返回
本科生科研
本科生科研课程的相关信息和资料参见:
02级
- 流体力学方程组数值求解中的移动网格方法研究
- 校长基金
- 王涵, 贺鹏, 李琨 (00201159, 00201710, 00201179)
- 2004.6-2005.9
- 三人均选择我系的直博; 在大三的一学年的专业成绩均有所提高,
于2005年分别获得奖学金.
- 成果: H.Wang and H.Z. Tang, An efficient adaptive mesh
redistribution for a nonlinear Dirac equation,
J. Comput. Phys., 2006.
Research Report
2006-11, LMAM, PKU.
03级
04 级
-
2006年北京大学“本科生科研基金”遴选的通及
申请表
-
北京大学本科生"研究课程"相关管理规定(试行)
- 线性、非线性Dirac方程的计算方法研究
- 李 叠(00446133), 李健夫(00446108)
- 于2007年4月20日前将中期进展报告及指导老师评议交送教务部红四楼4107室!
- 结题时间:2007年9月第三周的周一之前。
- G.W. Wei, Solving quantum eigenvalue problems by discrete singular
convolution, J. Phys. B: At. Mol. Opt. Phys.,
33(2000), 343-352.
- Sorin Costiner , Shlomo Ta'asan,
MULTIGRID TECHNIQUES FOR NONLINEAR EIGENVALUE PROBLEMS; SOLUTIONS OF A NONLINEAR SCHRODINGER EIGENVALUE PROBLEM IN 2D AND 3D, NASA CR-194999 ICASE Report No. 94-91, Institute for Computer Applications in Science and Engineering Mail Stop 132C, NASA Langley Research Center Hampton, VA 23681-0001, October 1994, pp. 40.
- M.J. Esteban and E. Sere, An overview on linear and nonlinear Dirac equations,
Discrete and Continuous Dynamical Systems, 8(2), 2002, pp. 381-397.
- Hakan Ciftci, Richard L. Hall, and Nasser Saad,
Iterative solutions to the Dirac equation, Phys. Rev. A, 72, 022101 (2005) (7 pages).
[曾谨言, 量子力学, 卷II, 第三版, 科学出版社, P578-P635.]
- D. U. Matrasulov, V. I. Matveev, and M. M. Musakhanov, Eigenvalue problem for the relativistic electric-dipole system, Phys. Rev. A 60, 4140-4143 (1999).
- J. D. Talman, Minimax Principle for the Dirac Equation, Phys. Rev. Lett. 57, 1091-1094 (1986)
- S. P. Goldman and A. Dalgarno, Finite-Basis-Set Approach to the Dirac-Hartree-Fock Equations,
Phys. Rev. Lett. 57, 408-411 (1986).
- W. E. Baylis and S. J. Peel, Stable variational calculations with the Dirac Hamiltonian,
Phys. Rev. A 28, 2552-2554 (1983).
- G. W. F. Drake and S. P. Goldman, Application of discrete-basis-set methods to the Dirac equation,
Phys. Rev. A 23, 2093-2098 (1981).
- Z.J. Bai, J. Demmet, J. Dongarra, A. Ruhe, and H. van der Vorst,
Templates for the Solution of Algebraic Eigenvalue Problems: a Practical Guide, SIAM, Philadelphia, 2000.
Nonlinear Eigenvalue Problems
- Leonid D. Akulenko, Sergei V. Nesterov, High-precision Methods in Eigenvalue Problems and Their Applications,
Chapman & Hall/CRC Press, c2005. O175.9/Ak84(SX)
- Y. Saad, Numerical methods for large eigenvalue problems, Manchester University Press ; New York : Halsted Press, c1992. O151.21/Sa11
- D. Kressner, Numerical methods for general and structured eigenvalue problems, Springer, 2005.
O151.21/K884(SX)
- L. Labzowsky and A. Prozorov, Accurate spline solutions for the Dirac equation with a parity-nonconserving potential,
Phys. Rev. A 69, 012504 (2004).
- X.-Y. Gu, Z.-Q. Ma, and S.-H. Dong, Levinson theorem for the Dirac equation in D+1 dimensions, Phys. Rev. A 67, 062715 (2003).
05级
- Boltzmann方程的计算方法(校长基金, )
- 党豫川, 00501147
?? 级
- (美)弗里德兰德(Friedlander,S.)著 魏毅译, 地球物理流体动力学数学理论导论,
北京 科学出版社 1985.
- 姚姚 主编, 地球物理反演基本理论与应用方法, 中国地质大学出版社 2002.
- (日)恒藤敏彦著 张世泽译, 弹性体与流体,
北京师范大学出版社 1989.4
?? 级
- Subdivision Schemes in Computer-Aided Geometric Design
-
- N. Dyn, Subdivision Schemes in Computer-Aided Geometric Design,
in Advances in Numerical Analysis, Vol II, edited by W. Light,
Oxford Science Publications, 1992, pp.36-104. O241-532/Ad95 v.2
- J.D. Warren and H. Weimer,
Subdivision methods for geometric design : a constructive approach,
Morgan Kaufmann Publishers, c2002. TP391.41/W253
教务部
联系人: 王海欣, wanghaixin@pku.edu.cn, 010-62755459