^*$.
 - 5. Note that

$$\mathcal{O}(X) \cong k[T]/I(X)$$

$$\mathcal{O}(Y) \cong k[T]/I(Y)$$

$$X = \operatorname{Hom}_{k}(k[T]/I(X), \bullet)$$

$$Y = \operatorname{Hom}_{k}(k[T]/I(Y), \bullet)$$

$$X \times Y = \operatorname{Hom}_{k}(k[T]/I(X) \otimes_{k} k[T]/I(Y), \bullet)$$

$$\therefore \mathcal{O}(X \times_{k} Y) \cong \mathcal{O}(X) \otimes_{k} \mathcal{O}(Y)$$

6. Let $k[\mu_{ij}]$ be a polynomial ring with n^2 indeterminates $\{\mu_{ij} \mid i, j = 1, 2, \dots, n\}$. Then

$$K \to \operatorname{GL}_n(K) = \operatorname{Hom}_k(k[\mu_{ij}, T]/(\det(\mu_{ij})T - 1), K)$$

It is enough to prove that for any $A = (a_{ij}) \in GL_n(K)$, we can define a homomorphism

$$\varphi_A \colon k[\mu_{ij}, T] \to K, \qquad \mu_{ij} \mapsto a_{ij} \text{ and } T \mapsto \det(A)^{-1}$$

which induces a homomorphism

$$\varphi \colon k[\mu_{ij}, T]/(\det(\mu_{ij})T - 1) \to K$$

Conversely we have a matrix $(\varphi(T_{ij}))$ such that $\det(\varphi(T_{ij}))$.

$$\therefore \varphi(T) \Longrightarrow (\varphi(T_{ij})) \in GL_n(K)$$