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Abstract

The Helmholtz equation posed on an unbounded domain with the Sommerfeld condition prescribed at infinity is
considered. The unbounded domain is eliminated by imposing a Dirichlet-to-Neumann (DtN) map or a modified
DtN map on a truncating surface and the resulting bounded domain problem is modeled using the finite element
method. The resulting system of linear equations is then solved using a Krylov subspace iterative method.
New, efficient algorithms to compute matrix—vector products that are based on the structure of the DtN and the
modified DtN map are presented. Connections between the DIN map and the discrete Fourier transform in two
dimensions and discrete spherical transform in three dimensions are established, and are utilized to develop fast
implementations of matrix—vector product algorithms. Also, an SSOR-type preconditioner that is based on a local
radiation condition is considered for the modified DtN formulation. An efficient implementation is proposed by
extending Eisenstat’s trick for the standard SSOR preconditioner. Finally, numerical examples which illustrate the
efficacy of the proposed algorithms are presented. © 1998 Elsevier Science B.V. and IMACS. All rights reserved.

1. Introduction

In this study we consider the solution of the scalar Helmholtz equation in unbounded domains using
the finite element method. Such problems arise in structural acoustics, where we wish to model the
time-harmonic response of a structure surrounded by an isotropic fluid in an unbounded domain. If
we ignore the effects of the viscosity of the fluid, then the first-order, time-harmonic, fluctuations of
the pressure field in the fluid are governed by the Helmholtz equation with the Sommerfeld condition
imposed at infinity. The Sommerfeld condition ensures the uniqueness of the solution to the problem
by requiring that all the waves at infinity be outgoing. One approach for modeling such problems using
the finite element method involves the truncation of the infinite fluid domain at an artificial surface,
where a boundary condition is prescribed on the normal derivative of the pressure. A variety of such
“non-reflecting boundary conditions” (NRBCs) have been proposed; see, e.g., [10] for a review.
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In this study we consider NRBCs based on an exact Dirichlet-to-Neumann (DtN) map for the exterior
Helmbholtz equation—the so-called DtN [6,14] and the modified DN [11] radiation conditions. These
boundary conditions have the advantage that they can be made arbitrarily accurate; however, they have
a drawback in that they are non-local and couple all degrees of freedom on the truncating surface.
Consequently, they are generally considered to be prohibitively expensive and are used less frequently in
practice, than other methods like infinite elements and local NRBCs. The main focus of this paper is to
describe algorithms for efficient implementation of these boundary conditions, with particular emphasis
on large-scale problems.

For a given formulation, implementation costs essentially comprise of storage and computational costs,
both of which are closely linked to the solution method employed for solving the system of linear
equations. This choice of the solution method, in turn, is dictated by the size of the problem, and for
large-scale problems the driving algorithm is almost always iterative. Amongst iterative procedures, the
most popular algorithms fall under the category of Krylov-subspace methods. The two key steps in a
Krylov-subspace method, which constitute the main part of implementation costs, are:

(1) the multiplication of a vector with the coefficient matrix at each iteration, and

(2) preconditioning the system of equations to accelerate convergence.

The purpose of this paper is twofold: to develop

(1) storage- and computationally efficient algorithms for performing matrix—vector products with

DtN-based finite element matrices, and

(2) efficient preconditioners that are suitable for the resulting computational procedures.

To accomplish the first objective, efficient algorithms are proposed that utilize the special structure of
kernels in the DtN map for computing matrix—vector products. These algorithms, in particular, provide
an interpretation of the DtN-based maps as discrete Fourier transforms in two dimensions, and as discrete
spherical transforms in three dimensions. This connection is exploited in special variants of the proposed
algorithms. Secondly, a preconditioning approach that is based on an SSOR-type splitting of a part
of the coefficient matrix is proposed. An extension of Eisenstat’s trick [5] is proposed, whereby the
preconditioner can be used very efficiently in conjunction with the matrix—vector product algorithms
developed in this study.

Previously, a matrix-free implementation of the non-local DtN condition was proposed by Malhotra
and Pinsky [17] that avoids evaluation of the dense finite element matrix associated with it and is also
suitable for Krylov-subspace methods. However, in the absence of an explicitly available coefficient
matrix, effective preconditioners—especially those based on algebraic approaches—are difficult to
construct. In such a situation the use of a hierarchical basis preconditioner with QMR, in conjunction with
the matrix-free computational approach, was studied in [16]. In this paper, we extend the work in [16,
17] on efficient matrix—vector product implementations, as well as consider a more general, SSOR-type
preconditioning approach.

The remaining part of the paper is organized as follows. In Section 2, we review the DtN and modified
DiN formulations, including the matrix equations resulting from their finite element discretization. In
Section 3, we describe the matrix—vector product algorithms and the SSOR-type preconditioner. In
Section 4, we present numerical examples to illustrate the performance of the proposed algorithms, and
make some concluding remarks in Section 5.
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2. The exterior Helmholtz problem

The exterior Helmholtz problem in d dimensions posed on an unbounded domain £2 C R? is given by:
Find u such that

Lu=-Vu—Ku=f in$, (D

u=g on I, )

Vu-n=u,=h on [}, 3
d

lim r(d"l)/z(a—ru — iku) =0. (4)

In Eq. (1), k is the wavenumber associated with the problem and f is the prescribed forcing function.
In Eq. (2), g is the prescribed Dirichlet data on [,. In Eq. (3), & is the prescribed Neumann data on I,
and # is the unit outward normal on I,. Eq. (4) is the Sommerfeld radiation condition which requires all
waves at infinity to be outgoing.

In the following subsection we pose the original problem defined by Eqs. (1)—(4) on a bounded domain.
In this formulation the effect of the unbounded domain is incorporated through a boundary condition
imposed at the truncating surface.

2.1. DtN-based bounded domain formulation

In the unbounded domain §2 consider a hypersurface denoted by I'y that divides £2 into a bounded
domain £2; and an unbounded domain 2, (see Fig. 1). I'¢ is chosen such that I, U I} is completely
contained in 2z, and f|p, = 0. Further, in this study we assume that Ik is a “d”-dimensional ball of
radius R, though more general shapes are possible. The strong form of the problem associated with the

I'r

Fig. 1. Computational domain for the exterior acoustics problem.



446 A.A. Oberai et al. / Applied Numerical Mathematics 27 (1998) 443464

bounded-domain formulation is given by: Find u such that

Lu=f in 2, %)
u=g on Iy, 6)
u,=h on Iy, (N
U, =M(@) only, (8)

where M (u) is the so-called non-reflecting boundary condition imposed on u , at I'g.

Let Mgyy(u) be the boundary operator that makes the problems (1)-(4) and (5)—(8) equivalent.
This exact non-reflecting boundary condition is called the Dirichlet-to-Neumann (DtN) map. In two
dimensions, in polar coordinates (r,8), which relate to the Cartesian coordinates (x, y) through x =
rcosf, y =rsind, this map is given by

© 1 kHY (kR
Maw(u) = Z i B [ exp(ind) exp(—indou(R. 60) T, ©)
~ 27R Hi)(kR) J
R

In the above equation, H(! is the Hankel function of the first kind of order n, dI = Rd6, is the
differential length element on the circle of radius R, and the prime on a function is used to indicate
a derivative with respect to the argument.

In three dimensions, in spherical coordinates (r, 8, ¢) which relate to the Cartesian coordinates
(x, y, z) through x =rsinfcos¢, y =rsinfsin¢, z =r cos, the DIN map is given by

Qn+ D(n—{jD! kD' (kR)
Man) =3 Z TR+ 7D ADKR)

n=0 j=

x / P/l (cos8) exp(ijd) P! (cos o) exp(—ijdo)u(R, 6o, ¢o) AT . (10)

In the above equation, () is the spherical Hankel function of the first kind of order n, P/ is the
associated Legendre polynomial of degree n and order j and dIy = R?sin6yd6, dgy is the differential
area element on the surface of a sphere of radius R. For the derivation of Egs. (9) and (10) see [14]. In
this study, we will work with the following definition of the DtN map that takes into account both Egs. (9)
and (10):

[ee) J(d)
Min= 3 S 2tk R d)o(x: d) f Vi, (o; d)u(xo) T, an
n=N(d) j=-J(d)
where
vay={,% 923 (12)
J(d):{g’ Z:_g’ (13)
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kH"Y (kR)
i (kR) '

kh (' (kR)

hi’ (kR)

/1 .
7R exp(ind), d=2,

Ynj(x;d) = : )
@+ D —1jD! ) N
\/4JrR2(n+|j|)! PYl(cos®) exp(ij¢), d=3.

zn(k, Ry d) = (14)

The superscript * in Eq. (11) is used to denote the complex-conjugate of a quantity.
The weak form associated with the DtN formulation is obtained from Egs. (5)—(8). It is given by: Find
u € S such that Vw € V

a(w,u) — (w, Man (), = (w, f)+ (W, h) . (16)
where
a(w, u) := (Vw, Vu) — k*(w, u). 17)
In Egs. (16) and (17) the inner products (-, -), (-, -)r, and (-, -)r;, are defined by
(w,u) == [ wuds2, (18)
/
(w, Wy := [ w*udrl, 19)
/
(w,u)p, == /w*u dr. 20)
Ty

The function spaces S and V are defined as follows:

S:={v|ve H(R), v(x)=g(x), x € [}, (21)
Vi={v|ve H(2g), v(x)=0, x € [} (22)

Remark. In two dimensions, the functions v,; defined in Eq. (15) are the normalized exponential
functions and in three dimension they are the normalized spherical harmonics. These functions satisfy
the following orthonormality condition on [:

(Ynj» Ymk) rg = SnmSjk- (23)
Writing (11) with # = ¥, and using the above equation, we get
Maw(Ymi) = Zym|Ymk- (24)

That is, z;,| is the exact impedance at I'g for the harmonic V.
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2.2. Modified DtN-based bounded domain formulation

The DN map as defined in Eq. (11) is a sum of an infinite number of terms. When implementing the
DtN boundary condition as part of a numerical approximation to the continuous problem, we truncate the
summation after a finite number of terms. From Eq. (24) it is obvious that for the harmonics not included
in the summation, the DtN map imposes a homogeneous Neumann condition at I'g. This not only affects
the accuracy of the boundary condition but has implications regarding the uniqueness of the problem as
well. In [12], Harari and Hughes have shown that for a given problem there is a minimum number of
terms (Npin) required to ensure uniqueness. They have derived the following bound for Np,.

Nrin 2 kR. (25)

This requirement on the truncated DtN map may be overcome by using the modified DN map proposed
by Grote and Keller [11]. This map is obtained from the standard DtN map by adding any local
differential operator, and then subtracting from the DtN map the contribution of this operator to each
harmonic by modifying the impedance (z,) associated with that harmonic. This leads to a boundary
condition that is the sum of a local differential operator and an integral operator which is of the same
form as the DtN map. The local operator can then be chosen to ensure uniqueness of the solution for any
number of terms included in the integral operator. The modified DtN condition constructed in this way
has the following properties.
(1) This boundary condition is exact for all the harmonics included in the kernel of its integral operator.
(2) For the harmonics not included in the kernel, the local operator induces an approximate non-
reflecting boundary condition.
(3) The solution of the resulting problem is unique for any number of terms included in the integral
operator.
In the following section we will observe that these properties of the modified DtN boundary condition
are crucial for its implementation in conjunction with preconditioned Krylov-subspace iterative methods.
The strong form of the problem associated with the modified DtN map is given by Eqgs. (5)—(8), where
the operator M (u) is now given by

M(u) = B(u) + Mg (). (26)

In the above equation, B is the local differential operator and Myr is the integral operator. Based on
the definition of B, there is a family of modified DtN boundary conditions that can be constructed. The
simplest choice for B is

Bu)=a(k, R;d)u(R, x), 7

where a given by

ik——z—l—, d=2,
ak, R;d) = 1R (28)
k——, d=3.
R

With this choice of «, B(u) is the first order Bayliss—Gunzburger-Turkel [1] operator and My, is given
by
o J(d)

M@= Y Y Flh Redyx:d) [ e o) a1 (29)
Tr

n=N(d) j=-1(d)
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where

The weak form of the problem associated with the modified DtN boundary condition is given by: Find
u € S such that Vw € V

a(wv u) _a(w’ u)FR - (w’ Mmdtn(u))pR = (ws f) + (wy h)ﬂ,~ (31)
2.3. Finite element discretization

To obtain a finite element approximation to the solution of Eq. (16), we apply the Galerkin method to
Eq. (16) and arrive at the following finite-dimensional problem: Find u" € S* C & such that Yw" € V" C
V,

a(wh, ut) — (w*, Ml (u")) , = (", £) + (", B) . (32)
where the superscript & on the functions and the function spaces denotes a finite-dimensional basis. The
discretized DtN map M"_(u") expressed in this finite-dimensional basis is given by

J(d)

M) = S Szl R d) / Yh* (eos dyut (xo) dT, (33)
n=N"d)j=—J()
where
va={" 425 (34

and 1// -(x; d) is the projection of ¥,;(x; d) onto the finite-dimensional basis. In particular, we choose
1[/ (x; d) to be the interpolant of 1//,, j(x; d)
We then expand the functions w” and u” as follows:

w(x)=w-Nx), (35)
W'(x)=u-N). (36)

In the above equation, N (x) is a vector of the standard finite element basis functions and w and u are the
vectors containing the nodal values of w” and u”, respectively. Using these expressions in Eq. (32) and
evaluating the integrals, we arrive at the following system of linear equations:

Konu = f, (37
where

Ky := Ko — Byn. (38)
Here K, is the matrix associated with the bounded domain £2g. Its elements are given by

[Kolix = (VNi, VNi) — K*(Ni, No). (39)

By, is the matrix associated with the DtN boundary condition. The elements of this matrix are given by
[Bawmlik = (Nis Mgu(NO) - (40)
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Remarks.

(1) By comparing Eq. (11) with Eq. (33) it is seen that the finite-dimensional DtN map is obtained by
truncating the infinite series in the original DtN map and by projecting the harmonics that comprise
the DtN kernel onto a finite-dimensional basis. Also from the summation in (33) we conclude that
the total number of terms in the truncated DtN map, denoted by N7 is given by

Ny AN +1, d=2,
(N+1)? d=3.

(2) Due to the compact nature of the finite element shape functions, Ky, is a sparse matrix.

(3) Due to the non-local nature of the DtN map, Bay, is a dense matrix. To be precise, let Ngor be the
total number of degrees of freedom in the finite element model and out of these let N, be the
number of degrees of freedom on I's. Then Byy, € CNeo*Neof with N, x N, non-zero entries.
The structure of By, becomes clearer if we assume that all the degrees of freedom on Iy are
numbered last. Then By, has zeros everywhere except on the lower N, x N, block, which is
completely full.

(4) From Egs. (38)-(40) we conclude that K, is an indefinite complex-symmetric matrix.

(41)

When applied to the weak form associated with the modified DIN boundary condition (31), the
Galerkin method yields: Find u* € 8" ¢ S such that Yw" € V" C V),

a(w',u") —a(w" u?)r — (W' Mpg (")) = (", f) + (W', 1) . (42)
where
J(d)
fali) = Y Eak R d) / Wi s ' (x0) AT, 43)

n=N"(d) j=—J{d)

Using Egs. (35) and (36) in Eq. (42) we get the following system of linear equations for the modified
DtN formulation:

Kmdtnu = fs (44)
where
Kmdm = K.Q - aMF - Bmdtn- (45)

In the above equation

[Mrlix == (Ni, N1, (46)
[Brawlit := (Ni, M (NO) 1 - 47)
Remarks.

(1) From Eq. (46) we conclude that M is the “mass” matrix associated with the degrees of freedom
of I'z. Based on this, we expect the sparsity pattern of Ko — a M to be the same as that of Ko;.

(2) From Egs. (47) and (43) it is obvious that Bnge, has the same “dense” structure as By

(3) Also from the definition of Kpqm, we conclude that, like the DtN formulation, the system of linear
equations obtained for the modified DtN formulation is indefinite and complex-symmetric.
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Thus for both the DtN formulation and the modified DtN formulation the stiffness matrix is indefinite
and complex symmetric and can be written as a sum of two matrices: one with the sparsity pattern
associated with the standard finite element discretization and another with a “dense” structure that
emanates from the non-locality of the DtN and the modified DtN boundary conditions.

3. Implementation for Krylov-subspace methods

In this section we consider using a Krylov-subspace iterative method for solving the system of
Egs. (37) and (44). In general, preconditioned Krylov-subspace methods are well suited to solve large
sparse linear systems that arise from discretizing partial differential equations. For the special case of
indefinite, complex symmetric systems, such as (37) and (44), the QMR algorithm [7,9] is amongst the
most effective Krylov-subspace methods. The reader is referred to [15,16] for work on the application of
this algorithm to problems in structural acoustics.

To solve a linear system of equations given by Ax = b, Krylov-subspace iterative methods require
matrix—vector products of the kind v = Ap at each iteration. Typically, these matrix—vector products
constitute the major component of the computational effort for these methods. In the following
subsection we demonstrate that the storage and computational costs for performing these operations
when solving (37) and (44) can become prohibitively large. We then present efficient algorithms for
performing matrix—vector products for these equations and also examine certain cases when these can be
improved even further.

In practical applications, the convergence of Krylov-subspace iterative methods needs to be improved
via the use of an effective preconditioner. In the last subsection, we propose a local NRBC-based
preconditioning approach for (37) and (44) that can be used consistently with the matrix—vector
algorithms proposed here.

3.1. Matrix—vector products

To solve Eq. (37) using a Krylov-subspace method, we need to calculate the following matrix—vector
product at each iteration:

V= Kynp = (Ko — Bin) P- (48)

First, we estimate the orders of storage requirements and computational costs incurred in computing v in
a straightforward manner. In estimating these orders we do not make the distinction between the memory
required for storing a real number and a complex number, or the cost of performing operations in real
and complex arithmetic, since these cases differ only by a constant factor.

As pointed out in the previous section, K is a sparse matrix. To store it, we require O(Nuof) real
numbers. However, the matrix By, is dense in the degrees of freedom on I'z. In order to store this matrix
we require O(N2 &) complex numbers. So the total storage requirement for storing Kqe is O(Ngot + N* r R)
numbers. Since this estimate represents the order of the number of non-zero entries in Ky, to calculate
the matrix—vector product described in Eq. (48), we require O(Ngot + N FR) operations. For matrix-vector
products with Kpqm, We get exactly the same estimates.

The O(N7,) terms in the estimates above are a direct consequence of the non-local nature of the

DtN and the modified DtN boundary conditions. For typical problems in structural acoustics, NZ e 18
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much greater than Ny and this disparity increases with the problem size. Thus the computational and
storage costs associated with either the DtN or the modified DtN formulation can become large enough to
limit their use in conjunction with Krylov subspace methods. Qur goal in this subsection is to formulate
algorithms for matrix—vector products that keep these costs in check.

To begin with, we examine the matrix Bg, closely. From Egs. (47) and (33) we have

[Bymlix = (N, Mf;m(Nk))
J(d)
= f N S S itk Ry d) [ iy o dNeeoydrpar
n= N"(d) j==J(@) I'r
J(d)
/ N;(x) Z Y. zmk, R )[¥, LN (x) / (V] 1w N (X0) Ni(x0) AT AT (49)
I'x n=N"(d) J’"—J(d)
J(d)
= / NN S S e R [¥ ] / N (£0) Ni (x0) Ty

n=Nk(d) j=—J(d)

N J(d)
=[Mr]u< >y [v/r,,,-lzz.n|(k,R;d)[v/r,:‘,-J,,,)[Mr]mk, (50)
n=N"(d) j=—J(d)

where M is defined in Eq. (46) and ¥,,;, defined by
(¥l :=¥nj(x1;d), x; €Ty, &2}

is the vector containing the nodal values of the harmonic defined by (n, j), on I'g. Based on this
alternative definition of By, we propose the following algorithm for calculating v = Ky, p.

Algorithm 3.1.1. Matrix—vector product for DtN.

Input: A vector p € CNer,
Output: The vector v = Ky, p.
1.Setv; =Kgop
2.8etv=Mrp
3. For each nodal point x; € I'z do
For each harmonic given by the pair (r, j) do
[a]nj = [5]nj + [i]i [1’:]]1
Enddo (n, j)
Enddo i
4. For each harmonic given by the pair (n, j), [¥]sj = 2 [V]n;
5. For each nodal point x,, € 'z do
For each harmonic given by the pair (n, j) do
[Bln = Bl + 31 (¥ 1
Enddo (n, j)
Enddo m
6.Setv=Mrv
7.Setv=v; — 7.
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While implementing the above algorithm, we calculate and store the matrices Ko and My, and the
impedance coefficients z,(k, R; d). For this the storage requirements are of the order O(Ngot + Nry),
since N < Nr,. Recall, that the straightforward matrix-vector product requires storage of the order
O(Ngof+ N .)-Thus the storage requirements associated with the above algorithm are considerably lower.
In steps 1, 2 6 and 7 of the above algorithm we perform O(Ny,s) operations. In steps 3 and 5 we perform
O(Nr Nr,) operations and in step 4, O(N7) operations. Thus the total number of operations performed in
the above algorithm are of the order O(Ngof + N, N7). For the standard matrix—vector product, the total
number of operations are of order O(Nyo + N,Z-R). Typically Ny < N, thus we require fewer operations
to implement the above algorithm when compared to the naive implementation.

For the modified DtN formulation starting from Egs. (47) and (43), and following the same steps as
for By, we have

N I
[Bmdm]ik=[Mr]u( Yo D Wlimk, Rid)] :j]m)[MF]mk- (52)
n=N*(d) j=-J(d)

Based on this definition of By, we propose the following algorithm to compute matrix—vector products
of the kind v = Kpge p. Formally, this algorithm is identical to Algorithm 3.1.1 for the DtN formulation.

Algorithm 3.1.2. Matrix-vector product for modified DtN.
Input: A vector p € CNaor,
Output: The vector v = Kgin p.
1.Setv; = (K —-(ZMr)p
2.8etv=M rp
3. For each nodal point x; € I'g do
For each harmonic given by the pair (n, j) do
(31 = [91n + [ ¥,
Enddo (n, j)
Enddo i
4. For each harmonic given by the pair (1, j), [0],; = Zjn[V]y;
5. For each nodal point x,, € I'g do
For each harmonic given by the pair (n, j) do
[ilm = [5]m + [fv\]nj [wnj]m
Enddo (n, j)
Enddo §
6.Setv=Mrv
7.Setv=v; —7.

While implementing this algorithm, we store the matrices K —a M and M, and the impedance coef-
ficients 7, (k, ; d). The storage requirements and the operation count for the above algorithm are of order
O(Nyof + Nrp) and O(Ngot + N, N7), respectively. Thus like Algorithm 3.1.1 for the DtN formulation,
Algorithm 3.1.2 is an efficient way to compute matrix—vector products for the modified DtN formulation.

Remarks.
(1) The special structure of the matrix By, was first recognized by Malhotra and Pinsky [17], and
used to develop a procedure similar to Algorithm 3.1.1 to compute matrix—vector products for the
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matrix-free implementation of the DtN boundary condition. Note that Eq. (50) involves the repre-
sentation x/f,’,' (x;d) = ¥,; - N(x), used in (49) which enables us to express Bay, in terms of M.
This is an extension of the matrix-free interpretation proposed in [17], where such an approxima-
tion was not made.

(2) In Algorithm 3.1.1, the major computational cost is involved in performing steps 3 and S. In these
steps, calculating [¥,,;]x, n = N*@),...,N, j=—-J(d),..., J(d), for each x,, € 'z can be ex-
pensive. One way to reduce these costs is to store the vectors M¥,,;. This approach would require
storage of the order of O(Ngyot + N1 Nrp) words. To avoid these storage costs, we calculate [¥,,;]x
for a given m efficiently by utilizing recurrence relations between successive harmonics evaluated
at a given point. For example, in two dimensions we make use of Algorithm 3.1.3 and in three
dimension we use Algorithm 3.1.4.

Algorithm 3.1.3. To calculate exp(iny), n=1,..., N.
Input: A scalar y € (0, 27).
Output: The vector [exp(iny)], n=1,..., N.
1.Forn=1,...,Ndo
exp(iny) = exp(i(n — 1)y) x exp(iy)
Enddo n

Algorithm 3.1.4. To calculate P/ (y), n=0,...,N, j=0,...,n.
Input: A scalar y € (—1, 1).
Output: The vector [P/ (y)], n=0,...,N, j=0,...,n.
1. Set PO(y) = 1.
2.Form=1,...,Ndo
Pr(y) = (1=2m)VT—x2P;=(y).
If m # n then
Py () =C2m+DyPr(y)
If m# N — 1 then
Forl=m+2,...,Ndo
P (y) = (1/( —m)(@ = DyPP, () — (+m = D PP, ()
Enddo /
Endif
Endif
Enddo m

3.2. DtN and discrete Fourier and spherical transforms

In this subsection we establish a relationship between the DtN map and the discrete Fourier transform
in two dimensions, and the discrete spherical transform in three dimensions. These relations hold for the
the modified DtN map also.

From the definition of ¥,; in two dimensions and by interchanging the do loops in step 3 of
Algorithm 3.1.1 (or 3.1.2) we get
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" 1 - .
[0 = T gj;R[v]j exp(—ind;), n=-N,...,N. (53)

Similarly from step 5 in Algorithm 3.1.1 (or 3.1.2) we get

~ 1 X .
[¥]m = ﬁn;N[v]ngexp(lnem), B, € k. (54)

Up to scaling by a constant, in Eq. (53) v is the forward discrete Fourier transform of 7 and in Eq. (54)
v is the inverse discrete Fourier transform of ¥. Thus Algorithms 3.1.1 and 3.1.2 can be restated in two
dimensions as follows.

Algorithm 3.2.1. Matrix-vector product for DtN and modified DtN formulations in 2 dimensions.
Input: A vector p € CNoor,
Output: The vector v = Ky, p for DtN; the vector v = Kq, p for modified DtN.
1. Set v; = K, p for DtN;
v, = (Ko — aM)p for modified DN

2.Setv=M| p
3. Set ¥ = forward discrete Fourier transform of 7
4. For each harmonic (#, 0),

for DtN [¥],0 = Zj [V]n0;

for modified DN [¥],0 = Z}u/[V]no
. Set v = inverse discrete Fourier transform of v
.Setv=Mrv
7.Setv=v; — 7.

N

This interpretation of the DtN map in terms of discrete Fourier transforms is useful when the number
of terms in the DtN kernel is approximately the same as the number of points on I'z (Ny & N ). For
this case Algorithms 3.1.1 and 3.1.2 require the same order of flops as the standard implementation, i.e.,
O(Ngof + N}R). However, in Algorithm 3.2.1 we can use a fast Fourier transform in steps 3 and 5 to
reduce the order of operations in these steps and in the overall algorithm to O(Ngor + N, log N, ).

Fast algorithms to perform both the forward and reverse Fourier transform have traditionally been
available for uniformly spaced data [3]. In the present context, this corresponds to the case of uniform
mesh on I'y. More recently, efficient and robust Fast Fourier transform algorithms have been developed
for non-uniformly spaced data {4,2], and these may be used for more general meshes in the algorithm
above. Thus for the two-dimensional case, it is possible to implement Algorithm 3.2.1 in O(Ngos +
Nr, log Nr,) operations.

In three dimensions, using Eq. (51) in step 3 of Algorithm 3.1.1 (or 3.1.2) we get

2n+ Dn—|jD! .,
@)y = §jﬁm¢“””m UDY pist cos ) exp(~ijgs).

3 ;
0T 4R (n A+ 171!
n=0,....,.N; j=—n,...,n, (55)
and using Eq. (51) in step 5 of Algorithm 3.1.1 (or 3.1.2) we get
N n B
s - [ent =10, y
[¥]n =§) j;n[v]nj\/ o STPEWESY PV (cos6,,) exp(ijdm), (O, dm) € Tk. (56)
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From the definition of a discrete spherical transform (see [13], for example), we conclude that up to
scaling by a constant, v is the forward discrete spherical transform of T and v defines the inverse discrete
spherical transform of ¥. Thus our observation regarding the relation between the DtN and discrete
Fourier transforms in two dimensions, extends in three dimensions to discrete spherical transforms.
However, unlike the two-dimensional case there are difficulties associated with the application of a “fast”
spherical transform. These are:

(1) There is no “fast” spherical convolution algorithm for non-uniformly spaced data. (Uniformly
spaced data on a sphere implies an equi-angular mesh which suffers from the drawback that it is
relatively coarse at the equator and fine at the poles and thus is not the optimal discretization of
the surface of a sphere.)

(2) Even for uniformly spaced data, currently there are no fast spherical convolution subroutines or
programs that can be easily incorporated into an existing code. However, recently fast spherical
convolution algorithms have been developed and implemented by Healy and co-workers [13] and
look promising.

3.3. Preconditioning

The notion of preconditioning is crucial to the application of a Krylov-subspace iterative method for
solving linear systems. For a symmetric coefficient matrix the basic idea is as follows. Let the original
system we wish to solve be given by Kd = f, where K € CNer*Neot and KT = K. Let M € CNaot*Naof he
a matrix that approximates the matrix K in some sense. Further, we assume that M admits the product
decomposition

M =M M, (67

where M and M, are the so-called left and right preconditioners. Instead of the original system, the
Krylov subspace method is used to solve the preconditioned linear system

Ax =b, (58)

where A := M{'KM;', x := M,d, b:= M;'f and M is called the preconditioning matrix. The
requirements on M and hence on M| and M, are twofold. First, for the system of Eq. (58) to have
better convergence properties than the original system, M ~! must approximate K~ well. Second, since
solving (58) using a Krylov-subspace method will involve vector products with the matrix M T'KM; !
at each iteration, the systems

Mzi=gq, (59)
Mz =g | (60)

must be cheap to solve. These two requirements are difficult to satisfy simultaneously. Often, a
compromise is sought between these two requirements in designing a useful preconditioner.

The SSOR preconditioner is one of the more popular preconditioning approaches. It is based on an
additive split of the matrix K. We observe that we can split the symmetric coefficient matrix K as
follows:

K=L+A+L", (61)
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where A is a non-singular diagonal matrix and L is strictly lower triangular. Since the original
matrix is indefinite we may require some permutations to make A non-singular. The left and the right
preconditioners for the SSOR preconditioner are given by

M, =(A+wL)A™'? (62)
M;=A"*(A+wL"), (63)

where w € (0, 2). For the discussion of the “closeness” of M = MM to K the reader is referred to [8].

For the SSOR preconditioner, matrix—vector products of the kind v = Ap imply solving Egs. (59)
and (60), with M| and M defined by Eqs. (62) and (63), and a matrix—vector product with K. Since M,
and M, are triangular, this means two triangular back-solves together with one multiplication with A
and a matrix—vector product with K. However, by writing the preconditioned matrix A in the following
way:

A=M{'KM;'= AV*(A+ oLy (L+ A+ L") (A + L") A2

= ZI;A’/Z((A +oLT) " +(A+oL) (I +(@—-2)A(A+oL") ") A2, (64)

the matrix—vector product v = A p may be calculated as follows.

Algorithm 3.3.1. Eisenstat’s trick for SSOR preconditioner.
Input: A vector p € CNoor,

Output: The vector v = A p.

1.Sett=A"?p

2. Solve (A+wL )=t fort

3.Sett:=t+ (w—2)At

4. Solve (A +wL)t =t fort

5.Setv=(1/w)(t+1).

Note that Eisenstat’s trick [5], involves two solves with triangular matrices, together with a
multiplication with A and a multiplication with A'/2, Therefore by using Eisenstat’s trick the
multiplication with K is replaced by multiplication with A'/2, a considerably cheaper operation.

We now address the question of formulating SSOR preconditioners for Eqs. (37) and (44), given the
matrix—vector products are performed using Algorithms 3.1.1. and 3.1.2, respectively (or Algorithm 3.2.1
in two dimensions). The standard SSOR preconditioner (with or without Eisenstat’s trick) cannot be used
for these problems because we do not assemble the matrices Kqy, and Kjpgw. In particular, for the DtN
formulation we do not assemble or store By, and similarly for the modified DtN formulation we do
not assemble Bpam. With this restriction, the triangular back-solves, which are an integral part of the
SSOR preconditioner, cannot be performed efficiently.

However, for the DtN formulation we do assemble and store the matrix K. Similarly, for the modified
DtN formulations we assemble the matrix Ko — a M. Thus, if these matrices are “close” to Ky, and
K nam, Tespectively, we may use a SSOR preconditioner based on the additive split of these matrices for
solving Eqgs. (37) and (44).

We examine the “closeness” of K and Ky, first. Consider the strong form of the continuous
operators that these two matrices approximate. For a given right hand side f the system Kynz = f
is an approximate solution to Egs. (1)—(4), the original exterior Helmholtz problem. On the other hand,
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Kz = f is an approximate solution to Egs. (5)—(8) with M{u) =0 on I' in Eq. (8). This is an interior
acoustics problem with homogeneous Neumann data on ;. The qualitative character of the solution
to this problem is very different from the solution to the exterior problem. Further, while the exterior
problem has a unique solution for any finite value of the wavenumber k, the interior problem may have
non-unique solutions or no solutions at all for certain wavenumbers. Thus it is not natural to propose a
SSOR preconditioner for the DtN formulation based on Kg,.

Next we examine the “closeness” of Ko — aM to K4 The strong form of the continuous problem
associated with K4,z = f is the original exterior problem given by Egs. (1)—(4). The strong form of the
the continuous problem associated with (K — aMr)z = f is given by Egs. (5)—(8), with M (u) = au.
With this definition of M (i), this problem has the following properties that make it similar to the exterior
acoustics problem.

(1) With « defined by Eq. (28) this problem has a unique solution for all values of the wavenumber k.

(2) Recall, from Section 2.2 that « is chosen such that M (i) imposes an approximate non-reflecting

boundary condition at I'g. This makes the solution of this problem an approximation to the solution
of the exterior problem.

Thus it is feasible to formulate a SSOR preconditioner based on the additive split of the matrix
Ko — aMp for Egs. (44). However, it is obvious that for the efficient calculation of matrix—vector
products with this preconditioned system we cannot use Eisenstat’s trick described in Algorithm 3.3.1.
Instead we propose a modified Eisenstat’s trick that is applicable whenever the matrix K can be written
as the sum of two matrices

K=K +K; (65)

and the SSOR preconditioner is based on the additive split of one of these matrices say, K. That is L
and A are defined by

Ki=L+A+L" (66)

Since M and M, are given by Egs. (62) and (63), we can write the preconditioned matrix A as follows:
A=M7' (K, + K)M; = AVX(A+oL)  (L+ A+ LT + K) (A + L") A2

1

T w
Using the above equation, the matrix—vector product v = A p can be calculated as follows.

A (A+oLl") " + (A +ol) (I + ((0-2A+wK)(A+wL") ) A" (67)

Algorithm 3.3.2. Modified Eisenstat’s trick.
Input: A vector p € CNeor,

Output: The vector v = Ap.

1.Sett =A%y

2. Solve (A +wL")f =t fort

3.Sett:=1t+ (0 —2) At + wKyt

4. Solve (A +wL)t =t fort
5.Setv=(1/w)(t+7).

The situation described above is representative of a problem where only part of the coefficient matrix
is assembled. The effect of the other part is known only through its operation on a vector. In such a case
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if the SSOR preconditioner is derived from the assembled part of the matrix, then the straightforward
calculation of the vector v = A p involves two back-solves, one multiplication with A, a matrix—vector
product with K, and a matrix—vector product with K,;. However using Algorithm 3.3.2 the operation of
multiplication with K| is replaced by a multiplication with A'/2.

Finally, for the modified DtN formulation with SSOR preconditioner we present an algorithm that uses
the modified Eisenstat’s trick and the special structure of Bpgy to compute the matrix—vector product
v = Ap efficiently. Here A =M fledtnM 2 !, where M, is given by Eq. (62), M, is given by Eq. (63),
and L and A are defined by the following additive split

Ko—aMr=L+A+L" (68)
Algorithm 3.3.3. Modified DtN formulation with SSOR preconditioner.

Input: A vector p € CNeor,
Output: The vector v = A p.

1.Sett=AY?p
2. Solve (A +wLDf=¢fort
3.SetT=Mrt

4. For each nodal point x; € I'g do
For each harmonic given by the pair (n, j) do
[¥),; = [¥],; + [PL:[¥,;1:
Enddo (n, j)
Enddo i
5. For each harmonic given by the pair (n, ), [V],j = Zj|[V]n;
6. For each nodal point x,, € I'g do
For each harmonic given by the pair (n, j) do
[i’l]m = [i]m + [a]nj ['ﬁnj]m
Enddo (n, j)
Enddo m
7.Setv=Mrv
8.Sett:=t+ (w—2)Af + wd
9. Solve (A + wL)t =¢ for £
10. Set v = (1/w)(f +1).

Note that, for a two-dimensional problem, FFTs can be employed to perform steps 4 and 6 in the above
algorithm.

4. Numerical examples

In this section we present two examples to compare the algorithms developed in the previous section.
All numerical calculations presented in this section were performed on a R1000 processor. For solving
the system of linear equations, we have used the QMR algorithm based on a three-term recurrence
relation [7]. We denote by Nj; the number of QMR iterations required to achieve

”r n ”2
iroll2

< le—06, (69)



460 A.A. Oberai et al. / Applied Numerical Mathematics 27 (1998) 443464

where r, is the residual after » iterations. The storage required for various formulations and algorithms
is measured in terms of N,,, the number of real double-precision words stored.

4.1. Radiation from an infinitely long rigid circular cylinder

The problem of time-harmonic radiation from an infinitely long, rigid circular cylinder of unit radius
in an unbounded fluid domain reduces to a problem in two dimensions if we assume that the prescribed
pressure on the wet surface does not vary along the axis of the cylinder. Then the pressure field on any two
planes perpendicular to the axis of the cylinder is identical and is given by the solution to the Helmholtz
equation in two dimensions. The problem is posed on a domain exterior to a circle, and the radiator is
represented by the circle. The strong form of the problem is given by (1)-(4) withd =2, I}, =9, I,
defined to be the circumference of the circle and £2 the unbounded domain outside it. The wave number
for this problem is k = 20 and the forcing function f = 0. The function g is chosen such that it is a
random number between —1 and 1 on the nodes, and varies linearly between them.

To solve this problem we truncate the unbounded domain with a circle of radius 1.25 and impose the
DtN or the modified DtN boundary condition on this circle. We use bilinear finite elements and compute
the pressure field by solving (37) or (44) using the QMR algorithm. We use a uniform mesh in (r, 8),
with 1025 elements in the circumferential direction and 25 elements in the radial direction. The DtN map
is truncated at N = 171, which implies N7 = 343. For every harmonic included in the DtN kernel we
have at least 6 nodal points per wavelength. We compare

(1) The DtN map, via the naive approach of assembling By, and then calculating Ky p-

(2) The DtN map via Algorithm 3.1.1, which utilizes the special structure of Bgy.

(3) The DtN map via Algorithm 3.2.1, which uses the FFT.

(4) The modified DtN map with the SSOR (w = 1) preconditioner via Algorithm 3.3.3. In this

algorithm we have used the FFT.

Table 1 contains the results obtained from solving this problem. From this table we observe:

(1) all the algorithms implemented above require about 9 times less storage than the naive version,

(2) using the FFT in Algorithm 3.2.1 makes it about 2.5 times faster than the naive algorithm,

(3) the effect of the SSOR preconditioner in lowering Nj is significant (about 2.5 times).

In the previous section it was indicated that in two dimensions, Algorithm 3.3.3 with the FFT is the
most efficient algorithm developed in this study. This observation is verified by comparing the first and

Table 1
Storage requirements and performance results for numerical example 1
Method Storage Iterations Wall-clock
Ny (X 103) Nit time (sec)
DtN (Naive) 1172 726 114
DtN (Algorithm 3.1.1) 121 725 104
DtN (Algorithm 3.2.1) 121 725 49

Modified DtN (Algorithm 3.3.3) 121 264 29
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the last rows of Table 1. When compared to the naive algorithm, Algorithm 3.3.3 requires 9 times less
storage and is about 4 times faster.

4.2. Three-dimensional rigid scattering from a cigar-shaped object

As our second example, we consider the time-harmonic scattering of plane waves from a sound-hard
cigar-shaped object. The scatterer is a cylinder, whose axis is aligned with the Cartesian x axis, with
conical-to-spherical end caps. The length of the scatterer is 8 units and the diameter of the cylindrical
part is 1 unit. The incident pressure field is a time-harmonic plane wave and we wish to solve for the
scattered pressure. The strong form of the problem for the scattered pressure field u is given by (1)-(4),
withd =3, k=2, I, =0, I, defined to be the surface of the scatterer, and &2 the unbounded domain
outside I,. Since we have assumed the scattering object to be sound-hard, the prescribed Neumann data /
is given by

hix)=—n-qexp(ikq -x), xelj. (70)

In the above equation ¢, is the wave vector associated with the incident plane wave. For results presented
in this subsection g = [0.5, 0.5, 0.707]. We have found that the convergence of the iterative scheme is
insensitive to the direction of the plane wave, and the results described below are typical for any wave
vector ¢.

To solve this problem, we have truncated the fluid domain with a sphere of diameter 12 units and
modeled the fluid domain between the scatterer and the surface of the sphere using 82,944 trilinear
hexahedral finite elements. The surface mesh for one-half of the finite element model for this problem is
shown in Fig. 2. The total number of degrees of freedom is Nyor = 78,370, and the number of degrees
of freedom on Iz is N, = 4,610. We solved the problem using both the DtN and the modified DN
boundary condition, with N =24 (N7 = 625). Observe that N = 2Ny, for the DIN boundary condition
and hence uniqueness is assured.

Y
\<X
z

Fig. 2. Surface mesh for one-half of the finite element model for numerical example 2.
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For this problem we have implemented the following algorithms.
(1) The DtN map using Algorithm 3.1.1 for matrix—vector products.
(2) The modified DIN map using Algorithm 3.1.2 for matrix—vector products.

(3) The modified DtN map with SSOR (w = 1) preconditioner using Algorithm 3.3.2 for matrix—

We have not implemented the DtN or the modified DtN formulation with the fully assembled stiffness
matrices, because for these cases the memory required for storing the dense boundary matrix is extremely
large; an estimate of the requirements given in Table 2 shows that it is about 20 times more than the other

approaches.
Table 2
Storage requirements and performance results for numerical example 2
Method Storage Iterations Time per Wall-clock
Ny (x10%) Nit iteration time (sec)
DtN (Naive) 10.6 — — —
DtN (Algorithm 3.2.1) 0.573 1378 1.69 2333
Modified DtN (Algorithm 3.2.2) 0.573 1362 1.76 2400
Modified DtN (Algorithm 3.3.1) 0.573 275 2.29 632
10' . . . T .
--- DN
------ Mod. DtN

vector products.

L

Mod. DN, SSOR |

TR o

1

1
0 200 400

600

800

Iteration number, n
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1000

1200

Fig. 3. Iterative convergence for numerical example 2.

1400
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In Fig. 3 we compare the convergence for the three formulations considered. In the figure, the abscissa
represents the iteration number n and the ordinate axis represents j(n), a measure of the relative residual
lirall2/llroll2- The quantity w is calculated at each iteration without performing additional matrix—vector
products and satisfies the following relation:

7l

liroll’

From Fig. 3 and Table 2, we observe that the DtN as well as the modified DtN formulations converge
in approximately 1400 QMR iterations, while the solution for the modified DN formulation with the
SSOR preconditioner based on K; —a M converges in only 275 iterations. Further, by using Eisenstat’s
trick for this preconditioner, these improvements in the iterative convergence directly translate into
improvement in timings. This is illustrated by the timing results shown in the last two columns of the
table.

un) < (71

5. Conclusions

The implementation of the DtN and the modified DtN boundary conditions in the finite element
solution of the exterior acoustics problem has been examined for the case when the resulting system
of linear equations is solved using a Krylov-subspace iterative method.

Algorithms to compute a matrix—vector product in O(Ngof + N, N7) flops with significantly low stor-
age requirements of O(Nyor + N ) words are proposed. Here, Nyof is the total number of degrees of free-
dom in the problem, N, is the number of degrees of freedom on the truncating surface Iz, and Ny is the
number of terms in the kernel of the DtN (or the modified DtN) map. Since Ny <« N, these algorithms
are typically much faster than the standard matrix—vector products that require O(Nyos + N%R) flops and
O(Nyor + N%R) words of storage. For problems in two dimensions, the fast Fourier transform was em-
ployed to further reduce the computational cost per matrix—vector product to O(Ngor + N, log Nr,)
flops.

A preconditioning approach that utilizes an SSOR splitting of local, approximate NRBC based finite
element matrix has been studied to precondition the modified DtN-based finite element linear systems.
An efficient implementation of this preconditioner has been proposed, by exploiting Eisenstat’s trick for
the case when the SSOR operator is constructed from only a part of the coefficient matrix, that is as-
sembled explicitly. The remaining part, consisting of the non-local DtN contribution, is needed only for
computing the matrix—vector product. The resulting algorithms perform a matrix—vector product with the
preconditioned matrix at a cost that is only nominally more than that required for performing the product
with the coefficient matrix itself.

Numerical examples illustrating the performance of proposed preconditioner and matrix—vector
product algorithms have been presented. Significant savings in storage costs, of a factor of 20, and
computational costs, of around a factor of 4, have been observed.

In this study we have focused on the scalar Helmholtz equation with a circular or spherical truncating
boundary. However, with only slight modifications, algorithms developed in this paper can be extended
to implement these boundary conditions on more general truncating surfaces like ellipses and prolate
spheroids, and also to problems involving the vector Helmholtz and Maxwell’s equations.
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