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A CLASS OF HIGH RESOLUTION DIFFERENCE SCHEMES FOR \
NONLINEAR HAMILTONAIACOBI EQUATIONS WITH VARYING &N
TIMEMND SPACE GRIDS*

HUAZHONG TANG! AND GERALD WARNECKE}

Abstract. Based on a simple projection of the solution increments of the underlying partial
differential equations (PDEJ at each local time level, this paper presents a difference scheme for ;\5 ¥ i
nonlinear Ha.miltonl.]acobi' H:J) equations with varying time and space grids. The scheme is of ’,/\/"@
good consistency"xa{ﬁ‘d monotdie under a local CFL-type condition. Moreover, one may deduce a
conservative loca,[?time step scheme similar to Osher and Sanders scheme approximating hyperbolic . i
conservation la,w?)(CL) from our scheme according to the close relation between CLs and HsJ equa- i ! ”
tions. Second order accurate schemes are constructed by combining the reconstruction techni&lue with
a second order accurate Runge-Kutta time discretization scheme or a Lax‘Wendroff type method. R 9
They keep some good propertieéwa the global time step schemes, including s{}xbility and convergence, N |
and can be applied to solve numerically the initial-boundary-value problems of viscous H‘—\J equations. —NT -F)" .
They are also suitable to parallel computing. ~ .

Numerical errors and the experimental rate of convergence irll%-norm, p = 1,2 and oo, are ’ib@ / J
obtained for sgveral one- and two-dimensional problems. The results show that the present schemes
are of higherforder accuracy.
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1. Introduction. Consider the Hamiltonjg.] acobi (H‘%‘J ) equation;';/

(11) ¢t+H(x1t1¢z11@a¢md) :07
A

§ g . { i
with initial data ¢(x,0) = ¢o(x), where x = (a:l,x;i},a:d) € R The HIJ equations G-/ | dot / /J‘lk
have very important applications ranging from mathematical finance and differential /
games to front propagation and image enhancement. For this reason, there have been
many theoretical and numerical studies of the I-I/i\(I equations in the past two decades. _ C,—/\L{-
It is well known that the solutions of the above initial value problem are generally
continuous, typically they—sz€ locally Lipschitz continuous, but with discontinuous e
derivatives after a finite time even if the initial data are smooth. It introduces great , &, Lo ,\\[ £
) 7 . ; 2 A To mcdcy T
difficulties in theoretical analysis and obtaining numerical solutions of the HiJ equa- ;ff PV el
tions. The definition of viscosity solutions and the question of Wegégosed:figfs were y o 2&%‘2;(‘.
; 7L
~)

PG,{“S‘

formulated and systematically studied -by-GCrandeat—Evims, Tions, andTmany-others ¥ M s

see,:efg/EE,——GT—?‘f‘” In [7], Crandall and” Lions studied ‘the convergence of monotone A ye D
finite Ji\fference schemes to the viscosity solutions of (1.1). Unfortunately, the mono-
tone schemes are at most ﬁrsf;/order accurate, measured by local truncation errors,
in the smooth regions of the sdlution. A rigorous analysis of convergence rates for
the H-]M] equations can be found in [10]. Typically, there is a close relation between
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the equations and %};ﬁ)erbohc cOnservatlon laws (CLs), and as a result the con-
cepts used for conservation-laws can; be transfered to the HeJ equations. The existing

high resolution thethods for solvmg ‘the HI equations inc gll hlglfﬁorder essentially <5’
nonoscillatory (ENO) schemes 1ntrod ced'by Osher et-—aI\ 718}, and the central %

high resolution schemes proposed by Tﬁdmor/e’gj‘al*[m 135 14] Jin and X:gn 11] inves- Se
tigated the numerical passage of the relaxation ipproximation for e 5to S e
the HYJ equations. On the unstructured meshes, high order schemes constructed for
the HiJ equations are relatively rare. Abgrall [1] extended monotone-type finite vol- .-
ume schemes to first order HliJ equations on triangular meshes/énd developed a high '
order approximation in [2]. In a recent work ©fZhang and Shu [24], high order WENO
schemes are developed oF the unstructured meshes for two-dimensional nonlinear 1T A ~ . PR
equations. Tang et-al—~[19;-20} studied adaptive mesh methods for mult1—‘d1men510nal cq(\o Exﬁg\. 9] a V\@,\)\ r”“j:;
hyperbolic CLs and HAJ equations. A / T T -

In practice, when solving evolutionary problems numerically, it may occur that S
in some spatial regions one needs a smaller time step than in other regions. For
example, when an adaptive grid method is introduced to resolve a singular or nearly
singular solution, the allowable time step will be reduced for an explicit scheme. For
an implicit scheme, the time step size is often constrained by nonlinear convergence
too.

Based on a direct projection of the solutions, Osher and Sanders [16] proposed a
first order accurate difference scheme for nonlinear CLs with varying space and time
grids. Berger [3] did a study on conseryation at space and time grid 1nterfaces,, and
gave a conservative scheme with multiftime increments. In fact, they result in the
same scheme. The main advantage of Their schemes afe-the conservativity, which is
very important in numerical approximations for hyper%olic CLs. However, they suffer
a loss of consistency near a time grid interface.

The purpose of this paper is to study high resolution numerical approximations
of nonlinear H%J equations with varying space and time grids. Because there is no . 7—,\%;
need of conservation now, we will use the projection of the solution increments of
the equations to construct our local time discretization schemes, which can be ,7\’-[ p
conveniently implemented and are of good consistency. On the other hand, one may
derive a conservative local time step scheme, similar to the Osher and Sanders scheme
[16], approximating hyperbolic CLs from our schemes approximating the HLJ equa- rf/"\Ll:'
tions. Second order accurate difference schemes will be constructed by combfrlung the
reconstruction technique with a second order accurate Runge—Kutta scheme or a Lax— Aok
Wendroff-type time discretization. The schemes can keep some good properties of the -
global tifne step schemes, including stability,a ck onvergence, and can be applied to ”
solve numerically the mltlal-boundary—value "% ems of general H/'\T] equations with ,ﬂb - / L {Iﬂ}' J —_ @

second-order spatial derivatives. They are a'lso suitable to parallel computing. T ~
ThlS paper is organized as follows. In section 2, a class of high resolution local )
time step discretization schemes for nonlinear HLJ equations-agé presented based on ,,7\L/; / )—// ' S
7™

a simple projection of the solution increments of the underlying PDEs at each local
time step. Second—;\order accurate dlfference schemes are constructed by combining o
the reconstruction technique with hlgher—order accurate time discretization methods. cr 4
In section 3, the local time step schemes are applied to several model problems,

o Ol e ) s
including a periodic problem of the two-dimensional Navier-Stokes equations in non? "
cginservatlve/form We give numerical errors and the experimental rate of convergence

P-normy p= 1,2 oox to show the accuracy of the schemes. The paper is concluded “% gﬂ/ / ﬁ\b
with a few' emarks in Séction 4.




IGH'RESOEUTION SCHEMES FOR ﬁiAMILTONZ(J

. 2. Numerical schemes. For simplicity, in this section we will mainly restrict
DY our attention t nej—;dimensional scalar HI:{J equation‘;s/

N\ , A
¢t + H(¢CB) =0,

(2.1)
subject to the initial data ¢(z,0) = ¢o(z), where € R and the Hamiltonian H(u) €
C(R). A simple description of the scheme in 2B-will be given at the end of section 2.1.
Moreover, our schemes will be used to compl/fce two-dimensional HJ—J equations with
a general Hamiltonian in section 3.
Give a partition {z;};ez of the physmal domain Ry and denote h; G+l = Tjbl—
¢2 = ¢o(7;), and u 4+l = (¢741 —
A three-point explicit scheme approxnnatmg (2.1) may be represented as

(68)7,

z;,
%)/ h; +4> Where T; “denotes a grid point, j € Z.

(2.2) ¢n+1 ¢] T (’u,;.l_ U %5_ ¢_7

(M

where T, = tn41 —tn, and Hy = H(u;_1, u] +1) is considered as a numerical Hamil-

tonian. In this paper, we assume that H; is monotone, that is to say, H (u,v) is
nondecreasing in the first variable and no '1ncreasmg in the second variable. For the
explicit scheme (2.2), there is generally a need for the time step size 7,7

T ﬁu — ﬁ” <1
n - b
hioy ey

in order to keep the stability of the scheme, where H, = M and H
The condition (2.3) ensures that the rlghtc\hand sideof (2.2) isa nondecrea,smg functlon
with respect to ¢7,,, p = —1,0, 1;that is to say, the scheme (2.2) is monotone under

the previous assumption, and its solutions will be convergent to the viscosity solution
of (2.1).

(2.3)
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Fia. 1. Non(fumfom meshes in time and space.
o

2.1. First order local time step discretization We first consider a special

case with two time 1ncrements]§3;(1) = 7, and 7® := 17, and assume that 7 is

if ' used for the grid points with, iddex in the set Dy = {jlj < jo — 1} and 7 is for
= {jlj = Jjo}] see Figure 1(a)/‘7',1 =t — to there.

For this spevial case, we may compute directly ¢”+1 j < jo — 1, by the scheme

(2.2) ong t#me; and ¢"+1, j = jo+ 1, by using the scheme (2.2) two—gmles, i e, at

the local time levels ¢, + 2 5Tn and t, + 7, after ¢n+” has been computed The
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1
remaining problem is to compute ¢"+1, which will depend on the solutions ¢?0+215,
1
¢?0+2, and 925]0 .- Because the solution L G, s a.nd d)] 3 have been computed with a

J

small time step, we aﬁre/conmderlng{g deﬁne b There are two possible ways to

Jo —1
define (,/>;L+_°1 The first one is to|project d1rectly the solution as the one used in [16],
1
i.e./\evaluate ¢7-1+2 = ¢7 _1. Another is to project ﬁrst‘ly»the increment of the solution:

assuming that (5(15)]0 1 is known, then we evaluate or project (6¢)n+° = (0d)F 1

and update d)JO 3 =¢% 1+ ((5@5)]0 ; and (15;‘:11 = qﬁ;j_”l +3 (5¢));L0+"1 simultaneously.
The prevmus?vvlll suffer a loss of local consistency near a time grid interface, while

the latté does not. To show this, we assume that H(¢;) = c¢, and h; 1= h for
any j € Z, and the numerical Hamiltonian in (2.2) is taken as

H; = %(¢j —¢i—1)s

where ¢ and h are two positive constants. If there is a time grid interface at zj, as
shown in Figure 1(a), then using the direct projection of the solution is usedy ie,

+3 : N T O T
Biot = s gives PP Tpite a5 g Wl
1 n+ CTn , n+i n+3d
¢TL+ ¢.70 ? —Ii(quo f - ¢j0—°1)
2h
T CTn CTn , ,ntd
(24) = n (¢_70 ¢;’Lg—l) - E(quo *— ‘77'10-—1)7

where ¢n0+: is computed by using (2.2) with a small time step size. The modified

equation of the scheme (2.4) is derived by using the Taylor series expansion at x;, asf“)

CTn,

n bu ¢tt+0(h mrTn/h).

¢t+c¢z:_ ¢t+ ¢mm——2“ ?DE

It is clear that the scheme (2.4) will be locally inconsistent with the underlying F
d—}ﬁefenﬁ&l—eq.ua.tm}%/ o + cdr = Of2 if 7= — a, a finite constant, even though h = 0,,“

and 7, — 0.
For this reason, we will apply the projection of the solution increments to con-

struct mérjchemes For the case cons1dered here, we ﬁﬁate\ﬁrstfyﬂ 6qb)n+2 =

(6¢)7% 1y then update the solutions qb and ¢"+ simultaneously as follows:
TL-I-.—, 1} o
(2.5) bjo-1 _¢JD 1+ 5 (5¢)j0—1‘6
n+i +3
(26) ¢?:-—11 _¢ 2 + (6¢);) 1— ¢]0 1 + (6¢)]0 1

Obviously, (2.6) is identical to (2.2) at zj,—1. The computation of ¢7™ +1 may be
considered -as-implementing (2.2) twombmes However, it does ctually not increase
the computatlonal cost, because the s/c\)lutlon increment (5¢) jo_1 18 evaluated by using

simply the known value of (6¢)7
Jo—1*
The above scheme can be implemented as eAlgomthmaﬁIﬁ/

Step 1: Compute the solution increments (6¢)7 and the solutions qﬁ +3 forall j € Zf’j

s

¢ %2.7) St =gt 5(&;5);?, or §7HE — g7 = %(&b)?-

o =
]
T
¥/,
o o /%
//15\7] ;’f‘/m&/{ﬁ“

OF&»/ /

\’ﬂ/ff ol Lef,
Lf,@w&’h ek
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Gﬁ\ Step 2: Project the solution increments (6¢)7 such as

{(545)?’ .7 € Dh

Fys n+ n—l—% .
—TnH(’LL]_ u]-l-é )s, j € D,

&ﬁﬁz.S) (Gp)7 T2 =

19 i

q}] ep 3: Update the solution q§"+1 att =tpyq forallje Z’ g

'\E(:z 9) Gt =gt 4 5(6¢>?+§-

Using 7 ;= 7, and 7® := L7, as defined above, tﬁamﬁl;lg;omiﬁhml may be rewritten
in a compact form as follows:

3
(2.10) gt —”‘ib” +rO6E)T, G >do—1,
wr1 27+ (60)T, i<jo—1,
(2.11) ; = n+o @) s
¢j + 73 (6¢); 7%, F = Jo-

Comparing (2.10)—(2.11) to the global time step discretization scheme (2.2), we

have:
EMMA 2.1. If the time step size 7, i =1,2, satisfﬁéfr’/
~ ~ A
; H H
(2.12) AR e e g
RIS

then the scheme (2.7)—(2.9) is monotone and consistent. Moreover, it is also conser-
vative with respect to u = ¢z, i.€.,

(2.13) “;LI}hH% == Z“?Jr%hﬂ%‘
3 J
Proof. The monotone property can be obtained by comparing (2.10)-(2.11) to
the global time step discretization scheme (2.2).
To show consmtency, we replace (2.4) by
¢TL+1 ¥ ¢TL+,, CTTI (¢TL+2 - 7L+,,1)
JO

CTn CTn

(2.14) Zgp - (g, = #hr) — SO = ).
2h

Again using the Taylor series expansion at z;,, we may derive the corresponding
modified equation as follows:
ch T
¢t + C¢z = 7¢zm - _273¢tt + O(hga 7_7?{)

Due to the definition of u and Adgorithmsl, the conservation may be found from

2

1 Tn (5 Sn . B = o
Ujry =Uied T 2hj41 (H;L+1 ~H - Hi _H?> ISh-
w1 7 Tn Sn-tg
(2.15) Wy e g (B — By + B -7 ),
ntl _n __™ i n "+° _FMEY s
= - (Bps - Bp + BYE - BF2), 52 o,

L

!

p@ﬁuﬂ

‘3>< SHF

wma £ Hows‘f;g; femma,

ﬁ//\%

CoM .,
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-/ From these, the proof ofelemmia:2.1 is completed. |
/\ The proof of emma2.1 tells us that a conservative local time step discretization tom, ]
- scheme (2.15) is derived for hyperbolic CLs
Ou  OH(u)
(2.16) =t e = 0,

which is similar to the Osher and Sanders scheme given in [16]. But there exists a
slight difference between them, because the Osher and Sanders scheme is given as

[
ik

ntl Smo o Tn (Fn o _fFng gr _ fr) . 5< i —
Yips TYi4d 2h; 1 ( g1 — Hi + Hi Hj) y 7 < Jo— 2,
~ A e T = - N s
S n+l __n _ n no_ +3
/\ ujo_% _ujo_% 2h; 1 (Hm H‘m 1 +H( .70""’ > H( jo—37 .'10 % y
= Jo—3
~/ ntl _m __Tn AR I ntd
/\ﬁ\ u]()-'—% —ujo_'_% 2hj0+'l' ( '7D+1 +H< .7 +1’ .70+ / (u](]_%’ujo-!-%) r
n+l _an _ ™ In n n—f—,, _ gnti . .
W = g (Ao - Hp+ HREE - B7Y), 2o+ 1.

Obviously, the numerical implementation of the scheme (2.15) is more convenient than

the Osher and Sanders scheme.
oa

In the fpllowing, we extend rAlgomthmI to a more general case with multiFtime
14 mcrernentsw Try QUTn, L= 1,7 T , k, where Zz 1 oy = 1% see Figure 1(b). Define ﬂo =0,
N ﬁl Z 162“121,:;/\/,]{2 ’ o
X i We
A The algorithm with multiFtime increments can be described as follows 1 (We con-
/ sider it as edlgopithm: IT), o !/
/ C)‘ Step 1: Compute the solution increments (6¢)7 and the solutions q5"+ﬁ tforallje Z’*’ ! %’Q (H ,
Y ‘ - EA © v
(2.17) (087 := Zrafl(u]_y,04),
_ (2.18) PTHO T + i (69)7
\;/ Cﬁ Step 3 For | = 2,'\:,‘){1» do the followmgf/ % u_l H‘J ',FP /
~ A (a)rPrOJect the solution incremefits (69); m+P-1 gt each local time level“” .
- C:‘%o
O (67, jeD,
2.19 §)" A1 = A : .
( ) ( )] TnH( ;I;H%?l 1,u;l:-1ﬁz 1)’ je D2)0 }/0
(b) )’ Update the solution d);.H'ﬁ bat t =t, + B, for all j: j 7[‘7
(2.20) ¢?+ﬂz — ¢?+ﬁz—1 +a[(6¢)?+ﬁl_l-

>( <ﬂ For the scheme (2.17)-(2.20), the conclusions of éhe Lemma 2.1 still hold with CH / Q’ff’ %“‘U’
N (r, 73y = (7, ma)_g{al'rn}) and we can also give a conservative scheme for (2.16)
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with mult tlme increments as follows:

n+l ' n QTn ( ) - .
1 =Y i1~ Hi ) )
Itz T =1 2h‘.‘i+%
& k T,
n+l ' n _ § : 1Tn gnt+Bi-1 _ fin
(221) ujo—% —ujn—'% 2]?,] . (Hjo j0—1> ’
=1 0—3

k
1 AT FHn+Bi- Fn+0i- . .
=, — 3 (B - B, 2 o

Before ending this subsection, we give a two-dimensional extension of the above
schemes. The Cauchy problem for a two-dimensional H#‘J equation is given by

é; + H(Vg) =0, (z,t) € R? x (0, 00),
#(z,0) = ¢o(z), T € R>.
Generally, (2.22) can be formulated as a system of CLs [11], simply by considering
the equations satisfied by the gradient u = (u,v) = V¢(z,t) of the solution of the
above Cauchy problem,
u; + VH(u) =0, (z,t) € R x (0, 00),
u(z,0) = up(z) = Voo(z), = € R2

(2.22)

(2.23)

For convenience, we restrict our attention to a regular but non7u111form mesh
{(z,yx)}jkez for a rectangular domain 2, for example Q = [zL,zR] X lyr,yr)- If a
uniform time stepsnze is used in Q, then at each grid point (z;,yx), we may use the
schemq 3

(2.24) ' SIEY = 87k + (60) 7k

where (5¢) ' = —'rnH] &, and H”k = HLu 1 k,u]Jr k,v;tk_l, j’k+%)>is any appro-

priate numerical Hamlltoniar{',\ see e.g. (3.3). It H; 7,k s monotone with respect to its
arguments, quil,k/"and @, k+1, then the scheme (2.24) is monotone under a suitable
CFL condition.

‘We assume now that the computational domain 2 is discretized such that the half
step sizeg/ hz/2 is within the horizontal strip [z4,zs) and h,/2 is within the vertical
Strip [Ya,ys], respectively, where z;, < x4 < 75 < g and yr, < Yo < ¥p» < yr. The
half time step 7/2 is used in [z4, Zs] X [Ya, Yb], while the global step sizes h,, hyﬂand T
are taken in the rest of the domain €, respectively. Then the local time step scheme
with two time increments may be given as follows:

n+1 ]
(2.25) {¢'»k ) +3(89)7, k=9 — gy, (4, k) € O,
$itt = "*2 L(6g)54 ¢"*2 B, (k) end,

(6¢)Jk_ d.k 1T71H] k* (Jak) Esz

¢77-+') — AT
(2.26) { i ﬁfq ntd _ ntd Sn g 5
i = ¢ (5¢) ¢ ETTLHj,k’ (J,k) €,
where Q,IL denotes the set of the grid points in [z4, Zs] X [Ya,vs], and 9,21 denotes the

set of the grid points in the rest of . It is obvious that the scheme (2.25)—(2.26) is of A

5P



8 H. Z. TANG AND G. WARNECKE

monotonicity property same as that of (2.24), if H ;& is monotone with respect to its

arguments as before, and the local and global CFL conditions hold within 2} and Qi,

respectively. The conservation property may also be derived with respect to v and v,

where 'u’j—i—%,k = ($j+1,k — Pjik)/ (Tj41 — 75) and v; 11 = (D k+1 — Bjk) / (Yrt1 — Yi)-
‘T/'

. Higherjorder accurate spatial discretization. In this subsection, we
1ntroduce a reconstruction technique to improve the accuracy of the previous schemes
in space. Following [23], we construct a piecewise linear functiorf; )

+ + +
(2.27) w§+§l (@) =ulfP + 57 fl( —z41), TE [xj,xj+1],
to replace the original piecewise constant function at each local time level t = ¢, +8;7n,
where By =0, z;,1 = —(m] + Zj41), and S":lﬁ‘ is a numerical slope approximating
(um)”_l“_Lfi L1=0,1 O k — 1. High resolution local time step discretization schemes
can be derlvedj if the term H (u; —1Ujpl 1) in the previous algorithms is replaced by
H(uj I,Uj,r), Where u; 7, = w;_ (z]) and uj g = W1 1(z4).

ThereA many ma,mlalg to deﬁne the approximate slope .S’”+ﬁ t. The commonly used

~
formulae are

n—i—ﬁ s n+8, "'H'ﬁ )
(2.28) S ' = minmod (SJJ”‘ S’ ! ) ,

3| n+ﬂz, | |5n+ﬁl, I

220) S = (sign{ ST >+ " n( sriem)) i+3 ] 3
( ) ( g g > 1]Sn+ﬂ" ¥+“Sn+ﬁh |\—I—E

) SR » ’ )
v e IS TSN i g
’ J+i T {lSn-l—ﬁz,Lﬁz +{|S;L_:'§"R|}2 tel 1 ek ’

which are the Minmod limiter, the van Leer limiter, and the van Albada limiter,
respectively. Here

A ’11,7."+ﬂl A u7"'»+ﬁl
grtBuR _ ity gnepn i3
.7+'> . ? .7+') - . !

A'i'z]-l-l Biiy

a5t s
becomfs-zer ie, 0 < e <1, and e and £® are taken as C’h] 1 and Ch; i+
respectively. " A 11m1te1 is used to ensure that the solutions of the high resolutlon
schemes are oscillation free.

Remark 2.1. When using the piecewise linear function w™?*(z) to replace the

i+
piecewise constant function u?j_'f ', the stencil of the second order scheme becomes

larger than that of the first order scheme. Thus, to keep consistency, we should also
enlarge the projection region of the solution increments. As an example, we consider
a simple case shown in Figure 1(a). When the first order scheme is used, we el
needb 5 project solution increments at z;,—; in order to evolve the solution at zj,.
However, when we use the above second order scheme, we should project the solution
increments at z;,_1 and z;,_» in order to evolve the solution at x;, and calculate the
approximate slope.

€ is a small positive constant to avoid thatvthe denominator
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\K/
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O
Remark 2.2. The above scheme is! M S »D—type or slope-limiter type method A / -

and‘gexphclt' similar to that for hyperboﬁc conser?ation laws, the CFL number should . ~ , 37
generally be taken less than 0.5 for Jd-case and 0.25 for/\ ~2f\dfcase respectively, in order »,5 o on @-—Cs e
to keep stability. Certainly, }t may be relaxed with some further modification of the o +u wu—é“(\ ens ong| M
method.

17}

2.3. ngher%rder accurate time discretization. To increase the accuracy ei){ e
of the time dlscretlzatlon we use Runge-Kutta methods or Lax-Wendroffi-type meth- -
ods to replace the forward Euler time discretization used in the prewous/\versmn. &

A second-order explicit TVD' Runge-Kutta method is implemented in eAigo®
ithm T} |
+Step-1: Compute the solutlon increments (6¢)7 and the solutions ¢"+ﬁ Yatt =ty +

—

f{’ﬁm for all j € Z# 2

(2.31) ¢”+ﬁ1’ —¢" +a1(09)7,
(2.32) grth = (qu N ) ) , %&a@k VW

é”“;/&,here (69); := ——TnI-AI(uJ Ly Uj,R)- 7[@(,@}, ‘/U,/i/él/

C—

“Step 3: For | = 2,@;:,’1: project the solution increments ((5¢)?+B"1 and update the Cm /P,p‘ ,M/ ﬁ)f’j ‘ ;’IC ‘f I ,l @4; <
b olutions ¢; FP at local time level t = t,, + Bj—17n: L{ «w&k Vé/%’{’
1 ) (6)F JE€D:
2.33 sgyrBi- 1 ] 09) :
238 BT iz e,
(2 34) ¢’I’L+ﬁly :F ¢ +/3 (5¢)n+ﬁl ! .7 € Dlv
' T (6¢)"+‘*’ ', jE€Ds
2.35 5 n+Bi,* ‘/=;‘_: H? n+,ﬁz,, n+ﬁl, ) ? ;
(235) (60); ( b ( i 03 e W)\VW
i1 1 n+06y % n+06, .
n+p; _j §¢ + 2 ¢ +:8 (5¢) ’ J € Dla
(2.36) o7 =

b7+ 3 (P (9)]T), e D

To verify the accuracy of edigorithms ITI in time, we restrict;to the cases shown
in Figure 1(a),~\and define L(¢j-1,85, #j+1) = (6¢);/m and T = >, L;, where ‘
the term L; denotes the partial derivative of L(u,v w) with respect to,ith variable. Lo
Moreover, we will assume that L{¢j—141, Pjx1, Pjr121) = L(dj-1, 05, dj+1) + O(h), '
O(h) = O(ry), for all j € Z.

Using Taylor series expansion and #ilgorithmelll, we have O
+') /ﬁ ]
bt =g+ (L+ L/L) (71,65, 841) + O(7), 1 € Z,

38

#p25 T (Dr T (0756 ) 06D, 5 <2

¢7+1_¢"+TH(L+ BLL) ($1, 87, 612) + O %), 5> jo+1.

In~1'fher followngig, we still need to check the truncation errors ofedigorithm: I1I at z;,
N\
£

cr g PR
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\\/\ and Tj,—1. Again using Taylor series expansion‘gﬁx\?es”
><’\ ¢’n+1 A 1 n+,, +% (¢n+1 S L(¢n+1 *’¢n+1 *"15?;:1*))) ’
/< L n+q (L\(¢?0+°1, n+,; ;:_r’l})-i-ﬂ@ntl *,¢n+1 * ;Loilf*})
e ¢”+° + (L+ rn) (@i, ) ) ERCIC M
Here we have used the relations o V”
></ ¢;L+1 i 1 n+,, 7;11:( ;L+1°,¢n+°,¢nil°F BT + T L(T_1, 67, 81 + O(r2), j €D,
A —k}bj L (B 8 61) = ¢”+" + LE¢7+1”,¢”+°,¢]+1 Yo, jeDu.

Similarly, we have

-
Pl =g L+ (L + EHL'L) (7 o, 8% _1,8%) + O(13).

c/
The above results show that the scheme (2.31)—(2.36) is second—order accurate in, time

/ .in-theSense of the truncation errors. o &
~/ ¢#% The Lax—Wendroffr-\type method is another way to get a hlgher-order accurate
I time discretization scheme. Using (2.1) and Taylor series expan51on»~: we have

\Z~
(237) 7 S aum (H(8)) T+ 5 (mn)? ((H’)%M)Tﬂ‘ +0(7).

If the term (H (¢m))"+‘6 ' is approximated as before, and G(u”+ﬁ‘,u;’}'§ﬂ ') is used to

denote numerical approximation of the term ((H') ¢zm)?+ﬂl, for example,

. 9 uT}:ﬂz _ un-l—ﬁl
2.38 C’qu’f.b"‘ﬁl’ n+ﬁl = (Hl (n'i‘ﬁl +un+ﬁl\, ) JT3a J—3
A em Gt (r (et v ai) i
\< then the corresponding AdgamithnplV may be given as followsi;\
/ CPé Step 1: Compute the increments (6;¢)7 and (8y¢)7 for all j € Z: % [1 _Q l 9 )C
\)
2
n Tn)” S0 n n
e)em) @) = —r ), @)} = 00 ) qwg;w@%

CY\ Step 2: Update the solutions at ¢ = &, + f17n: Pr j/(l,ﬂ Hm, ,(_ P .

(2.40) O = 7 + o (6i)] + (1)’ (ue)],  JEZ. A Lg}'\ e
N )< Step 3: For [ =2 5 k, do the following: st Cﬁ” ijj, . HJ./XZ‘

(a)erJect the increments (5t¢)n+m ' and (6tt¢)n+ﬁl Yatt =ty + Bi17Tn: \)“ /@ I
/ n — 5 ¢)’n. ] 1S Dl
. 92.41 5 -1 ( t®)5> R
\//\ CO‘“ —:L,L ( ) ( tqs)_'] {_TnH{(:u";},'Eﬁl—l, ;H};ﬁl 1)\ ] c Dg,
L%g"(‘\ N and o -

N (242)  (bu)]P = {(5’5“’5)” €Dy,
) 7

)2 Af, nt +h-1y
(72) Gi( ;ILﬁz 1,u;},Rﬁz B, g EDg,O

.
ti ‘r
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(b)// Update the solutions at t = t,, + B;7, for all j: s / /€/7C ‘
(2.43)
oo = 97 Bi(8:p) T + (B2 (0ue); P, jeDy,
J ¢;}+ﬂl~1 + al(6t¢);l+ﬁl—1 + (al)2(5ﬁ¢);}+ﬁl—17 ] € Ds.

It is worth noting that two “solution increments” have been projected at each local
time level in the above algorithm.

3. Numerical experiments. Several examples will be considered in this sec-
tion. All of them have been used by several authors to test various numerical schemes.

Three limiters listed in section 2.2 have been checked, but to save spaceywe will only C{f
give the results computed with the van Albada limiter (2.30). The results computed )
with the van Leer limiter (2.29) are similar to thése shown in the following, but those =1 ,'/ﬁ

obtained with the Minmod limiter are more diffusive and less accurate. In our compu- ¢

tations, the parameter C' i/s\ taken as 3 in (2.30),,the CFL number is taken as 0.4§ and wo / ' o
0.24 for the one- and two‘-»/dimensional cases, respectively, unless stated otherwise. AR Y
) 2o £fip £

3.1. One-dimensional problems. For the computations of one-dimensional Wi, i/

problems, the numerical Hamiltonian {)} jf,s i
o Uty
max{|H'(u Pdhifrig
o Uj,L + UjR u€l; f" Wy - §r11

(3.1) H(uj,z,uj,r) = H 5 - 5 (us,r = u,L)/ N
is used, where I; = [min{w; 1, u;r}, max{u;r,u;r}]. The second order derivative ~
@z will be discretized as one given in (2.38). The LP-errors’, p = 1,2, 0o, are estimated e
as follows:

e =" lén(e;,T) - d)(:z:j,T)I%(hj_l_% +hyy),

g

3 T
en =\/Z o (5, T) — ¢(-Tj7T)I2"2'(hj+% +h;_1),
pt 7

2

v ;mjaX{WN(wj, T) - ¢(z;, T)|}

where N denotes the number of *Ehe‘ grid points, and ¢n(z;,T) and ¢(x;,T) denote g
the approximate and exact solutions at t = T, respectively. The experimental rate of |
convergence is computed as p* = log(ely/eby)/log(2),i = oo, df 1, or 2. Py,
Ezample 3.1. We solve a linear convection%\diﬁusion equation
-
@1+ Chy = 0Pgs, (z,1) € [0,2n[x]0, T},
(3.2) #(z,0) = sin(z), ze0,2n]] A

$(@ +2m,t) = p(z, 1), te[0, T

where c and a > 0 are both constants. The exact solution is ¢(z,t) = e~ % sin(z — ct)
[4]. We compute the solutions up to T = 2 for two cases: (a,c¢) = (0,1) and (a,c) =
(1,1), and set that the half step sizes h/2 and 7/2 are used within [, 1.57], while
the global step sizes h and 7 are in other regions. Tables 1-3 show the errors and
convergence order obtained by Afgerith ,»ifIII agd@l withm 1V, respectively.

The numerical results show that a secondrorderTate of convergence is obtained
for the problem in (3.2). When three local time steps 0.57,0.17, and 0.47 are used
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TABLE 1
\/ Ezample 3.1: The errors and gh&rate of convergence for the case (a,c) = (0,1) in (3.2) obtained
™ by Algorithm III. . at '
M al, from. "D

3 (W] eR [p®° ] ey | p ey | p’

/ 2% | 2.0262 | — | 53762 | - | 2.58¢2 | -
50 | 5.036.3 | 2.01 | 1.33e2 | 2.01 | 6.27e3 | 2.04
100 | 12263 | 2.04 | 3.30e3 | 2.01 | 1.54e.3 | 2.03
200 | 2.0664 | 2.04 | 8.2404 | 2.00 | 3.79¢-4 | 2.02

TABLE 2
Ezample 3.1: Same as Table 1, except for (a,c) = (1,1) in (3.2).
P
(W] e [p> ] ey [ o0 [ & | 9
3.01e-3 - 8.99%e-3 - 4.42e-3 -

50 | 8.20e-4 | 1.88 | 2.42e-3 | 1.89 | 1.19e-4 | 1.89
100 | 2.13e-4 | 1.94 | 6.26e-4 | 1.95 | 3.07e-4 | 1.95
200 | 5.43e-5 | 1.97 | 1.59e-4 | 1.98 | 7.79-5 | 1.98

f 4;10’@5

within [w,1.57] instead of the previous two time increments, we have obtained fully
the same data. /

Example 3.2. This example is to solve the H’ J equatlong/(Z.l) with a convex H ", = / /Q/
(Burgers’ equation) / ‘

H(u) = (u +1)2,

Further 27-periodic initial data

/ #(z,0) = —cos (w(z — z0)), =€ [-1, g:
. A

'\\ /

are taken as in [20], where zg = 0.85.

To verify the convergence rate for the local time step discretization schemes, we
take the half step sizes h/2 and 7/2 within [—0.2,0.2], while the global step sizes h
and T are used in the other regions, and solve the problem up to t = 0.5/72, when
the solution is still smooth.

Tables 4—5 show the errors and convergence order obtained by fﬁllgorithm 111

convergence has been obtamed by using the local time step dlscretlzatlé\n methods to

solve nonlinear equations.
Figures 2-3 show the solution ¢x(z;,t) and ul\_ri_l = (¢j+1 — ¢;)/h;; 1 approxi- B
/w mating ¢.(z s t) at t = 1.5/7% obtained by Algorithin 111 as well as Wigorithm IV, Covl, " of
respectively, When the discontinuity in the ¢, is well developed. Here the number of V
\:7:“ grid cells is 6(2{2 ‘and the solid line denotes the solution calculated by the global time X’* Skj
o \\ - o

step scheme on a uniform mesh with 2000 grid cells. The ability of the local time
step discretization methods to capture and follow the moving discontinuity is clearly
demonstrated in these figures. The solutions obtained by using two different limiters
are consistent.
When three local time steps 0.57,0.17, and 0.47 are used within [—0.2,0.2] instead
of the previous two time increments, we have obtained the same data too. ~
‘\/\ Here, we just used fixed non—unlform meshes to demonstrate the performance of v?
‘ our present schemes. The adaptlon is now being considered combining the present
local time step schemes with our adaptive grid methods in [20]. In principle, there is no
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TABLE 3 .
FEzample 3.1: Same as Table 1, except for Algorithm IV. V&OW
0y T z V]
W e® [p> [ ey [ » e | p
25 | 1.06e-2 - 1.45e-2 - 1.14e-2 -

50 | 2.28e-3 | 2.22 | 2.99e-2 | 2.28 | 2.37e-3 | 2.27
100 | 5.20e-3 | 2.13 | 6.66e-3 | 2.17 | 5.33e-3 | 2.15
200 | 1.25e-4 | 2.06 | 1.54e-4 | 2.11 | 1.25e-4 | 2.09

TABLE 4
“><\ zample 3.2: The errors and convergence order obtained by Algorithm III at ¢t = 0.572. é 4 b / ,
) Qe [p> [ e [ o[ & [ 9
30 | 1.34e-2 - 1.71e-2 - 1.33e-2 -

60 | 2.74e-3 | 2.29 | 3.24e-3 | 2.40 | 2.55e-3 | 2.38
120 | 5.83e-4 | 2.23 | 7.00e-4 | 2.21 | 5.55e-4 | 2.20
240 | 1.26e-4 | 2.21 | 1.59e-4 | 2.14 | 1.2Te-4 | 2.13

big difficulty that the method d@esgadapt because we have resolved,\move singularity 'b
for hyperbolic conservation laws with the local time step schemes in Example 5of our
dhother paper [21]. The adaptive idea can also be found 111«,another}paper [22]. . e

TABLE 5
Ezxample 3.2: Same as Table 4, except for Algorithm IV.

e N ex pee e}v p* e?\, p?
= 30 | 1.06e-2 - 1.34e-2 - 1.05e-2 -
- 60 | 2.36e-3 | 2.17 { 2.92e-3 | 2.20 | 2.32¢-3 | 2.18
W /\/z,.\ﬂu' \"/7 120 | 5.29e-4 | 2.16 | 6.42e-4 | 2.19 | 5.13e-4 | 2.19
MO\[L U\{\’ ) 240 | 1.15e-4 | 2.20 1.47e-4 | 2.13 1.19-4 2.11
/

3.2. Two-dimensional problems In the following computations, we restrict

ourselves to a regular but non—umform mesh {(z;, yx)}jkez- The numerical Hamilto- s
nian W v
7 Uitk T Ui-d Uikt T Vik—1
H(uw; g %543 k0 Vik—3r Vit d) = H ( Ty
mae {|a(w)]} mex (18(0)}
k7
(63 (g ) (g~ Van)
is used to approximate the Hamiltonian H(¢g, ¢y ), where au) = Hy(u,vjk), Bv) =
H,(ujk,v), and
- Pix1,k — Pjik Vi pas = Gjkt1 — Pik
=2 Tijg1 =5 P yha1 — Y
Il'tk ﬁ[mm{u —L Uil k}ama‘x{u'—l B Uil k}]a
Igv,k =[1n1n{vy k1175, k—l—l} max{ jk—4 j,k-l—l}]

as well as Hy,, = aHa(zZ”) w =1 or v.
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Fic. 2. Comparison of the computed solytions (“c”) with the “ezact” solutions (solid line) of
Ezample 3.2 given at t = 1.5w2. Left: ¢(x,t)fiRight: ¢z(z,t).

oo s “fvﬂg
o . -
oz ’.fﬂ
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os . _‘,"
- \\ | o~
rd * ”f
oo I g“ -~
b e ? e
>~<\ FiG. 3.! Same as Figure 2, except for Algorith'rn Iv. g”i q;{ .
\ et ot .
\/7 - . i -
AN\ Ezample 3.3. The first @D’example is to solve scalar inittal=botnd d‘f‘y‘va:LuQEI'BV)?« T / T -came 0 Seon Q: ’ KT
problem [18]: A
(34) ¢t + H(d’ma ¢y) = 07 ¢(IIJ, Y, 0) = — €08 (71’(.7) + y)/2)7

with a convex H: H(u,v) = f(u+v+1)? —2 < 2,y < 2. It is a real 2D H,J
, problem, We can use the one-dimensional exact solution to analyze our numencal
X results;/because under the transformation ¢ = (z + y)/2 and n = (z — y)/2, the
above L[BV problem become the one-dimensional IBV problem in the £-direction in
Example 3.2. However, since we use (z,y) coordinates, this is a true two-dimensional
test problem. We compute to t = t; = 0.5/72 as well as t = t3 = 1.5/7%. The
computational domain is discretized such that the half step sizes hy/2 and h, /2 are
taken within [—0.5, 0.5, respectively, and 7/2 is used in [—0.5,0.5] % [—0.5, 0.5], while
\/< the global step sizes iy, hy,and T are taken in other domains. The results are presented
in Table 6 and Figure 4.

TABLE 6
Ezample 3.3: The errors and convergence order for solutions at t = 0.5/n2.

A o> (NN e [p2 ] ey [ 90 | e}y [ p7
20x 20 2.15e-2 - 4.97e-2 - 2.07e-2 -

40x40 5.95e-3 { 1.85 | 1.36e-2 | 1.87 | 5.91e-3 | 1.81

80x80 1.41e-3 | 2.08 | 3.40e-3 | 2.00 | 1.44e-3 | 2.04

160x160 | 3.11e-4 | 2.18 | 8.36e-4 { 2.03 | 3.39e-4 | 2.09
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[X:1
0.8
0.4
0.z

-0.2
-0.4
-0.8
-0.8

LIy " I e e

-1.2

Fie. 4. The computed solutions of Example 3.3 at t = 1.5/72, 100 x 100 cells. Left: qb(m,y,t)/(@ J’/@
Right: ¢¢(z, y,t).

Ezample 3.4. This example is to compute two-dimensional Navier-Stokes equa-

tions [15]:
(3.5) wi+u-Vw = %ﬁw,
AY =w, u=V-iy,
x and check the accuracy ofedigonithm III with the van Albada limiter, where (z,y) €
\\ [0, 27[x [0, 27[ and V+ = (=8, 8:). The.2ZD-Incompressible Navier;_‘aStokes equation

"(3.5) may be considered as &MLl equatid with a viscosity. Our purpose of solving

_ (3.5) is to cgéack effectiveness as well as accuracy of our schemes for ’?/fjf%J;type equation
‘/< with higher;Aorder spatial dervatives. v

For this problem, the periodic boundary conditions are specified on four bound-

aries of the computational domain, and the Reynolds number Re is taken as 100. The

discrete Poisson equation for the stream function 1 is solved iteratively by a Jacobi—  —

type iteration. a

The initial condition is taken such that the exact solution of the problem is known

E

as

i . T
b ehan W 6 T
L

z \ .
LU(iL‘, Y, t) = —2 sin(z) Sin(y)e fe, TP(I, Y, t 'Sill(l') Sin(y)e"ﬁ,

u(z,y,t) = — sin(z) cos(y)e™ #, v(z,y,t)= cos(z)sin(y)e” .

The computational domain is discretized such that the half step sizes h;/2 and h, /2
are taken within [0.8,1.2], respectively, and 7/2 is used in [0.8,1.2] x [0.8,1.2], while
the global step sizes hg, hy, and 7 are taken in other domains. Table 7 shows the
errors and convergence orders for the vorticity function at ¢t = 2.

TABLE 7
Ezample 3.4: The errors and convergence order for solutions at t = 2.

> (NxN) | e [p® ]| ey | o | & [ 2
AX94 | 1.71e-2 - 1.93e-1 — | 407e2 | -

48x48 3.06e-3 | 2.48 | 3.22e-2 | 2.58 | 6.63e-3 | 2.63
96x 96 5.06e-4 | 2.60 | 5.54e-3 | 2.54 | 1.16e-3 | 2.51
192x192 | 1.13e-4 | 2.16 | 1.04e-3 | 2.41 | 2.14e-4 | 2.44
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4. Concluding remarks. A clags of high resolution local time step schemes
~ have been presented for nonlinear Hémmiltoni 4cobi-equations (1.1) in this paper, based @/3 i / /é
‘ /< on a simple projection of the solutlo%mcrem\(at each local time step.
% Second order accurate difference schemes were constructed Gby*usmg the recon- | '
>< struction technique, and the Runge—Kutta)éSr Lax(—\WendroffKtype time discretization 1 9 ,/ / —C
method. The local time step schemes are of good consistency, keep some good prop- N
erties of the global time step schemes, i1 c&edmg stability and convergence, and can be
. applied to solve numerlcally the initial problems of general Hé] equa- . ﬁ = Z BV
\/yfi\ tions with hlgher order spatial derivatives. They are suitable to parallel computing ‘f =
too. Moreover, from our schemes, one may derive a conservative local time scheme ap-
proximating hyperbolic conservation laws similar to Osher and Sanders scheme. The <
\x main idea can be used in construction§ of finite element me‘chods__,,e’cc),‘s with varying & ) @
time and space grids. ' e
The present schemes have been used to solve numerically several model problems,

4 including a periodic problem of the two;‘ﬂdimensional incompressible Navier—Stokes

72\ equations. The numerical results show that a second—order rate of convergence could
be obtained by the presented schemes in computatlons of one- and two-dimensional
problems.

In the future, we will apply the local time step schemes to improve the efficiency

of the adaptive grid algorithms and analyze the computational cost, of the local tlme

\< step schemes. —I{lls/another interesting topic to construct third; and hlgher—order
N accurate schemes with locally varying time and space grids.
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